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Abstract

Effectively utilizing incomplete multi-modality data for diagnosis of Alzheimer’s disease (AD) is 

still an area of active research. Several multi-view learning methods have recently been developed 

to deal with missing data, with each view corresponding to a specific modality or a combination of 

several modalities. However, existing methods usually ignore the underlying coherence among 

views, which may lead to suboptimal learning performance. In this paper, we propose a view-

aligned hypergraph learning (VAHL) method to explicitly model the coherence among the views. 

Specifically, we first divide the original data into several views based on possible combinations of 

modalities, followed by a sparse representation based hypergraph construction process in each 

view. A view-aligned hypergraph classification (VAHC) model is then proposed, by using a view-

aligned regularizer to model the view coherence. We further assemble the class probability scores 

generated from VAHC via a multi-view label fusion method to make a final classification decision. 

We evaluate our method on the baseline ADNI-1 database having 807 subjects and three 

modalities (i.e., MRI, PET, and CSF). Our method achieves at least a 4.6% improvement in 

classification accuracy compared with state-of-the-art methods for AD/MCI diagnosis.

1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease that continues to pose major 

challenges to global health care systems [1]. Studies have shown that multi-modality data 

(e.g., structural magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission 

tomography (PET), and cerebrospinal fluid (CSF)) provide complementary information that 

can be harnessed for improving diagnosis of AD and its prodrome, known as mild cognitive 

impairment (MCI) [2–5]. However, collecting data with multi-modalities is challenging and 

the data are often incomplete due to patient dropouts. In the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database, for instance, while baseline MRI data were 

collected for all subjects, only approximately half of the subjects have baseline PET data and 

half of the subjects have baseline CSF data.

Various approaches have been developed to deal with the problem of incomplete multi-

modality data. A straightforward method is to remove subjects with missing data. This 

approach, however, significantly reduces the sample size. An alternative way is to impute the 
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missing data using techniques such as expectation maximization (EM) [6], singular value 

decomposition (SVD) [7], and matrix completion [5]. However, the effectiveness of this 

method can be affected by imputation artifacts. Several recently introduced multi-view 

learning based methods circumvent the need for imputation [3,4]. These methods generally 

apply specific learning algorithms to different views of the data, comprising the 

combinations of available data from different modalities. However, the coherence among 

views is not explicitly considered in these methods. Intuitively, integrating these views 

coherently can lead to better diagnostic performance. On the other hand, hypergraph 

learning [8] has attracted increasing attention in neuroimaging analysis, where complex 

relationships among vertices can be modeled via hyperedges [9].

In this paper, we propose a view-aligned hypergraph learning (VAHL) method with 

incomplete multi-modality data for AD/MCI diagnosis. Different from conventional multi-

view based learning methods, VAHL explicitly incorporates the coherence among views into 

the learning model, where the optimal weights for different views are automatically learned 

from the data. Figure 1 presents a schematic diagram of our method. We first divide the 

whole dataset into M views (M = 6 in Fig. 1) according to the data availability in association 

with different combinations of modalities, followed by a sparse representation based 

hypergraph construction process in each view space. We then develop a view-aligned 

hypergraph classification (VAHC) model to explicitly capture the coherence among views. 

To arrive at a final classification decision, we agglomerate the class probability scores via a 

multi-view label fusion method.

2 Method

Data and Pre-processing

A total of 807 subjects in the baseline ADNI-1 database [10] with MRI, PET and CSF 

modalities are used in this study, which include 186 AD subjects, 226 NCs, and 395 MCI 

subjects. According to whether MCI would convert to AD within 24 months, the MCI 

subjects are further divided into two categories: (1) stable MCI (sMCI), if diagnosis was 

MCI at all available time points (0–96 months); (2) progressive MCI (pMCI), if diagnosis 

was MCI at baseline but conversion to AD occurred after baseline within 24 months. The 

395 MCI subjects are separated into 169 pMCI and 226 sMCI subjects.

Image features are extracted from the MR and PET images based on regions-of-interest 

(ROIs). Specifically, for each MR image, we perform anterior commissure (AC)-posterior 

commissure (PC) correction, resampling to size 256 × 256 × 256, and inhomogeneity 

correction using the N3 algorithm [11]. Skull stripping is then performed using BET [12], 

followed by manual editing to ensure that both skull and dura are cleanly removed. Next, we 

remove the cerebellum by warping a labeled template to each skull-stripped image. FAST 

[12] is applied to segment the human brain into three different tissue types, i.e., gray matter 

(GM), white matter (WM) and cerebrospinal fluid (CSF). The anatomical automatic labeling 

(AAL) atlas, with 90 pre-defined ROIs in the cerebrum, is aligned to the native space of each 

subject using a deformable registration algorithm. Finally, for each subject, we extract the 

volumes of GM tissue inside the 90 ROIs as features, which are normalized by the total 

intracranial volume (estimated by the summation of GM, WM and CSF volumes from all 
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ROIs). We align each PET image to its corresponding MR image via affine transformation 

and compute the mean PET intensity in each ROI as features. We also employ five CSF 

biomarkers, including amyloid β (Aβ42), CSF total tau (t-tau), CSF tau 

hyperphosphorylated at threonine 181 (p-tau), and two tau ratios with respect to Aβ42 (i.e., 
t-tau/Aβ42 and p-tau/Aβ42). Ultimately, we have a 185-dimensional feature vector for each 

subject with complete data modalities, including 90 MRI features, 90 PET features, and 5 

CSF features.

Multi-view Data Grouping

We group the subjects into 6 views, including “PET+MRI”, “PET+MRI+CSF”, “MRI

+CSF”, “PET”, “MRI”, and “CSF”. Here, each view denotes a specific modality or a 

possible combination of several modalities. As shown in Fig. 1, subjects in View 1 have PET 

and MRI data, while those in View 6 only have CSF data. This grouping allows us to make 

use of all data without discarding subjects or introducing imputation artifacts.

Sparse Representation Based Hypergraph Construction

In this study, we formulate the AD/MCI diagnosis as a multi-view hypergraph based 

classification problem, where one hypergraph is constructed in each view space. Let m = 

( m, ℰm, wm) denote the hypergraph with Nm vertices corresponding to the m-th view, 

where m is a vertex set with each vertex representing a subject, ℰm denotes a hyperedge set 

with  hyperedges, and  is the corresponding weight vector for hyperedges. 

Denote  as the vertex-edge incidence matrix, with the (v, e)-entry indicating 

whether the vertex v is connected with other vertices in the hyperedge e.

In conventional hypergraph based methods [8], the Euclidean distance is typically used to 

evaluate similarity between pairs of vertices. We argue that the Euclidean distance can only 

model the local structure of data. To this end, we propose a sparse representation (SR) based 

hypergraph construction method to exploit the global structure of data. Specifically, we first 

select each vertex as a centroid, and then represent each centroid using the other vertices via 

a SR model [13]. A hyperedge can then be constructed by connecting each centroid to the 

other vertices, with global sparse representation coefficients as similarity measurements. 

Given Nm vertices, we can obtain  hyperedges. A larger value for the l1 

regularization parameter (i.e., ε) in SR will lead to more sparse coefficients. To capture 

richer data structure information, we employ multiple (e.g., q) parameters in SR to construct 

multiple sets of hyperedges, and finally have  hyperedges for the hypergraph m.

View-Aligned Hypergraph Classification

Denote fm as the class probability score vector for N subjects in the m-th view, and F = [f1, 

···, fm, ···, fM] ∈ ℝN×M. To model the coherence among different views, we propose a view-

aligned regularizer, as illustrated in Fig. 2. For instance, the circles indicate the subject 1 

with PET, MRI and CSF features (i.e.,  and ), respectively. Intuitively, their 

class probability scores (i.e.,  and ) should be close to one another, because 

they represent the same subject. Let Ωm ∈ ℝN×N be a diagonal matrix with the diagonal 
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element  if the n-th subject has missing values in the m-th view, and , 

otherwise. The view-aligned regularizer is then defined as

(1)

Using the hypergraph constructed in the m-th view, the objective of hypergraph based semi-

supervised learning is formulated as [8] min

(2)

where the first term is the empirical loss, and the second term is a hypergraph regularizer [8] 

defined as

(3)

where the hypergraph Laplacian matrix is defined as Łm = I − Θm. Here, 

, where  is the diagonal 

vertex degree matrix and  denote the diagonal hyperedge degree matrix. 

Note that vertex degree for v is defined as , and the hyperedge degree 

for e is defined as .

Let , where yla represents the label information for labeled data and yun 

is the label information for the unlabeled data. For the i-th sample, yi = 1 if it is associated 

with the positive class (e.g., AD), yi = −1 if it belongs to the negative class (e.g., NC), and yi 

= 0 if its category is unknown. Since different views and hyperedges may play different roles 

in classification, we learn the weights associated with different views and hyperedges from 

data. Denote α ∈ ℛM as a weight vector, with the element αm representing the weight for 

the m-th view. For the m-th hypergraph, we denote  as the diagonal matrix 

of hyperedge weights. Our view-aligned hypergraph classification (VAHC) model is 

formulated as follows:
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(4)

where the first term is the square loss, and the second one is the hypergraph Laplacian 

regularizer. The regularization coefficient (αm)2 is to prevent the degenerate solution of α. 

The last term and those constraints in Eq. (4) are used to penalize the complexity of the 

weights (i.e., α) for views and the weights (i.e., Wm) for hyperedges. It is worth noting that 

the third term in Eq. (4) is the proposed view-aligned regularizer, which encourages that the 

estimated labels of one subject represented in different views to be similar. Using Eq. (4), we 

can jointly learn the class probability scores F, the optimal weights for views (i.e., α), and 

the optimal weights for hyperedges (i.e., ) from data.

Since the problem in Eq. (4) is not jointly convex w.r.t. F, α and , we adopt an 

alternating optimization method to solve the objective function. First, we optimize F with 

fixed α and . Given fixed F and α, we optimize  in the second step. In 

the third step, we optimize α with fixed F and . Such alternating optimization 

process is repeated until convergence. The overall computational complexity of our method 

is (N2).

Multi-view Label Fusion

For a new testing subject z, we now compute the weighted mean of its class probability 

scores  for making a final classification decision. Specifically, its class label can be 

obtained via , where  and αm is the learned weight of the 

m-th view via VAHL. Note that if z has missing values in a specific modality, the weights for 

corresponding views associated with this modality will be 0.

3 Experiments

Experimental Settings

We performed three classification tasks, including AD vs. NC, MCI vs. NC, and pMCI vs. 

sMCI classification. The classification performance was evaluated by accuracy (ACC), 

sensitivity (SEN), specificity (SPE), and area under the ROC curve (AUC). We compared 

VAHL with 4 baseline methods, including Zero (with missing values as zeros), KNN, EM 

[6], and SVD [7]. VAHL was further compared with 4 state-of-the-art methods, including an 

ensemble-based method [2] with weighted mean (Ensemble-1) and mean (Ensemble-2) 

strategies, iMSF [3] with square loss (iMSF-1) and logistic loss (iMSF-2), iSFS [4], and 

matrix shrinkage and completion (MSC) [5].
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A 10-fold cross-validation (CV) strategy was used for performance evaluation. To optimize 

parameters, we performed an inner 10-fold CV using training data. The parameters μ and λ 
in Eq. (4) were chosen from {10−3, 10−2, ···, 104}, while the iteration number in the 

alternating optimization algorithm for Eq. (4) was empirically set to 20. Multiple parameter 

values for ε in the SR model [13] were set to [10−3, 10−2, 10−1, 100] to construct multiple 

sets of hyperedges in each hypergraph of VAHL. The parameter k for KNN was chosen from 

{3, 5, 7, 9, 11, 15, 20}. The rank parameter was chosen from {5, 10, 15, 20, 25, 30} for 

SVD, and the parameter λ for iMSF was chosen from {10−5, 10−4, ···, 101}. Results of iSFS 

[4] and MSC [5] were taken directly from the authors.

Results

Experimental results achieved by our method and those baseline methods are given in Fig. 3. 

As can be seen from Fig. 3, our method consistently achieves the best performance in terms 

of ACC, SEN and AUC in three classification tasks. We further report the comparison 

between our method and state-of-the-art methods in Table 1, with results demonstrating that 

our method outperforms those competing methods. For instance, the ACC values achieved 

by our method are 93.10% and 80.00% in AD vs. NC and MCI vs. NC classification, 

respectively, which are significantly better than the second best results (i.e., 88.50% and 

71.61 %, respectively). Similarly, the results in pMCI vs. sMCI classification show that our 

method can identify progressive MCI patients from the whole population more accurately 

than the state-of-the-art methods.

We also conduct experiments using VAHL based on complete data (with PET, MRI and CSF 

modalities), and achieved the accuracies of 89.23 %, 78.50% and 78.00% in AD vs. NC, 

MCI vs. NC, and pMCI vs. sMCI classification, respectively. These results are worse than 

the results of using all subjects with incomplete data, implying that subjects with missing 

data can provide useful information. Then, we compare VAHL with its variant named 

VAHL-1 (without the view-aligned regularizer), and the accuracies achieved by VAHL-1 are 

85.24 %, 75.16% and 75.25% in the three classification tasks, respectively. Such results 

imply that our view-aligned regularizer plays an important role in VAHL.

We further investigate the influence of parameters and the weights for different views 

learned from Eq. (4), with results shown in Fig. 4. Figure 4(a) indicates that the best results 

are achieved by VAHL when 0.1 ≤ μ ≤ 100 and 0.01 ≤ λ ≤ 10 in three tasks. From Fig. 4(c), 

we can observe that the learned weights for the “PET+MRI+CSF” view are much larger than 

those of the other five views, implying that this view contributes the most in three tasks.

4 Conclusion

We propose a view-aligned hypergraph learning (VAHL) method using incomplete multi-

modality data for AD/MCI diagnosis. Specifically, we first group data into several views 

according to the availability of modalities, and construct one hypergraph in each view using 

a sparse representation based hypergraph construction method. We then develop a view-

aligned hypergraph classification model to explicitly capture coherence among views, as 

well as to automatically learn the optimal weights of different views from data. A multi-view 

label fusion method is employed to arrive at a final classification decision. Results on the 
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baseline ADNI-1 database (with MRI, PET, and CSF modalities) demonstrate the efficacy of 

our method in AD/MCI diagnosis with incomplete data.
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Fig. 1. 
Overview of the proposed view-aligned hypergraph learning method.
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Fig. 2. 
Illustration of the view-aligned regularizer with PET, MRI, and CSF data.
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Fig. 3. 
Performance of VAHL and baseline methods in three classification tasks.
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Fig. 4. 
Influence of parameters (a–b) and learned weights for different views (c).
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