
RESEARCH ARTICLE

Model and Comparative Study for Flow of

Viscoelastic Nanofluids with Cattaneo-

Christov Double Diffusion

Tasawar Hayat1,2, Arsalan Aziz1, Taseer Muhammad1*, Ahmed Alsaedi2

1 Department of Mathematics, Quaid-I-Azam University, Islamabad, Pakistan, 2 Nonlinear Analysis and

Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King

Abdulaziz University, Jeddah, Saudi Arabia

* taseer@math.qau.edu.pk

Abstract

Here two classes of viscoelastic fluids have been analyzed in the presence of Cattaneo-

Christov double diffusion expressions of heat and mass transfer. A linearly stretched sheet

has been used to create the flow. Thermal and concentration diffusions are characterized

firstly by introducing Cattaneo-Christov fluxes. Novel features regarding Brownian motion

and thermophoresis are retained. The conversion of nonlinear partial differential system to

nonlinear ordinary differential system has been taken into place by using suitable transfor-

mations. The resulting nonlinear systems have been solved via convergent approach.

Graphs have been sketched in order to investigate how the velocity, temperature and con-

centration profiles are affected by distinct physical flow parameters. Numerical values of

skin friction coefficient and heat and mass transfer rates at the wall are also computed and

discussed. Our observations demonstrate that the temperature and concentration fields are

decreasing functions of thermal and concentration relaxation parameters.

1. Introduction

There is a significant advancement in the nanotechnology due to its rich applications in the

industrial and physiological processes. The modern researchers are engaged to explore the

mechanisms through the nanomaterials. A solid-liquid mixture of tiny size nanoparticles and

base liquid is known as nanofluid. The colloids of base liquid and nanoparticles have impor-

tant physical characteristics which enhance their potential role in the applications of ceramics,

drug delivery, paintings, coatings etc. Nanofluids are declared as super coolants because their

heat absorption capacity is much higher than traditional liquids. The reduction of the system

and enhancement in its performance can be achieved with the implications of nanoliquids.

The term nanofluid was first introduced by Choi and Eastman [1] and they illustrated that the

thermal properties of base liquids are enhanced when we add up the nanoparticles in it. Buon-

giorno [2] developed the model of nanoparticles by considering the thermophoretic and

Brownian motion aspects. Further the recent developments on nanoliquids can be seen in the

investigations [3–20].
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The process of heat transfer occurs when there is a difference of temperature between the

bodies or between the various parts of the same body. This process has vast technological and

industrial use, for example, cooling of atomic reactors, power generation, energy production

etc. The famous law of heat conduction proposed by Fourier [21] is mostly employed for heat

transfer attributes since it appeared in the literature. Cattaneo [22] modified this law by includ-

ing a term of relaxation time. This term overcomes the paradox of heat conduction. Christov

[23] further modified the Cattaneo theory [22] by substituting the time derivative with Old-

royd upper-convected derivative. This theory is termed as the Cattaneo-Christov heat flux the-

ory. Straughan [24] employed heat flux model by Cattaneo-Christov theory to explore thermal

convection in horizontal layer of viscous liquid. Ciarletta and Straughan [25] showed the struc-

tural stability and uniqueness of solutions for an energy equation with heat flux by Cattaneo-

Christov expression. Haddad [26] discussed the thermal instability in the Brinkman porous

medium by employing heat flux with Cattaneo-Christov expression. Han et al. [27] addressed

the stretched flow of Maxwell liquid through heat flux by Cattaneo-Christov expression. Mus-

tafa [28] used heat flux through Cattaneo-Christov expression in order to explore heat transfer

for flow of Maxwell material. He provided numeric and analytic solutions of governing flow

systems. Khan et al. [29] provided a numerical analysis to study the thermal relaxation attri-

butes in Maxwell material flow by an exponentially stretched surface. Recently, Hayat et al.

[30] performed a comparative study for flows of viscoelastic materials by considering heat flux

through Cattaneo-Christov expression.

At present the non-Newtonian materials have gained much attention because of their in-

volvement in extensive industrial and engineering applications. Such applications involve bio-

engineering and polymeric liquids, plastics manufacturing, annealing and thinning of copper

wires, food processing, petroleum production, drawing of stretching sheet through quiescent

fluid and aerodynamic extrusion of plastic films etc. The well-known Navier-Stokes expression

is not good enough to characterize the flows of non-Newtonian materials. A single relation is

not sufficient to depict the characteristics of all the non-Newtonian materials. Therefore, differ-

ent types of non-Newtonian relations are given in the literature. Amongst these relations, the

elastico-viscous and second grade materials [31–36] are the simplest subclasses of differential

type non-Newtonian materials which describe the effects of normal stress. Moreover the analy-

sis of liquid-liquid two-phase flows are widely involved in several industrial processes such as

spray processes, lubrication, natural gas networks, nuclear reactor cooling etc. Thus Gao et al.

[37] provided a multivariate weighted complex network analysis to examine the nonlinear

dynamic behavior in two-phase flow. Gao et al. [38] also addressed the multi-frequency com-

plex network to explore the uncovering oil-water flow structure. Slug to churn flow transition

by employing the multivariate pseudo Wigner distribution and multivariate multiscale entropy

is reported by Gao et al. [39]. Gao et al. [40] provided a four-sector conductance method to

explore the low-velocity oil-water two-phase flows. Recently Gao et al. [41] developed a novel

multiscale limited penetrable horizontal visibility graph to analyze the nonlinear time series.

This research article presents a comparative study for Cattaneo-Christov double diffusion

expressions in the boundary-layer flow of viscoelastic nanofluids by considering two classes of

viscoelastic fluids. Constitutive relations for second grade and elastico-viscous fluids are consid-

ered. Brownian motion and thermophoresis aspects are considered. Most of the investigations

in the literature are explained through the classical Fourier’s and Fick’s laws. The main purpose

here is to utilize the generalized Fourier’s and Fick’s laws namely Cattaneo-Christov double dif-

fusion expressions in the boundary-layer flow of viscoelastic nanofluids. Mathematical formula-

tion of the present analysis is performed subject to both generalized Fourier’s and Fick’s laws

namely Cattaneo-Christov double diffusion expressions. In particular the present study general-

izes the results of ref. [35] by considering another model of elastico-viscous fluid, comparison
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and double diffusion of heat and mass transfer by Cattaneo-Christov theory. Thus to the best of

the author’s knowledge, no such attempt has been discussed in the literature yet. Transformation

procedure is utilized to convert the partial differential system into the set of nonlinear ordinary

differential system. The governing nonlinear system has been solved through the homotopy

analysis method (HAM) [42–50]. Convergence of computed solutions is checked by plots and

numerical data. The contributions of various pertinent parameters are studied and discussed.

Heat and mass transfer rates at the surface are also analyzed through numerical values.

2. Formulation

Let us consider the steady two-dimensional (2D) flow of viscoelastic nanofluids over a linear

stretching sheet with constant surface temperature and concentration. The flow models for

elastico-viscous and second grade materials are considered. The Brownian motion and ther-

mophoresis are taken into consideration. Here x–axis is along the stretching surface while y–

axis is normal to the x–axis. The stretching velocity is uw(x) = ax with a > 0 as the constant.

The heat and mass transfer mechanisms are examined through Cattaneo-Christov double dif-

fusion expressions. Governing equations of mass, momentum, energy and nanoparticles con-

centration for boundary layer considerations are

@u
@x
þ
@v
@y
¼ 0; ð1Þ

u
@u
@x
þ v

@u
@y
¼ n

@2u
@y2
� k0 u

@3u
@x@y2

þ v
@3u
@y3
�
@u
@y

@2u
@x@y

þ
@u
@x
@2u
@y2

� �

: ð2Þ

Note that u and v represent the flow velocities in the horizontal and vertical directions

respectively while ν(= μ / ρf), μ, ρf and k0 = −α1 / ρf denote kinematic viscosity, dynamic viscos-

ity, density of base liquid and elastic parameter respectively. Here (k0 > 0) depicts elastico-vis-

cous fluid, (k0 < 0) demonstrates second grade fluid and (k0 = 0) corresponds to Newtonian

fluid. The Cattaneo-Christov double diffusion theory has been introduced in characterizing

thermal and concentration diffusions with heat and mass fluxes relaxations respectively. Then

the frame indifferent generalization regarding Fourier’s law and Fick’s law (which is named as

Cattaneo-Christov anomalous diffusion expressions) are derived as follows:

qþ lE
@q
@t
þ V:rq � q:rVþ ðr:VÞq

� �

¼ � krT; ð3Þ

Jþ lC
@J
@t
þ V:rJ � J:rVþ ðr:VÞJ

� �

¼ � DBrC; ð4Þ

where q and J stand for heat and mass fluxes respectively, k for thermal conductivity, DB for

Brownian diffusivity, λE and λC for relaxation time of heat and mass fluxes respectively. Classi-

cal Fourier’s and Fick’s laws are deduced by inserting λE = λC = 0 in Eqs (3) and (4). By consid-

ering the incompressibility condition (r.V = 0) and steady flow with ð@q
@t ¼ 0Þ and ð@J

@t ¼ 0Þ,

Eqs (3) and (4 can be rewritten as

qþ lEðV:rq � q:rVÞ ¼ � krT; ð5Þ

Jþ lCðV:rJ � J:rVÞ ¼ � DBrC: ð6Þ
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Now by taking the Brownian motion and thermophoresis effects in Eqs (5) and (6), then

the two dimensional energy and concentration equations take the following forms:

u
@T
@x
þ v

@T
@y
þ lEFE ¼ a

@2T
@y2

� �

þ
ðrcÞp
ðrcÞf

DB
@T
@y

@C
@y

� �

þ
DT

T1

@T
@y

� �2
 !

; ð7Þ

u
@C
@x
þ v

@C
@y
þ lCFC ¼ DB

@2C
@y2

� �

þ
DT

T1

@2T
@y2

� �

: ð8Þ

Here one has the following prescribed conditions:

u ¼ ax; v ¼ 0; T ¼ Tw; C ¼ Cw at y ¼ 0; ð9Þ

u! 0; T ! T1; C! C1 as y!1; ð10Þ

where

FE ¼ u
@u
@x
@T
@x
þ v

@v
@y
@T
@y
þ u
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; ð11Þ

and

FC ¼ u
@u
@x
@C
@x
þ v

@v
@y
@C
@y
þ u

@v
@x
@C
@y
þ v

@u
@y
@C
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þ 2uv

@2C
@x@y
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@x2
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@y2

; ð12Þ

in which α = k/(ρc)f, (ρc)f and (ρc)p stand for thermal diffusivity, heat capacity of liquid and

effective heat capacity of nanoparticles respectively, DB for Brownian diffusivity, C for concen-

tration, DT for thermophoretic diffusion coefficient, Tw and Cw for constant surface tempera-

ture and concentration respectively and T1 and C1 represent the ambient fluid temperature

and concentration respectively. Selecting

u ¼ axf 0ðzÞ; v ¼ � ðanÞ
1=2 f ðzÞ; z ¼ a

n

� �1=2 y;

yðzÞ ¼
T � T1

Tw � T1
; �ðzÞ ¼

C � C1
Cw� C1

;
ð13Þ

Eq (1) is identically verified and Eqs (2) and (7)–(12) have been reduced to

f 000 þ ff @ � ðf 0Þ2 � k�ð2f 0f 000 � ðf @Þ
2
� ff ivÞ ¼ 0; ð14Þ

1

Pr
y

@
þ Nby

0
�
0
þ Ntðy

0
Þ

2
þ f y

0
� deðff

0y
0
þ f 2y

@
Þ ¼ 0; ð15Þ

1

Sc
�

@
þ

Nt

Nb

1

Sc
y

@
þ f�0 � dcðff

0�
0
þ f 2�

@
Þ ¼ 0; ð16Þ

f ¼ 0; f 0 ¼ 1; y ¼ 1; � ¼ 1 at z ¼ 0; ð17Þ

f 0 ! 0; y! 0; �! 0 as z!1; ð18Þ

where (k
�
) stands for viscoelastic parameter, (Pr) for Prandtl number, (Nb) for Brownian

motion parameter, (Nt) for thermophoresis parameter, (δe) for thermal relaxation parameter,

(Sc) for Schmidt number and (δc) for concentration relaxation parameter. It is examined that

(k
�
> 0) shows elastico-viscous material and (k

�
< 0) represents second grade material. These
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parameters can be specified by using the definitions given below:

k� ¼ � k0a
n
; Pr ¼ n

a
; de ¼ alE; dc ¼ alC;

Nb ¼
ðrcÞpDBðCw � C1Þ

ðrcÞf n
; Nt ¼

ðrcÞpDTðTw � T1Þ
ðrcÞf nT1

; Sc ¼ n
DB
:

)

ð19Þ

Skin friction coefficient is given by

Cf ¼
twjy¼0

rf u2
w

¼

n@u
@y � k0 u @2u

@x@y � 2@u
@y

@v
@y þ v@2u

@y2
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y¼0

u2
w

; ð20Þ

The dimensionless form of skin friction coefficient is stated below:

Re1=2

x Cf ¼ ð1 � 3k�Þf @ð0Þ; ð21Þ

where local Reynolds number is denoted by Rex = uwx/ν.

3. Solutions by HAM

The appropriate initial approximations and auxiliary linear operators are defined as follows:

f0ðzÞ ¼ 1 � e� z; y0ðzÞ ¼ e� z; �0ðZÞ ¼ e� z; ð22Þ

Lf ¼
d3f
dz

3
�

df
dz
; Ly ¼

d2y

dz
2
� y; L� ¼

d2�

dz
2
� �: ð23Þ

The above linear operators have the characteristics

Lf ½B
�

1
þ B�

2
ez þ B�

3
e� z� ¼ 0; Ly½B

�

4
ez þ B�

5
e� z� ¼ 0; L�½B

�

6
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7
e� z� ¼ 0; ð24Þ

where B�j (j = 1–7) elucidate the arbitrary constants. Deformation problems at zeroth-order are

ð1 � ƥÞLf ½
~f ðz; ƥÞ � f0ðzÞ� ¼ ƥℏfNf ½
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N�½
~f ðz; ƥÞ; ~yðz; ƥÞ; ~�ðz; ƥÞ� ¼

1
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@2 ~�
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2
þ

Nt
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� dc
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: ð31Þ

Here þ2[0,1] stands for embedding parameter, ℏf, ℏθ and ℏϕ for nonzero auxiliary parame-

ters and Nf, Nθ and Nϕ for nonlinear operators. For þ = 0 and þ = 1 one obtains

~f ðz; 0Þ ¼ f0ðzÞ;
~f ðz; 1Þ ¼ f ðzÞ; ð32Þ

~yðz; 0Þ ¼ y0ðzÞ;
~yðz; 1Þ ¼ yðzÞ; ð33Þ

~�ðz; 0Þ ¼ �0ðzÞ;
~�ðz; 1Þ ¼ �ðzÞ: ð34Þ

When þ changes from 0 to 1 then ~f (z;þ), ~y(z,þ) and ~�(z,þ) display alteration from initial

approximations f0(z), θ0(z) and ϕ0(z) to final ultimate solutions f(z), θ(z) and ϕ(z). The follow-

ing expressions are obtained via Taylor’s series expansion:

~f ðz; ƥÞ ¼ f0ðzÞ þ
X1

~m¼1

f~mðzÞƥ
~m; f~mðzÞ ¼

1

~m!

@ ~m~f ðz; ƥÞ
@ƥ~m

�
�
�
�
�
ƥ¼0

; ð35Þ

~yðz; ƥÞ ¼ y0ðzÞ þ
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X1

~m¼1

�~mðzÞƥ
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�
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�
�
�
ƥ¼0

: ð37Þ

The convergence of Eqs (35)–(37) is strongly based upon the appropriate choices of ℏf, ℏθ

and ℏϕ. Selecting suitable values of ℏf, ℏθ and ℏϕ so that Eqs (35)–(37) converge at þ = 1 then

f ðzÞ ¼ f0ðzÞ þ
X1

~m¼1

f~mðzÞ; ð38Þ

yðzÞ ¼ y0ðzÞ þ
X1

~m¼1

y~mðzÞ; ð39Þ

�ðzÞ ¼ �0ðzÞ þ
X1

~m¼1

�~mðzÞ: ð40Þ
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The ~mth-order deformation problems are defined as follows:

Lf ½f~mðzÞ � w~mf~m� 1ðzÞ� ¼ ℏf R̂
~m
f ðzÞ; ð41Þ
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y
ðzÞ; ð42Þ

L�½�~mðzÞ � w~m�~m� 1ðzÞ� ¼ ℏ�R̂
~m
�
ðzÞ; ð43Þ

f~mð0Þ ¼ f 0~mð0Þ ¼ f 0~mð1Þ ¼ 0; y~mð0Þ ¼ y~mð1Þ ¼ 0; �~mð0Þ ¼ �~mð1Þ ¼ 0; ð44Þ
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χ~m ¼

(
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1; ~m > 1:
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General expressions ðf~m; y~m; �~mÞ for Eqs (41)–(43) in terms of special solutions ðf �~m; y
�

~m; �
�

~mÞ

are presented by the following expressions:
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in which the constants B�j (j = 1–7) through the boundary conditions (44) are given by
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4. Convergence Analysis

Here the expressions (38)–(40) contain ℏf, ℏθ and ℏϕ. Moreover the convergence is accelerated

by the auxiliary parameters ℏf, ℏθ and ℏϕ in series solutions. For the purpose of determining

appropriate values of ℏf, ℏθ and ℏϕ, the ℏ–curves at 20th order of deformations are sketched to

see the appropriate ranges of ℏf, ℏθ and ℏϕ. It is apparent from Figs 1 and 2 that the admissible

Fig 1. The ℏ–curves for f, θ and ϕ in case of elastico-viscous fluid.

doi:10.1371/journal.pone.0168824.g001

Fig 2. The ℏ–curves for f, θ and ϕ in case of second grade fluid.

doi:10.1371/journal.pone.0168824.g002
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ranges of ℏf, ℏθ and ℏϕ are −1.35� ℏf� −0.15, −1.50� ℏθ� −0.15 and −1.60� ℏϕ� −0.15

for elastico-viscous fluid (k
�

> 0) and −1.35� ℏf� −0.15, −1.50� ℏθ� −0.15 and −1.60� ℏϕ

� −0.15 for second grade fluid (k
�

< 0). Table 1 shows that the convergent series solutions of

velocity, temperature and concentration fields require the 19th order of approximations for

elastico-viscous fluid situation whereas the 29th order of deformations are enough for the con-

vergent homotopy solutions of second grade material situation (see Table 2).

5. Discussion

This portion elaborates the impacts of different interesting parameters like viscoelastic param-

eter (k
�

), thermal relaxation parameter (δe), concentration relaxation parameter (δc), Brownian

motion parameter (Nb), Prandtl number (Pr), thermophoresis parameter (Nt) and Schmidt

number (Sc) on the dimensionless velocity f0(z), temperature θ(z) and concentration ϕ(z). The

results are achieved for elastico-viscous (k
�

> 0) and second grade (k
�

< 0) fluids respectively.

Fig 3 illustrates that how viscoelastic parameter (k
�

) effects the velocity profile f0(z) for both flu-

ids. From this Fig it has been analyzed that velocity field f0(z) decreases for the greater values of

elastico-viscous parameter (k
�

> 0) and increases for the greater values of second grade param-

eter (k
�

< 0). For (k
�

= 0), the viscous fluid flow case is recovered. The influence of viscoelastic

parameter (k
�

) on temperature distribution for both fluids has been shown in Fig 4. Here the

temperature θ(z) and thickness of thermal layer are increased for positive values of viscoelastic

parameter (k
�

) while opposite behavior is analyzed for negative values of viscoelastic parameter

(k
�

). Fig 5 presents the variation in the temperature distribution for different values of thermal

relaxation parameter (δe) for both fluids. From this Fig we can say that an increment in the val-

ues of thermal relaxation parameter (δe) show decreasing behavior in temperature field θ(z)

and thermal layer thickness. Moreover the temperature field θ(z) is weaker for second grade

Table 1. Homotopic solutions convergence in case of elastico-viscous material for different order of deformations when k* = 0.2, δe = δc = 0.2, Nb =

0.3, Pr = 1.2, Nt = 0.1 and Sc = 1.0.

Order of deformations –f @(0) –θ0(0) –ϕ0(0)

1 1.10000 0.54000 0.50000

5 1.11802 0.52561 0.46919

12 1.11803 0.52643 0.45373

19 1.11803 0.52645 0.45333

25 1.11803 0.52645 0.45333

35 1.11803 0.52645 0.45333

50 1.11803 0.52645 0.45333

doi:10.1371/journal.pone.0168824.t001

Table 2. Homotopic solutions convergence in case of second grade material for different order of deformations when k* = −0.2, δe = δc = 0.2, Nb =

0.3, Pr = 1.2, Nt = 0.1 and Sc = 1.0.

Order of deformations –f @(0) –θ 0(0) –ϕ0(0)

1 0.90000 0.54000 0.50000

5 0.91286 0.55962 0.50144

12 0.91287 0.56209 0.50043

20 0.91287 0.56252 0.49987

29 0.91287 0.56248 0.50005

35 0.91287 0.56248 0.50005

50 0.91287 0.56248 0.50005

doi:10.1371/journal.pone.0168824.t002
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parameter (k
�

< 0) when compared with elastico-viscous parameter (k
�

> 0). Here (δe = 0) rep-

resents that the present model is reduced to classical Fourier’s law. Fig 6 demonstrates that

how the temperature field is get effected by Prandtl number (Pr) for both fluid cases. It is

observed that by enhancing Prandtl number (Pr), the temperature θ(z) and thermal layer

thickness decreases. Physically Prandtl number depends upon the thermal diffusivity. Larger

Fig 3. Plots of velocity profile f0(ζ) for viscoelastic parameter k*.

doi:10.1371/journal.pone.0168824.g003

Fig 4. Plots of temperature profile θ(ζ) for viscoelastic parameter k*.

doi:10.1371/journal.pone.0168824.g004
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values of Prandtl number correspond to a weaker thermal diffusivity. Such weaker thermal dif-

fusivity creates a reduction in the temperature profile and related thickness of the thermal

boundary layer. Moreover the thermal boundary layer thickness is less for second grade

parameter (k
�

< 0) in comparison to the elastico-viscous parameter (k
�

> 0). Fig 7 shows the

variation in temperature profile θ(z) for different values of Brownian motion parameter (Nb)

Fig 5. Plots of temperature profile θ(ζ) for thermal relaxation parameter δe.

doi:10.1371/journal.pone.0168824.g005

Fig 6. Plots of temperature profile θ(ζ) for Prandtl number Pr.

doi:10.1371/journal.pone.0168824.g006
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for both fluids. From this Fig it has been noted that by increasing Brownian motion parameter

(Nb), an enhancement appeared in temperature θ(z) and its related thickness of thermal layer

for both fluids. Moreover the thermal layer thickness is lower for negative values of (k
�

) when

compared with positive values of (k
�

). Fig 8 is drawn to depict the influence of thermophoreis

Fig 7. Plots of temperature profile θ(ζ) for Brownian motion parameter Nb.

doi:10.1371/journal.pone.0168824.g007

Fig 8. Plots of temperature profile θ(ζ) for thermophoresis parameter Nt.

doi:10.1371/journal.pone.0168824.g008
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parameter (Nt) on temperature field θ(z) for both fluids. Larger values of thermophoresis

parameter (Nt) constitute a higher temperature field and more thermal layer thickness. The

reason behind this phenomenon is that an enhancement in thermophoresis parameter (Nt)

yields a stronger thermophoretic force which allows deeper migration of nanoparticles in the

fluid which is far away from the surface forms a higher temperature field and more thickness

of thermal layer for both fluids. Moreover thermal layer thickness is lower for second grade

parameter (k
�

< 0) in comparison to the elastico-viscous parameter (k
�

> 0). Fig 9 is sketched

to examine that how concentration field ϕ(z) get effected by viscoelastic parameter (k
�

). From

this Fig the concentration field ϕ(z) is stronger for elastico-viscous parameter (k
�

> 0) and

weaker for second grade parameter (k
�

< 0). Fig 10 shows how the concentration relaxation

parameter (δc) effects concentration field ϕ(z) for both fluids. By increasing concentration

relaxation parameter (δc), both the concentration ϕ(z) and thickness of concentration layer

decrease. It is also noticed that concentration layer thickness is lower for second grade parame-

ter (k
�

< 0) when compared with the elastico-viscous parameter (k
�

> 0). From Fig 11 we

observed that the larger Schmidt number forms a decay in the concentration field ϕ(z) and its

related thickness of concentration layer for both fluids. Physically Schmidt number is based on

Brownian diffusivity. An increase in Schmidt number (Sc) yields a weaker Brownian diffusiv-

ity. Such weaker Brownian diffusivity corresponds to lower concentration field ϕ(z) for both

fluids. It is also observed that concentration field ϕ(z) is lower for negative values of (k
�

) when

compared with the positive values of (k
�

). From Fig 12 it is clearly examined that a weaker con-

centration field ϕ(z) is generated by using larger Brownian motion parameter (Nb) for both flu-

ids. In nanofluid flow, due to the existence of nanoparticles, the Brownian motion takes place

and with the increase in Brownian motion parameter (Nb) the Brownian motion is affected

and hence the concentration layer thickness reduces. It is also examined that concentration

field is less for (k
�

< 0) in comparison to (k
�

> 0). Fig 13 shows that the higher thermophoresis

parameter (Nt) yields a stronger concentration field ϕ(z) for both fluid cases. Moreover the

concentration field ϕ(z) is weaker for (k
�

< 0) when compared with (k
�

> 0). Table 3 shows

Fig 9. Plots of concentration profile ϕ(ζ) for viscoelastic parameter k*.

doi:10.1371/journal.pone.0168824.g009
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the comparison for different values of viscoelastic parameter k
�

with optimal homotopy analy-

sis method (OHAM). Table 3 presents a good agreement of HAM solution with the existing

optimal homotopy analysis method (OHAM) solution in a limiting sense. Table 4 is calculated

in order to investigate the numerical computations of skin friction coefficient � Re1=2
x Cf for

several values of (k
�

). Here we noticed that the skin friction coefficient is higher in case of

Fig 10. Plots of concentration profile ϕ(ζ) for concentration relaxation parameter δc.

doi:10.1371/journal.pone.0168824.g010

Fig 11. Plots of concentration profile ϕ(ζ) for Schmidt number Sc.

doi:10.1371/journal.pone.0168824.g011
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second grade material (k
�

< 0) while opposite trend is noticed for elastico-viscous material

(k
�

> 0). Tables 5 and 6 show the numerical computations of heat transfer rate –θ0(0) for vari-

ous values of thermal relaxation parameter (δe) in case of elastico-viscous (k
�

> 0) and second

grade (k
�

< 0) materials respectively. Here we noticed that the heat transfer rate –θ0(0) has

higher values for larger (δe) in both materials. It is also observed that the values of heat transfer

rate –θ0(0) for negative values of (k
�

) are higher when compared with the positive values of (k
�

).

Fig 12. Plots of concentration profile ϕ(ζ) for Brownian motion parameter Nb.

doi:10.1371/journal.pone.0168824.g012

Fig 13. Plots of concentration profile ϕ(ζ) for thermophoresis parameter Nt.

doi:10.1371/journal.pone.0168824.g013
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Tables 7 and 8 represent the numerical values of mass transfer rate –ϕ0(0) for various values of

concentration relaxation parameter (δc) in cases of positive and negative values of (k
�

). From

these Tables we concluded that the values of mass transfer rate –ϕ0(0) for (k
�

< 0) are higher

when compared with (k
�

> 0).

Table 3. Comparative values of � Re1=2
x Cf for different values of viscoelastic parameter k*.

k* � Re1=2
x Cf

HAM OHAM [35]

0 1.00000 1.00000

−0.25 1.56525 1.56525

−0.5 2.04124 2.04124

doi:10.1371/journal.pone.0168824.t003

Table 4. Numerical data for skin friction coefficient � Re1=2
x Cf for various values of k*.

k* −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

� Re1=2
x Cf 1.66641 1.46059 1.23950 1.00000 0.73786 0.44721 0.11952

doi:10.1371/journal.pone.0168824.t004

Table 5. Numerical values of heat transfer rate −θ0(0) in case of elastico-viscous material for different values of δe when k* = 0.2, δc = 0.2, Nb = 0.3,

Pr = 1.2, Nt = 0.1 and Sc = 1.0.

δe 0.0 0.1 0.2 0.3

−θ0(0) 0.51271 0.51943 0.52643 0.53375

doi:10.1371/journal.pone.0168824.t005

Table 6. Numerical values of heat transfer rate −θ0(0) in case of second grade material for different values of δe when k* = −0.2, δc = 0.2, Nb = 0.3,

Pr = 1.2, Nt = 0.1 and Sc = 1.0.

δe 0.0 0.1 0.2 0.3

−θ0(0) 0.54601 0.55413 0.56243 0.57116

doi:10.1371/journal.pone.0168824.t006

Table 7. Numerical values of mass transfer rate −ϕ0(0) in case of elastico-viscous material for different values of δc when k* = 0.2, δe = 0.2, Nb = 0.3,

Pr = 1.2, Nt = 0.1 and Sc = 1.0.

δc 0.0 0.1 0.2 0.3

−ϕ0(0) 0.43849 0.44576 0.45332 0.46120

doi:10.1371/journal.pone.0168824.t007

Table 8. Numerical values of mass transfer rate −ϕ0(0) in case of second grade material for different values of δc when k* = −0.2, δe = 0.2, Nb = 0.3,

Pr = 1.2, Nt = 0.1 and Sc = 1.0.

δc 0.0 0.1 0.2 0.3

−ϕ0(0) 0.48130 0.49059 0.50005 0.51006

doi:10.1371/journal.pone.0168824.t008
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6. Conclusions

Boundary-layer flow of viscoelastic nanofluids bounded by a linear stretchable surface with

Cattaneo-Christov double diffusion has been discussed. The key points of the presented study

are given below:

• An enhancement in the positive values of viscoelastic parameter (k
�

) demonstrate a decreas-

ing behavior for the velocity field f 0(z) while opposite behavior is noted for the negative val-

ues of viscoelastic parameter (k
�

).

• Larger values of Prandtl number (Pr) show decreasing trend for temperature profile θ(z) and

its related thickness of thermal layer.

• Both temperature field θ(z) and its associated thermal layer thickness are reduced for larger

thermal relaxation parameter (δe).

• Both temperature θ(z) and concentration ϕ(z) fields show opposite behavior for increasing

values of Brownian motion parameter (Nb).

• Higher concentration relaxation parameter (δc) causes a decay in the concentration field ϕ
(z).

• Larger thermophoresis parameter (Nt) produces enhancement for temperature θ(z) and con-

centration ϕ(z) fields.

• For positive values of viscoelastic parameter (k
�

), skin friction coefficient decreases while

opposite trend has been observed for the negative values of viscoelastic parameter (k
�

).

• For positive and negative values of viscoelastic parameter (k
�

), both heat and mass transfer

rates are higher for larger thermal (δe) and concentration (δc) relaxation parameters.

• The present model corresponds to the classical Fourier’s and Fick’s laws when δe = δc = 0.
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