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Abstract

The popularity of online information generally experiences a rising and falling evolution. This

paper considers the “burst”, “peak”, and “fade” key events together as a representative sum-

mary of popularity evolution. We propose a novel prediction task—predicting when popular-

ity undergoes these key events. It is of great importance to know when these three key

events occur, because doing so helps recommendation systems, online marketing, and

containment of rumors. However, it is very challenging to solve this new prediction task due

to two issues. First, popularity evolution has high variation and can follow various patterns,

so how can we identify “burst”, “peak”, and “fade” in different patterns of popularity evolu-

tion? Second, these events usually occur in a very short time, so how can we accurately yet

promptly predict them? In this paper we address these two issues. To handle the first one,

we use a simple moving average to smooth variation, and then a universal method is pre-

sented for different patterns to identify the key events in popularity evolution. To deal with

the second one, we extract different types of features that may have an impact on the key

events, and then a correlation analysis is conducted in the feature selection step to remove

irrelevant and redundant features. The remaining features are used to train a machine learn-

ing model. The feature selection step improves prediction accuracy, and in order to empha-

size prediction promptness, we design a new evaluation metric which considers both

accuracy and promptness to evaluate our prediction task. Experimental and comparative

results show the superiority of our prediction solution.

Introduction

Thanks to the ubiquity of social media sites, massive amounts of online information (e.g.

news, videos, pictures, hashtags, etc.) are constantly being produced. Because of many factors,

including user interests, real world events, and celebrity involvement, online information

exhibits variable popularity evolution [1–3]. Some pieces of online information gain little pop-

ularity at first, but burst suddenly, and then fade slowly. Some reach peaks very soon but die

an early death. Others experience more variable behaviors [4] (but still approximately follow a

rising and falling evolution), as shown in Fig 1. Therefore, the popularity of online information
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can generally be viewed as a kind of organism that undergoes three key events during its evolu-

tion: “burst”, “peak”, and “fade”.

Just like growth, maturation, and aging are defining events in the life of an organism, we

think that “burst”, “peak”, and “fade” are representative events in the popularity evolution of

online information. If we can predict these events, we can take a full view of the whole popular-

ity evolution and determine the overall popularity trend [5] of online information. In this

paper, we propose the prediction of the burst, peak, and fade events in popularity evolution as

a new prediction task.

Our work is mainly inspired by the studies of popularity evolution prediction, concerning

such fields as volume prediction [6–9] and burst prediction [10–13]. Since most existing work

concentrates on predicting future popularity volume (e.g. predicting the value of popularity

one day later), this paper considers the problem from another angle: predicting when popular-

ity bursts, peaks, and fades. Recent work has focused on predicting popularity will burst or not

[14] or when popularity will burst [13]. To capture the whole evolution, “peak”, and “fade” are

equally as important as “burst”. We simultaneously study “burst”, “peak”, and “fade” and view

them as a representative summary of popularity evolution.

This paper presents a rigorous study that rises to the two challenges in this task.

Fig 1. The popularity evolution of Twitter hashtags exhibits rich temporal variation. In (a) and (b), the popularity evolution

experiences one huge spike, and the popularity bursts and peaks suddenly. In (c) and (d), the popularity evolution generally follows a

rising and falling pattern despite several spikes.

doi:10.1371/journal.pone.0168749.g001
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Challenge 1. The popularity of online information exhibits rich temporal variation and fol-

lows various evolution patterns. How can we identify these key events in these circumstances?

By using a simple moving average (SMA) we smooth temporal variation to extract the trending

line of popularity evolution. Burst, peak, and fade events are then defined from the trend line

of popularity evolution.

Challenge 2. As we can see in Fig 1, popularity usually bursts and peaks very quickly, which

makes predictions more difficult. This requires us to emphasize not only the accuracy but also

the promptness of a prediction. On a data set containing approximately 3 million Twitter

hashtags and 40 million users, this paper presents a simple solution which consists of the steps

of feature extraction, feature selection, and model training by using the selected features. Dif-

ferent types of features, including temporal features, social features, hashtag string features,

and topological features, are extracted from hashtags. Features that are highly related with the

burst, peak, and fade events are selected through correlation analysis. This step helps to

improve prediction accuracy. Experimental results show our solution outperforms other solu-

tions in terms of prediction accuracy. Finally, we construct a new evaluation metric that takes

not only accuracy but also promptness into account, and show how to use this new metric to

evaluate predictions made at different time points.

We mention the following scenarios where the prediction of burst, peak, and fade events

can be used. According to when popularity will burst and fade, online advertisers [15] can

decide when to place and remove their advertisements. Caching systems can also decide when

to cache and remove webpages. Furthermore, a rumor [16, 17] can be stopped in time if we

predict its bursting or peaking time.

The contribution of this paper is three-fold. First, we put forth a new and challenging pre-

diction task—predicting the “burst, peak, and fade” key events. Second, this paper provides a

solution and new evaluation metric for this task. Third, this paper finds that the key events are

highly correlated with each other after a logarithmic transformation, and that one of the tem-

poral features (the amount of time it takes popularity to reach a certain level once evolution

begins) has the most effect on the key events.

The rest of the paper proceeds as follows. Section 2 introduces background and related

work. Section 3 presents problem definitions and the characteristics of the three events. A solu-

tion is described in Section 4. How to evaluate this prediction task is discussed in Section 5.

Section 6 concludes the paper.

Background and Related Work

Since the emergence of social media sites, a great deal of research interest has arisen in the area

of online information popularity [18–20]. Some studies [6, 21, 22] refer to popularity as the

attention online information receives from people. Researchers have tried to model and pre-

dict how the amount of attention will be devoted over time to a given piece of online informa-

tion (that is, popularity evolution). Our work relates to the two directions of popularity

evolution: popularity evolution patterns and popularity evolution prediction [23, 24].

Popularity Evolution Pattern

Researchers have found several patterns to characterize how popularity rises and falls during

its evolution.

Yang and Leskovec [2] proposed the K-Spectral Centroid (K-SC) clustering algorithm by

adopting a time series similarity metric. The algorithm uncovered six popularity evolution

patterns according to the rise and fall of popularity. The biggest cluster had a quick rise
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followed by a monotonic decay and the rate of decay was slightly lower than that of rise. Fig-

ueriedo et al. [25] utilized different YouTube data sets: videos on the top lists and videos pro-

tected by copyright to analyze how the popularity of individual videos evolved. Copyright

protected videos tend to get most of their popularity much earlier during their evolution,

often exhibiting a popularity growth characterized by a viral epidemic-like propagation pro-

cess. In contrast, videos on the top lists tend to experience sudden significant peaks of

popularity.

The above work characterizes popularity evolution from a qualitative perspective, while

other work has done so from a quantitative perspective. Crane and Sornette [1] used a self-

excited Hawkes conditional Poisson process to model the popularity evolution of YouTube

videos and showed that the popularity of YouTube videos follows the evolution pattern of a

power-law rise and power-law fall. Matsubara et al. [4] stated that real data followed the popu-

larity evolution pattern of an exponential rise and power-law fall and their model (the SpikeM

model) which obeyed this pattern fitted real data very well. Yu et al. [26] propose a representa-

tion named “phase” to capture the salient rising or falling trend of popularity, which extends

the work of Crane and Sornette.

The above studies are the starting point for this paper. Since all these studies demonstrate

that the popularity of online information generally experiences a rising and falling evolu-

tion, we view the burst, peak, and fade events as a representative summary of popularity

evolution.

Popularity Evolution Prediction

Considerable work has been conducted on predicting future popularity volume. Szabo and

Huberman [6] presented a regression prediction model based on the strong linear correlation

between the logarithmically transformed popularity of YouTube videos at previous and future

times. To predict the bursting and peaking popularity volume, Li et al. [27] developed a popu-

larity prediction solution (SoVP) which recorded viewing-sharing relationships among users

to calculate the influence of underlying diffusion structures. He et al. [8] considered two types

of sources in the comments of online information: timestamps for obtaining a temporal factor,

and usernames for mining potential social influence to model comments as a time-aware

bipartite graph to predict future popularity. To predict the final popularity volume of Twitter

tweets, Zhao et al. [9] proposed a self-exciting point process model to capture “rich get richer”

phenomenon in popularity evolution.

The above work focuses on popularity volume, whereas other studies have focused on

whether popularity will burst or not and when popularity will burst. Kong et al. [14] present a

binary classification task: will popularity burst in the near feature? They found that the SVM

model achieves the best performance in their task. Wang et al. [13] predict when a burst will

come. Due to the diverse time spans of popularity evolution, they formulate their problem as a

classification problem to predict in which time window burst will appear.

In contrast to most existing work, we consider the three events together and place emphasis

on predicting when popularity undergoes these three key events, rather than on future popu-

larity volume.

Preliminaries

This section first introduces the basic concepts in this paper and discusses how to identify

burst, peak, and fade events in popularity evolution. This section then presents our data set

and finally discusses the characteristics of the three events.

Predicting Key Events in the Popularity Evolution of Online Information
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Problem Definitions

Popularity. By the popularity of a piece of online information we refer to the amount of atten-

tion this information receives, such as, the number of views that a video receives, or the num-

ber of users discussing a hashtag.

Popularity Evolution. Note that most pieces of online information undergo both active

and inactive periods [28]. We use the same method as that in [28] to distinguish between both

periods: we consider a piece of information inactive if it gains no popularity for 24 hours. To

simplify the problem, we shorten popularity evolution to the single active period during which

the most popularity volume accumulates. Given the observations of the popularity of a piece of

online information i over its popularity evolution period Li, Li 2 N+, we define yi(t) as the pop-

ularity received by the piece of information i at time t, t 2 {1, 2, 3, . . ., Li}. The data granularity

is set to one hour. For example, yi(10) denotes the popularity received by i during the tenth

hour. The popularity evolution of i is given by the time series {yi(1), yi(2), yi(3), . . ., yi(Li)}.

Burst, Peak, and Fade. Given the popularity evolution of a piece of online information, the

qualitative definitions of burst, peak, and fade events are as follows. Directly after popularity

undergoes the fastest rate of increase (e.g. the fastest hourly rate of increase) during its evolu-

tion, the “burst” event occurs. When popularity reaches the highest value, the “peak” event

occurs. Directly after popularity undergoes the fastest rate of decrease, the “fade” event occurs.

Fig 1 indicates that popularity evolution exhibits rich temporal variation. How can we

design a reasonable method that can identify the burst, peak, and fade events in variable evolu-

tion and work for all cases of popularity evolution? The six patterns found by Yang and Lesko-

vec [2] can cover almost all cases of popularity evolution, according to Fig 2 [2]. Therefore, we

discuss the identification of the events for those six patterns.

In the cases of Clusters P1, P2, and P3, popularity experiences only one huge spike. The

burst, peak, and fade events are identified directly from the time series of popularity evolution

in the cases of Clusters P1, P2, and P3.

If Tp
i 2 f1; 2; 3; . . . ; Lig, and yiðT

p
i Þ is the largest element in {yi(1), yi(2), yi(3), . . ., yi(Li)}, we

say the “peak” event of i occurs at time point Tp
i .

If Tb
i 2 f1; 2; 3; . . . ;Tp

i g, and (yiðTb
i Þ � yiðTb

i � 1Þ) is the largest element in

fyið2Þ � yið1Þ; yið3Þ � yið2Þ; . . . ; yiðT
p
i Þ � yiðT

p
i � 1Þg, we say the “burst” event of i occurs at

time point Tb
i .

If Tf
i 2 fT

p
i ;T

p
i þ 1;Tp

i þ 2; . . . ; Lig, and (yiðT
f
i Þ � yiðT

f
i þ 1Þ) is the largest element in

fyiðT
p
i þ 1Þ � yiðT

p
i þ 2Þ; yiðT

p
i þ 2Þ � yiðT

p
i þ 3Þ; . . . ; yiðLi � 1Þ � yiðLiÞg, we say the “fade”

event of i occurs at time point Tf
i .

For instance, the popularity evolution of the hashtag #signedtoyoungmoney is repre-

sented by the time series {230, 2090, 2905, 1245, 466, 236, 91, 39, 27, 22, 26, . . .}. So the

bursting, peaking, and fading times are the 2nd, 3rd, and 4th hour, respectively, as shown in

Fig 3(a).

In the cases of Clusters P4, P5, and P6, popularity experiences one huge spike and several

small spikes. These spikes result from people’s daily cycles [6]. Since our key events are more

of a representative summary of popularity evolution, they should be identified from the trend

of popularity evolution, rather than from the time series with these spikes depending on the

time of day. In order to smooth these spikes (in order to mitigate the dependence on the time

of day) to obtain the trend of popularity evolution, we use a simple moving average (SMA)

with a window length of 24 (because there are 24 hours in one day). After using SMA, we can

get a trend line, as shown by the red line in Fig 3(b). The three key events are then identified

from a smoothed trend line by using the same method used in the cases of Clusters P1, P2,

and P3.

Predicting Key Events in the Popularity Evolution of Online Information
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Fig 2. The above six popularity evolution patterns of Twitter hashtags were found by Yang and Leskovec [2]. We consider

two categories: Clusters P1, P2, and P3 as one, and Clusters P4, P5, and P6 as the other one. For the first category, there is only one

huge spike during popularity evolution. For the second category, there are multiple spikes.

doi:10.1371/journal.pone.0168749.g002

Fig 3. (a) shows the burst, peak, and fade events for Clusters P1, P2, and P3. (b) shows the burst, peak, and fade events for Clusters P4,

P5, and P6, and the red line is the smoothed trend which is obtained by using a SMA.

doi:10.1371/journal.pone.0168749.g003
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We consider two categories here: Clusters P1, P2, and P3 as one, and Clusters P4, P5, and

P6 as the other one. For the sake of simplicity, the two categories can be unified by applying a

SMA to the second category and then the same method can be used for both categories in

identifications of key events.

Data Set

Our primary data come from a portion of the ‘tweet7’ data set crawled by Yang and Leskovec

[2] over a period of 7 months from June to December 2009. (This data set complies with the

terms of service for the Twitter website.) The data set comprises 65 million tweets. We iden-

tify 3.3 million hashtags in these tweets. Fig 4 shows that the popularity distribution of these

3.3 million hashtags follows a power-law shape. Most of the hashtags in our data set gain very

small popularity whereas only a few hashtags gain large popularity. So we select the 3000

most popular hashtags (ranked by the highest value of popularity). The three key events for

each of the 3000 hashtags are recorded. All of the following studies are conducted on these

selected 3000 hashtags. The statistics of the six popularity evolution patterns are shown in

Table 1. (To request our data set, please contact the corresponding author or the owner of the

dataset (jure@cs.stanford.edu)).

Key Event Characteristics

After introducing our data set, we take a look at the empirical cumulative distributions of

bursting, peaking and fading times (how long it takes these events to occur once popularity

Fig 4. The popularity distribution of all hashtags in our data set.

doi:10.1371/journal.pone.0168749.g004
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evolution begins). Taking the green line in Fig 5 for an example, we logarithmically rescale the

horizontal axes in the figures due to the large variances present among the key event times of

different hashtags (notice that they range from one to several thousand). For each observed

value on the green line, the empirical cumulative distribution shows the fraction of hashtags

for which the bursting times are at or below this value. Fig 5 indicates that the bursting times

of about 60% of hashtags are within the first ten hours during popularity evolution. Some

burst events even occur in the first hour. Bursting in such a short time makes predictions more

difficult and challenging. Furthermore, the fading times of over 50% of hashtags are also within

Table 1. Pattern statistics of the 3000 hashtags.

pattern P1 P2 P3 P4 P5 P6

fraction 15.38% 27.66% 21.92% 11.51% 16.44% 7.09%

doi:10.1371/journal.pone.0168749.t001

Fig 5. The empirical cumulative distributions of bursting, peaking, and fading times.

doi:10.1371/journal.pone.0168749.g005
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the first ten hours. Therefore over 50% of popular hashtags undergo a short popularity evolu-

tion: their popularity bursts suddenly, peaks very soon, and then fades quickly.

Since the three key events are studied simultaneously in this paper, we are interested in

whether there is any relationship among them. For this, we plot peaking time versus bursting

time (Fig 6(a)), fading time versus bursting time (Fig 6(b)), and fading time versus peaking

time (Fig 6(c)) for each hashtag. The horizontal and vertical axes are logarithmically rescaled.

It can be observed in Fig 6(a) and 6(b) that the data form two major clusters: one loose cluster

in the left side of the graph, and a tighter cluster along the main diagonal. The data points

along the main diagonals undergo peak and fade events quickly after bursting. The data points

in the left side of Fig 6(a) and 6(b) undergo burst events in a short time (in the first ten hours),

but it takes them a long time to undergo peak and fade events after bursting. The separation of

the two clusters is not clear in Fig 6(c), because peaking times are not as early as bursting

times. Most data points in Fig 6(c) are along the main diagonal.

Furthermore, to quantify the strength of the correlations in Fig 6, we measure the Pearson

correlation coefficients among the three events. Table 2 shows the Pearson correlation coeffi-

cients (PCC) between the logarithmically transformed event times, and for comparison also

the correlations between the untransformed event times. Logarithmically transformed event

times show stronger correlations. Because of the strong correlations among the three events,

this paper utilizes the same method to simultaneously predict burst, peak, and fade events for

each hashtag.

Solution

As we mentioned in Section 3.3, the key events usually occur in a short time, which requires us

to make predictions promptly. Predicting the key events simultaneously and not separately

facilitates a prompt prediction. For example, we do not have to predict a fade event until the

Fig 6. (a) shows the relationship between the burst and peak events. (b) shows the relationship between the burst and fade events. (c) shows the

relationship between the peak and fade events.

doi:10.1371/journal.pone.0168749.g006

Table 2. The Pearson correlation coefficients among the key event times.

burst-peak burst-fade peak-fade

log 0.94 0.87 0.94

non-log 0.90 0.71 0.84

doi:10.1371/journal.pone.0168749.t002
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peak event occurs. It is reasonable to predict all three events by the same method at the same

time for each piece of online information. If a prediction performs well for a burst event, it

should also perform well for the peak and fade event because of the strong correlations among

the three events. In this section we first discuss a suitable time to make predictions. The predic-

tion method of this paper relies on the following steps: feature extraction, feature selection,

and use of the SVR (Support Vector Regression) model fed by selected features.

Determining Prediction Times

According to Fig 5, bursting times vary significantly, ranging from several hours to several

weeks. It is not reasonable to wait the same time to make predictions for different kinds of

popularity evolution. For those requiring several hours to burst, waiting several days results in

a useless prediction. For those requiring several weeks to burst, waiting several hours cannot

give us sufficient information to make a prediction. So how can we decide when to make the

prediction for each individual hashtag without knowing if it will take hours or weeks to burst?

As indicated in Fig 1(a), for those hashtags requiring a long time to burst, their popularity

usually remains at a very low value at the beginning, like {1, 1, 2, 3, 0, 0, 2, . . .}. Once their pop-

ularity reaches a certain level, their popularity will increase at a faster rate. This behavior can

be explained by the “rich get richer” phenomenon [29]. We therefore propose the idea that

predictions are triggered once popularity reaches a certain level, e.g. once popularity reaches

20. Fig 7 shows the fraction of hashtags for which popularity reaches the corresponding x value

before the “burst” event. The x axis in Fig 7 is logarithmically transformed. It is easy to under-

stand that this fraction decreases with an increasing value of popularity, as indicated by Fig 7.

Hence, predictions for most hashtags should be made before popularity reaches σ. According

to Fig 7, for about 90% of hashtags, popularity reaches 40 before the “burst” event. For about

Fig 7. The fraction of hashtags for which popularity reaches the corresponding x value before the “burst”

event.

doi:10.1371/journal.pone.0168749.g007
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85% of hashtags, popularity reaches 50 before the “burst” event. Therefore, σ is set to 40 for

our data set.

Features for Predictions of the Key Events

Temporal Features. Previous work [29] has suggested that popularity evolves according to the

“rich-get-richer” phenomenon, which means that a hashtag receives new popularity at a rate

proportional to the value of popularity it has already received. Hence, we deduce that the cur-

rent cumulative popularity (cumuPopularity) may have impact on the bursting, peaking, and

fading times. Another temporal feature is the time of day when the popularity evolution of a

hashtag begins (beginningTime). This feature is taken into account because we believe that

this feature affects the value popularity will reach in the next hour, which itself affects the event

times. For example, a hashtag that starts its popularity evolution at 9 p.m. will receive more

popularity in the next hour than a hashtag that starts its popularity evolution at 3 a.m. In the

former case, popularity may burst quickly. But it may take a longer time for popularity in the

latter case to burst. The last temporal feature is the amount of time it takes popularity to reach

a certain level (e.g. 20) once evolution begins (levelTime), which is also the amount of time it

should take for predictions to be triggered.

Social Features. We assume that celebrity involvement in discussing a hashtag accelerates

the occurrences of the key events. We calculate the number of celebrities (celebrityCount) and

the overall sum and maximum of the numbers of their followers (fanTotal, fanMax).

Hashtag String Features. We manually separate hashtag strings into individual words and

count the number of individual words (wordCount). For example, #alovelikethisisonyourside

is interpreted as “a love like this is on your side”, so this hashtag has eight individual words.

Hashtags that have no clear meaning, like #abcdefg and #bbmg, are considered as one word.

Another feature (stringLength) we extract from a hashtag string is the number of letters in the

hashtag.

Topological Features. We also pay attention to the features of the topology networks

formed by the users discussing each hashtag [30]. We denote by Ni(t) = (Vi(t), Ei(t)), the cumu-

lative evolving network for hashtag i at hour t, t 2 {1, 2, 3, . . ., Li}. The vertex set Vi(t) of Ni(t)
is the set of all users who have tweeted on hashtag i in hours 0 through t. An edge between ver-

tex u and vertex v is added to Ei(t) if u and v have a follower-following relationship, u 2 Vi(t)
and v 2 Vi(t). The follower-following relationships come from a data set collected by Kwak

et al. [28] during the same time period that the ‘tweet7’ data set was collected. Several topologi-

cal features are extracted from Ni(t), including average node degree (degreeAverage), maxi-

mum node degree (degreeMax), global clustering coefficient (ccGlobal), average local

clustering coefficient (ccAverage), and the number of nodes in the largest connected compo-

nent (lccNodeCount).

Feature Selection

Before feeding the SVR model the above features (extracted once popularity reaches a certain

level, e.g. 20), we perform feature selection by removing irrelevant and redundant features.

Doing so can unburden the training process and help us understand which feature best cap-

tures the bursting, peaking, and fading time. First, we investigate the Pearson correlation

between each feature and each event time to remove irrelevant features. Each cell of Fig 8

shows the pairwise correlation between the corresponding event time and feature. The correla-

tion’s magnitude is represented by the circle symbol, and its sign is represented by colors, with

red used for negative values and blue for positive values. Fig 8 indicates that levelTime and

celebrityCount have high correlations with bursting, peaking, and fading time. beginningTime

Predicting Key Events in the Popularity Evolution of Online Information
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and fanMax are not related with the event times. Note that each row in Fig 8 looks very similar,

which also indicates the three event times are highly correlated with each other. After remov-

ing irrelevant features, the remaining ones are levelTime, celebrityCount, degreeAvarage, and

ccAverage.

Second, we study the Pearson correlations among these features to remove redundant fea-

tures. Fig 9 shows the correlation matrix for all features. Some of the features have high pair-

wise correlations, such as lccNodeCount and degreeMax, lccNodeCount and cumuPopularity,

fanMax and fanTotal. After removing irrelevant and redundant features according to Figs 8

and 9, the remaining ones are levelTime, and ccAverage.

Evaluation

This section discusses how this task is evaluated. First, traditional evaluation metrics, which

only consider accuracy, are adopted to evaluate our solution. We compare our solution with

others in terms of traditional evaluation metrics. Second, a new evaluation metric, which con-

siders both accuracy and promptness, is specifically designed for this task.

Experimental setup

According to the tips on practical use of the SVR model [31], we first try small and large values

for the general penalizing parameter (C) with exponentially growing sequences, like 100, 101,

102, 103, 104, then decide which are better for the data by cross validation minimizing MAPE,

and finally try several kernel parameter γs (like 100, 10−1, 10−2, 10−3, 10−4) for the better Cs.

For our data set, C is set to 1000, and γ is set to 0.0001. In the following two-sided paired t-tests

we conduct to compare our solution with other solutions, the sample size (n) is 3000.

Traditional Evaluation

Overall Performance. The overall performance of our solution is evaluated in terms of

the minimum, quartiles, and maximum values of prediction errors (Eq 1) and relative errors

(Eq 2). We perform a 5-fold cross-validation. We evaluate predictions made at different time

Fig 8. The pairwise correlation between the corresponding event time and feature.

doi:10.1371/journal.pone.0168749.g008
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points (e.g. the time points once popularity reaches 10, 20, 30, and 40).

Errori ¼ jt0i � tij ð1Þ

RelativeErrori ¼
jt0i � tij

ti
ð2Þ

where t0i is the predicted event time of the hashtag i, and ti is the actual event time.

Note that in some cases relative errors are larger than 1 because of low actual value and

high predicted value. Table 3 gives the fractions of relative errors exceeding 1 for different pre-

dictions. In the cases where burst and peak predictions are triggered when popularity reaches

10, the fraction values are about 30%. These high fraction values result from bad prediction

performance and low actual values. In accordance with standard procedure in the prediction

field, we set relative errors to 1 when they exceed 1.

Table 4 shows the minimum, quartile (Q1 (the first quartile), Q2 (median), and Q3 (the

third quartile)), and maximum error values for predictions of the three event. We can make the

following observations. (1) Overall errors decrease with prediction time for predictions of all

Fig 9. The pairwise correlations among features.

doi:10.1371/journal.pone.0168749.g009
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three events. This is consistent with the intuition that the later we predict, the more accurate the

prediction is. (2) Taking the predictions triggered once popularity reaches 20 for an example.

For 50% of hashtags, the difference between the predicted bursting (peaking) time and the

actual bursting (peaking) time is less than one hour. For 75% of hashtags, this time difference is

less than two hours. For 50% of hashtags, the difference between the predicted fading time and

the actual fading time is less than one hour. For 75% of hashtags, this time difference is less than

for hours. (3) The errors for fade event predictions are usually not as low as those for burst and

peak event predictions, which can be explained by Fig 8: the correlations between the selected

features and fading times are not as high as those between the selected features and bursting

and peaking times. (4) The maximum error values for all three event predictions are large

(greater than 200 hours), which results from the points not along the main diagonals in Fig 6.

Relative errors are presented in Fig 10. The box-and-whisker plot shows the minimum,

quartiles, and maximum error values. The bottom and top of the box are the first and third

quartile error values, respectively, and the band inside the box is the median error value. The

upper and lower whiskers are the maximum and minimum error values, respectively. The

position of the median band becomes lower as prediction time increases, which indicates that

the overall prediction performance improves as prediction time increases. The third and

fourth boxes in Fig 10(a) show that the median value of relative errors is zero if burst event pre-

dictions are triggered once popularity reaches 30 or 40. The third and fourth boxes in Fig 10

(b) show that the median values of relative errors are about 0.2 and 0.05 if peak event predic-

tions are triggered once popularity reaches 30 and 40, respectively. The third and fourth boxes

in Fig 10(c) show that the median values of relative errors are about 0.3 and 0.35 if fade event

predictions are triggered once popularity reaches 30 and 40, respectively.

Comparison. To validate the effectiveness of our solution, this paper compares our solu-

tion with the following solutions in terms of (1-RelativeError). We also perform 5-fold cross-

validations.

Using all features (AF). To show the efficiency of performing the feature selection, we com-

pare our solution using only the selected features with another solution using all the features.

Using Bayesian linear regression (BLR). We replace the SVR model in our solution with

another machine learning model known as Bayesian linear regression.

SpikeM. Due to the fact that predicting the burst, peak, and fade events is a new prediction

task, most of the existing models for popularity evolution prediction are not capable of solving

Table 4. The minimum, quartile, and maximum error values for predictions of the three events.

key event burst peak fade

stats min Q1 Q2 Q3 max min Q1 Q2 Q3 max min Q1 Q2 Q3 max

10 0 1 1 2 174 0 1 1 3 175 0 1 2 7 257

20 0 0 1 2 171 0 1 1 2 169 0 1 1 6 247

30 0 0 0 2 175 0 0 1 2 175 0 1 1 5 249

40 0 0 0 2 178 0 0 1 2 178 0 1 1 4 258

doi:10.1371/journal.pone.0168749.t004

Table 3. Fractions of relative errors exceeding one for the predictions triggered once popularity

reaches 10, 20, 30, and 40.

10 20 30 40

burst 31.56% 7.44% 2.76% 2.99%

peak 30.10% 19.81% 7.52% 1.15%

fade 5.37% 1.15% 0.92% 1.13%

doi:10.1371/journal.pone.0168749.t003
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this task. To compare our solution with existing work, we choose a model which can solve this

task but is not specialized for it, the SpikeM model [4]. We train the SpikeM model by using

popularity data up to the time of prediction to obtain the whole predicted popularity evolution.

Then the three event times can be inferred from the whole predicted popularity evolution.

The first and second boxes in each subfigure of Fig 11 and Table 5 show the comparison

between our solution and the solution using all features. For better visualization in Fig 11, each

prediction error is increased by one hour, and then presented on the logarithmically rescaled

vertical axis. For predictions of all three events, we can see that the median error values result-

ing from using the selected features are about two or three hours lower than those resulting

from using all the features. We conduct a significance test (Table 5) to further compare, in

terms of (1−RelativeError), our solution with the solution using all the features. �d denotes the

Fig 10. The minimum, quartile, and maximum relative error values for predictions of the three events.

doi:10.1371/journal.pone.0168749.g010

Fig 11. The minimum, quartile, and maximum relative error values for predictions of the three events.

doi:10.1371/journal.pone.0168749.g011
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mean of (1−RelativeError) differences. V denotes the variance of (1−RelativeError) differences.

p denotes the p-value. ES denotes the effect size. CI denotes the confidence interval. According

to a two-sided paired t-test for the difference in means �d ¼ 0:26 (with the unbiased estimate

of the population variance V = 0.32), burst event predictions using only the selected features

statistically significantly outperform burst event predictions using all the features (p< 0.05,

ES = 0.4634, 95% CI[0.2072, 0.3132]). This is similarly true for peak and fade event predictions.

The reason for the better performance of our solution is that the irrelevant and redundant fea-

tures disturb the learning process of the SVR model, and removing the irrelevant and redun-

dant features helps improve the prediction results.

The first and third boxes in each subfigure of Fig 11 and Table 6 show the comparison

between our solution and the solution using the BLR model. For burst and peak predictions,

the median error values resulting from using our solution are about two or three hours lower

than those resulting from using the BLR model. For fade predictions, the median error value

resulting from using our solution is about seven hours lower than that resulting from using the

BLR model. We conduct a significance test (Table 6) to further compare our solution with the

solution using the BLR model. According to a two-sided paired t-test for the difference in

means �d ¼ 0:35 (with the unbiased estimate of the population variance V = 0.26), our solution

statistically significantly outperforms the solution using the BLR model (p< 0.05, ES = 0.69,

95% CI[0.31, 0.40]). This is similarly true for peak and fade event predictions.

The first and fourth boxes in each subfigure of Fig 11 and Table 7 show the comparison

between our solution and the SpikeM model. For burst and peak predictions, the median error

values resulting from using our solution are about three hours lower than those resulting from

using the SpikeM model. For fade predictions, the median error value resulting from using

our solution is about eight hours lower than that resulting from using the SpikeM model. We

conduct a significance test (Table 7) to further compare our solution with the SpikeM model.

According to a two-sided paired t-test for the difference in means �d ¼ 0:44 (with the unbiased

estimate of the population variance V = 0.25), our solution statistically significantly

Table 5. The significance test of comparing our solution with the solution using all features.

d V ES p CI

burst 0.26 0.32 0.46 0.00 [0.21, 0.31]

peak 0.15 0.26 0.30 0.00 [0.10, 0.20]

fade 0.27 0.15 0.71 0.00 [0.24, 0.31]

doi:10.1371/journal.pone.0168749.t005

Table 6. The significance test of comparing our solution with the solution using the BLR model.

d V ES p CI

burst 0.35 0.26 0.69 0.00 [0.31, 0.40]

peak 0.27 0.22 0.57 0.00 [0.23, 0.31]

fade 0.43 0.17 1.05 0.00 [0.39, 0.47]

doi:10.1371/journal.pone.0168749.t006

Table 7. The significance test of comparing our solution with the solution using the SpikeM model.

d V ES p CI

burst 0.44 0.25 0.87 0.00 [0.39, 0.49]

peak 0.31 0.22 0.65 0.00 [0.26, 0.35]

fade 0.44 0.17 1.07 0.00 [0.41, 0.48]

doi:10.1371/journal.pone.0168749.t007
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outperforms the SpikeM model (p< 0.05, ES = 0.87, 95% CI[0.39, 0.49]). This is similarly true

for peak and fade event predictions. The main reason for the non-optimal performance of the

SpikeM model is that the SpikeM model only considers popularity data, and popularity data

are sparse and do not contain enough information to learn the parameters of the SpikeM

model due to the quick occurrence of the key events.

New Evaluation

As we discussed in Section 3.3, some of key events occur in a very short time once popularity

evolution begins. Because of this special characteristic, we argue that traditional evaluation

metrics (e.g. error, relative error, RMSE, and MAPE, etc.) have a flaw in evaluating this task

and that the promptness of a prediction should be taken into account. For instance, we have

two hashtags, say A and B. The predictions for the two hashtags are triggered at the 3rd and 5th

hours. The prediction results for A and B are both (5, 6, 7). That is, we estimate that A’s and B’s

popularity will burst at the 5th hour, peak at the 6th hour, and fade at the 7th hour. The actual

results for A and B are both (4, 5, 6). The prediction accuracies are the same for A and B, but

the prediction for B is triggered after the popularity bursts. From an application point of view,

it is meaningless to make a key event prediction after the key event already occurs. Still taking

A and B for an example, this time we make predictions at 2nd and 3rd hours. Their predicted

and actual results are the same as those in the first example. This time the predictions for both

hashtags are triggered before the key events. From the perspective of stopping rumors and con-

trolling information diffusion, we have two hours left to take actions for A but only one hour

for B. Hence, the traditional metrics that only take accuracy into account are not enough. We

need a new evaluation metric which considers not only accuracy but also promptness.

This new evaluation metric is constructed like an F1 score. It has two ingredients: correct-

ness score (CS, given in Eq 3) and promptness score (PS, given in Eq 4), so we call this new

evaluation metric balanced CP score. A balanced CP score balances accuracy and promptness.

Given the results of a key event prediction, its balanced CP score is given in Eq 5 according to

the following rules.

Rule 1. In some cases correctness scores (1-RelativeError) are lower than 0 because relative

errors are higher than 1, as we discussed in Section 5.1.1. We set correctness scores in these

cases to 0.

Rule 2. If a prediction is triggered before popularity evolution, the corresponding prompt-

ness score is set to 1. If a prediction is triggered after a key event time, the corresponding

promptness score is set to 0.

CSi ¼
1 �
jt0i � tij

ti
; jt0i � tij � ti

0; jt0i � tij > ti

8
><

>:
ð3Þ

PSi ¼

ti � t00i
ti

; t00i � ti

0; t00i > ti

8
><

>:
ð4Þ

BalancedCPScorei ¼
2CSi � PSi

CSi þ PSi
ð5Þ

where t00i is the key event prediction time of hashtag i.
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We use the average of balanced CP scores to evaluate the predictions at different time

points. We conduct a 5-fold cross-validation. According to Fig 12(a), for predictions of all

three events, the average correctness score increases with prediction time. The reason for this

is that the later we make predictions, the stronger correlations are between the selected features

and the event times. In Table 4, errors for fade event predictions are larger than errors for peak

event predictions, but in Fig 12, the average correctness scores for fade event predictions made

at earlier time points are higher than those for peak event predictions. This is because actual

fading times are larger than actual peaking times and correctness scores sometimes become

higher when actual values are larger. According to Fig 12(b), for predictions of all three events,

the average promptness score decreases with prediction time. It is obvious that the later we

predict, the lower the values of promptness scores are. Burst event predictions are not as

prompt as the peak event predictions, because a burst event always occurs after the corre-

sponding peak event. According to Fig 12(c), balanced CP score tends to become saturated as

prediction time increases for predictions of all three events.

Conclusions

In this paper we bring forward a new and challenging prediction task in the field of popularity

evolution: predicting when the “burst”, “peak”, and “fade” key events occur. The challenges of

identifying the events in different popularity evolution patterns with high variation, and mak-

ing accurate yet prompt predictions, are addressed for this task. This paper presents a solution

based on the characteristics of the events. Comparative results show that our solution outper-

forms three other solutions in terms of accuracy. We design a new evaluation metric (balanced

CP score) and show how to use this metric to evaluate the quality (both accuracy and prompt-

ness) of predictions at different times. Furthermore, we find that the popularity of more than

half the hashtags in our selected data set bursts suddenly, peaks very soon, and then fades

quickly, that these events have strong correlations with each other, and that the levelTime fea-

ture has the most effect on this prediction task compared to other features.

Predictions concerning those points not along the main diagonals in Fig 6 need to be

improved in future work. There is another interesting area that we did not explore here: What

Fig 12. The correctness scores, promptness scores, and balanced CP scores for predictions of the three events.

doi:10.1371/journal.pone.0168749.g012
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characteristics do the two clusters in Fig 6 have? We have a rough look into these two clusters.

We find that the hashtags in the left cluster tend to have more specific meanings with longer

strings, like #lieswomentell, #WorldsThinnestBooks, and #itsnotgonnawork, while the other

hashtags are vaguer, like #mnf, #Packers, and #eBay. Our future research will address this

question as well.
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