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Abstract

The major goal of animal production is to obtain abundant and healthy meat for consumers.

Maternal food restriction (MFR) is often applied in farms to reduce production costs. How-

ever, the suitability of MFR in livestock animals is questionable, as this management may

compromise maternal fitness due to a severe negative energetic balance and can induce

Intrauterine Growth Restriction (IUGR) and prenatal programming in the offspring. Here, we

sought to determine, using pregnant rabbits, the consequences of MFR on maternal endo-

crine and metabolic status and conceptus development. Pregnant dams were distributed

into three groups: CONTROL (ad libitum feeding throughout the entire pregnancy; mean

pregnancy length being around 31 days), UNDERFED (50% MFR during the entire preg-

nancy) and EARLY-UNDERFED (50% MFR only during the preimplantation period, Days

0–7). Maternal leptin concentrations and glycemic and lipid profiles were determined

throughout pregnancy, whilst conceptus development was assessed ex-vivo at Day 28. Pla-

cental parameters were determined by macroscopic and histological evaluations and apo-

ptotic assessments (TUNEL and Caspase-3). The main results of the study showed that,

despite MFR altered maternal plasma lipid concentration (P<0.05), there were no effects on

maternal bodyweight, plasma leptin concentration or glycemic profile. Fetal crown-rump

lengths were reduced in both undernourished groups (P<0.001), but a significant reduction

in fetal weight was only observed in the UNDERFED group (P<0.001). Growth in both

undernourished groups was asymmetrical, with reduced liver weight (P<0.001) and signifi-

cantly increased brain: fetal weight-ratio (P<0.001) and brain: liver weight-ratio (P<0.001)

when compared to the CONTROL group. A significant reduction in placental weight was

only observed in the UNDERFED group (P<0.001), despite both undernourished groups

showing higher apoptotic rates at decidua and labyrinth zone (P<0.05) than the CONTROL

group. Thus, these groups evidenced signs of placental degeneration, necrosis and stromal

collapse. In summary, MFR may encourage the mother to make strategic decisions to
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safeguard her metabolic status and fitness at the expense of growth reduction in the litter,

resulting in enhanced apoptotic and pathological processes at placental level and IUGR.

Introduction

The major goal of animal production is to obtain abundant and healthy meat for consumers,

which relies on adequate management of breeding animals and pregnancy periods [1]. In live-

stock animals, maternal nutrition has been largely recognized as a key factor for pregnancy

success [1, 2]. Periods of maternal food restriction (MFR) during gestation can result in off-

spring suffering from Intrauterine Growth Restriction (IUGR), defined as the failure of a fetus

to reach its genetic potential size [3]. The same situation has been found in humans, with MFR

having a strong impact of IUGR occurrence and a higher incidence of non-communicable dis-

eases, like obesity, cognitive dysfunctions or cardiometabolic disorders [4–6].

In livestock animals, the intensive productive rhythms and the different farm managements

aiming to reduce productive costs have led to a higher occurrence of IUGR in these animals

[1, 7]. Thereby, affecting the quality of their meat (muscle fibers and marbling), athletic perfor-

mance or fleece production [2, 8] and lastly resulting in poorer incomes for the livestock pro-

ducer and lower quality products for the consumers. Despite these inconveniences, MFR

protocols applied in specific periods of the pregnancy, such as the preimplantation period, in

which the embryo’s requirements are low and the mother presents an anabolic status, could

reduce productive costs and be an alternative strategy in farms [9, 10]. However, the advan-

tages and disadvantages of such managements need to be further investigated, since inade-

quate nutrition from early gestation can influence placentation processes (specifically the

allocation of trophectoderm and inner cell mass within the blastocyst [11]), which may impair

placental development and function [12], compromising pregnancy outputs. In fact, experi-

mental studies suggest that impaired placental structure or function (e.g. placental insuffi-

ciency) may contribute to IUGR in response to undernutrition [12, 13]. Most of these studies

have been performed in rodents [14], whilst the use of large animals is scarce. However, large

animals (sheep, pig or rabbit) offer a wider range of benefits for the purpose of this assessment,

as the results obtained from these trials, especially those based on MFR protocols, can be useful

not only for biomedicine but also to unravel the aforementioned advantages and disadvantages

of the application of MFR regimens to livestock animals.

In the last years, the rabbit, considered as a livestock animal in the Mediterranean area

(meat and fibre production [15, 16]), has emerged as a valuable model to investigate IUGR

[17–31], as compared to a sheep or a pig, this animal does not need large animal facilities and

gestational length is shorter (term around Day 31; D31). Thus, the rabbit develops a discoid

hemochorial placentation and the fetuses have an accelerated perinatal brain growth, such

characteristics are comparable with the human [32, 33]. Moreover, hemodynamic changes

occurring during pregnancy are also similar to the human, with an important increase in

maternal blood pressure throughout gestation [32, 34]. In rabbits, the effects of MFR during

gestation [17, 30, 31, 35–41] vary depending on the period of the pregnancy exposed, the level

of the restriction applied and the capacity of the mother to compensate, particularly during

late pregnancy when fetal growth is maximal [42]. When it comes to the mother, MFR is usu-

ally linked to metabolic and hormonal changes [35–37] and low milk production [38]. Mean-

while, in the fetus, hemodynamic alterations and poor biometric outcomes can be observed

[17, 30, 31, 39–41].
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It has been previously shown using other animal species that MFR based on preconception

or in ad libitum food intake can affect placental development [43], induce IUGR [44] and

developmental programming of adult diseases in the offspring [45]. In previous work, using

the rabbit as a model, we evaluated the effects of MFR based on ad libitum pre-pregnancy

intake [30, 31]. However, in these studies, MFR was applied when the rabbit embryo was

already implanted (from D9 to term). MFR resulted in fetal IUGR (measured on day 28 of

pregnancy and at birth) despite no differences in placental weight or in perinatal mortality

were observed. Here, we sought to determine the consequences of MFR applied only during

the critical period of preimplantation (D0-D7) or throughout the gestation (D0 onwards) on:

1) maternal food intake, endocrine and metabolic status of the dams, 2) conceptus develop-

ment at term and 3) placental homeostasis determined by histopathological study and apopto-

sis quantification.

Materials and Methods

Animals and experimental design

The study was performed according to the Spanish Policy for Animal Protection RD53/2013.

The experiment was specifically assessed and approved by the Polytechnic University of

Madrid (UPM) Committee of Ethics in Animal Research, which is the named Institutional

Animal Care and Use Committee (IACUC) for the UPM, and by the Community of Madrid,

which is the authority in charge for animal research (Ref. PROEX 302/15). The does were

housed at the animal facilities of the UPM, which meet the local, national and European

requirements for Scientific Procedure Establishments. Prior to the experimental phase (two

weeks before mating), a total of 32 New Zealand x California rabbits (average 4.74 ± 0.12 Kg)

were fed ad libitum with a diet containing 16% crude protein, 37% crude fiber, 3.7% fat and

2400 kcal/kg of crude energy (NANTA, Madrid, Spain). During this period the food consump-

tion of each dam was recorded daily. Dams were inseminated (D0 of pregnancy) with fresh

diluted semen (commercial extender, MA 24, Ovejero, León, Spain). Each dose contained at

least 25 million spermatozoa in 0.5 ml of diluent (Magapor S.L., Zaragoza, Spain). Ovulation

was induced with gonadoreline at the time of mating (20 μg/doe, i.m.; Inducel-GnRH, Ove-

jero, León, Spain). At this moment dams were randomly allocated into three groups: Ad libi-
tum feeding along the pregnancy (CONTROL; n = 9), 50% restriction of their previous ad
libitum intake throughout pregnancy (UNDERFED; n = 12) or restricted only during the pre-

implantation period (D0-D7;�22% of the total pregnancy) followed by ad libitum feeding

until the end of pregnancy (EARLY-UNDERFED; n = 11). Food intake was also recorded

weekly in all experimental groups during gestation.

Maternal blood sample collection

Evaluation of metabolic parameters and hormones was performed in five dams per experimen-

tal group. Blood was obtained weekly (D0, D7, D14, D21, D28) by ear-puncture. Blood was

placed in tubes with Ethylenediaminetetraacetic acid (EDTA) as anticoagulant and centrifuged

for 15 min at 1200 g to obtain�2 ml of plasma per dam. Concentrations of leptin were deter-

mined in a single analysis using the Multi-species Leptin RIA kit (Demeditec Diagnostics

GmbH, Kiel, Germany). The assay sensitivity was 1.0 ng/ml and the intra-assay variation coef-

ficient was 3.1%. Parameters relating to the glycemic (glucose and fructosamine) and lipid

metabolisms (total cholesterol, high-density lipoproteins cholesterol [HDL-c], low-density

lipoproteins cholesterol [LDL-c] and triglycerides) were measured on a clinical chemistry ana-

lyzer according to the manufacturer’s instructions (Saturno 300 plus. Crony Instruments s.r.i.,

Rome, Italy).
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Macroscopic study of the fetuses and placentas

Dams were weighed and euthanized (30 mg/kg, IV marginal ear vein administration; Dolethal,

Madrid, Spain) at D28. The gravid uterus was removed by a medial laparotomy and subse-

quently weighed. Fetuses were dissected from their extraembryonic membranes and classified

according to the following criteria: viable (with a correct morphology and weight for the gesta-

tional age), mummified (dead in uterus with signs of shrivel and drying) or fetal resorption

(residual placental tissue attached to the endometrium) (Fig 1). The implantation rate was esti-

mated as the ratio between total numbers of implanted fetuses and corpora lutea present in the

ovaries. In viable fetuses, crown-rump length and bodyweight were determined by the use of

scales and calipers prior to decapitation, after which brain and liver tissue were weighed. Brain

and liver to fetal weight-ratios and brain to liver weight-ratio were obtained as indexes for

IUGR [18, 46]. Finally, placentas from viable fetuses (except those selected for histopatholog-

ical study) were weighed and decidua and labyrinth sections were separated and characterized

by weight, length, breadth and thickness with scales and calipers. Placental efficiency was cal-

culated as fetal to placental weight-ratio [47, 48].

Fig 1. Macroscopic images of rabbit conceptus at D28 of pregnancy.

doi:10.1371/journal.pone.0169194.g001
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Microscopic study of placenta

The placentas closest to the left ovary were cut in half, fixed in 4% paraformaldehyde and

switched to 70% ethanol the following day. Samples [CONTROL (n = 8; one placenta was

excluded for technical reasons), EARLY-UNDERFED (n = 11), UNDERFED (n = 12)] were

embedded in paraffin and sectioned at 4 μm thickness with a semi-automated rotary micro-

tome (Leica, Wetzlar, Germany).

The hstopathological study of placenta was performed by staining all the samples with

hematoxylin and eosin and analyzing them under a light microscope (Olympus BX40, Ham-

burg, Germany) by a trained pathologist blinded to the experimental groups. Stromal collapse

of the labyrinth and decidual sclerosis of vascular channels were each graded and scored using

the following criteria: unremarkable = 0, mild = 1, moderate = 2 and severe = 3. Other descrip-

tive pathological features such as necrosis, mineralization and inflammatory infiltrates were

recorded. The width of each placental layer (decidua, labyrinth and junctional zone) was ana-

lyzed by measuring five random fields of each layer under a 1.25x objective and obtaining the

mean value.

The degree of apoptosis was determined using the ApopTag in situ apoptosis detection kit

(Millipore Corp., San Francisco, USA) for terminal deoxynucleotidyl transferase dUTP-medi-

ated nick-end labeling (TUNEL), according to the manufacturer’s instructions and as previ-

ously described [49]. Sections were deparaffinized and treated with proteinase K (Roche

Diagnostics GmbH, Mannheim, Germany). Endogenous peroxidase activity was blocked with

3% hydrogen peroxide in phosphate-buffered saline (PBS), and incubated with anti-digoxi-

genin conjugate in a humidified chamber at room temperature for 30 min. Sections were

counterstained with methyl green. Ten random fields of each placental zone were photo-

graphed under a 20x objective and quantified using Image J software. The percentage of apo-

ptotic cells was estimated as the number of TUNEL stained nuclei divided to the total number

of total stained nuclei per zone × 100 [49].

To corroborate the results obtained from TUNEL assessment, we also performed Caspase-3

quantification. In brief, endogenous peroxidase activity was blocked by a 30 min treatment

with 3% hydrogen peroxidase in absolute methanol. Nonspecific binding was blocked by incu-

bating the sections in 5% normal goat serum (sc-2043, Santa Cruz Biotechnology, Santa Cruz,

CA, USA) and incubated overnight with the primary antibody (1:25; caspase-3 antibody

ab2171; Abcam, Cambridge, UK). After subsequent washes, sections were incubated with bio-

tinylated anti-mouse secondary antibody (1:200; Santa Cruz Biotechnology, Santa Cruz, CA,

USA) and subsequently with the avidin-biotin complex (ABC Vector Elite kit, Vector Labora-

tories, Burlingame, CA, USA). After chromogen incubation (Vector Nova RED substrate Kit

for Peroxidase, Vector Laboratories, Burlingame, CA, USA), sections were counterstained

with hematoxylin and analyzed under a light microscope (Leica DM IL, Wetzlar, Germany).

The percentage of Caspase-3 positive immunostaining was determined as caspase-3 positive

stain in a zone (pixels)/total surface of that zone (pixels) x 100.

Statistical analysis

Statistical analysis was performed with SAS software (Statistical Analysis System Institute Inc.,

Cary, NC, USA). The effects of MFR in food intake, leptin and plasma metabolic parameters

were evaluated by two-way analysis of variance (ANOVA). Maternal bodyweight and parame-

ters related to conceptus development were analyzed by one-way ANOVA with maternal

bodyweight at the beginning of the trial and number of fetuses per dam as covariates, respec-

tively. If significant main effects were detected, T test (for parametric variables) or Kruskal-

Wallis test (non-parametric variables) were used to compare averages among groups.
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Histological findings related to percentages were obtained by a Chi square test. All data were

reported as mean±SEM and probabilities were considered significant at P<0.05.

Results

Early-MFR induced maternal food intake compensation in later gestation

and circumscribed changes in lipid metabolism without affecting

bodyweight, leptin concentrations or glycemic profile

Both undernourished groups had similar food intake during the 1st week of pregnancy and

showed significant differences compared with the CONTROL group (Fig 2a). Once the restric-

tion finished, EARLY-UNDERFED group significantly increased its food intake compared to

the CONTROL group during the 2nd and 3rd weeks of pregnancy, but not during the last week

of gestation, in which both groups significantly decreased their food intake (Fig 2a). These

changes in dietary patterns were not associated to changes in the bodyweight of the dams at

Fig 2. Effects of MFR on maternal food intake, bodyweight and plasma leptin, glucidic and lipid

concentrations during pregnancy. Number of pregnant dams per group employed for Fig. a) and b):

CONTROL = 9, EARLY-UNDERFED = 11, UNDERFED = 12; Number of pregnant dams per group employed

for Fig. c) to i): CONTROL = 5, EARLY-UNDERFED = 5, UNDERFED = 5. Statistical analyses were

performed by ANOVA. Data presented as mean±SEM. Different superscripts indicate significant differences

between groups (P<0.05).

doi:10.1371/journal.pone.0169194.g002
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D28 calculated after retrieval of the pregnant uterus (Fig 2b). Furthermore, MFR did not affect

either plasma leptin concentrations (Fig 2c), glucose or fructosamine levels (Fig 2d and 2e),

but did alter the circulating lipid metabolites in early to mid-gestation (D0 to D14). In this

regard, during the preimplantation period (D0 to D7) higher concentrations of triglycerides

were found in the CONTROL group compared to both undernourished groups (Fig 2f).

Meanwhile, plasma cholesterol concentrations were only significantly higher in the UNDER-

FED group on D14 versus the CONTROL and EARLY-UNDERFED groups (Fig 2g). On D7,

plasma HDL-c concentrations were significantly reduced in both undernourished groups (Fig

2h) despite the fact that within the same period of gestation, LDL-c concentrations increased

in these two groups respect CONTROL values (Fig 2i). Lastly, LDL-c concentrations remained

higher only in the UNDERFED group until D14 compared to EARLY-UNDERFED and CON-

TROL groups (Fig 2i).

MFR disrupted fetal growth trajectory but did not alter the number of

viable fetuses at D28

MFR reduced the weight of the gravid uterus in the UNDERFED group compared to the

CONTROL and EARLY-UNDERFED groups, despite no differences in the number of fetuses

per litter or in implantation rate (Table 1). Fetuses in the UNDERFED group showed the low-

est crown-rump length and fetal weight (total, head and trunk) while the EARLY-UNDERFED

group only showed a significant reduction of crown-rump length when compared to the CON-

TROL group. Brain and liver weight were significantly lower in the UNDERFED group when

compared to the CONTROL and the EARLY-UNDERFED groups (Table 1). In the EAR-

LY-UNDERFED group, liver weight was significantly lower than in the CONTROL group.

However, no difference was found in the absolute weight of the brain between these two

groups. The assessment of brain ratio showed a significant increase in both undernourished

groups, while liver ratios were equally reduced in EARLY-UNDERFED and UNDERFED

compared to the CONTROL. Thus, brain: liver weight ratio was higher in both restricted

groups with respect to the CONTROL group.

MFR altered placental development and resulted in histopathological

changes and higher apoptotic levels

Placental development was altered in both undernourished groups with a more severe effect

when MFR was carried out throughout gestation. MFR reduced placental weight only in the

UNDERFED group although a compensatory placental efficiency was observed (measured as

fetus-to-placenta weight-ratio; Table 1). Decidua and labyrinth sizes were reduced in this

group except for the decidua breadth, which did not show significant differences among

groups. In the EARLY-UNDERFED group, labyrinth thickness showed intermediate values

between the CONTROL and UNDERFED groups. No other differences were observed

between groups within the remaining macroscopic parameters measured.

Significant histological changes are summarized in Fig 3. The most notable changes in the

placenta occurred in the UNDERFED group, which showed the lowest decidual width value

(2.04 ± 0.32 mm) compared to the CONTROL (3.19 ± 0.32 mm) and the EARLY-UNDERFED

groups (3.08 ± 0.29 mm) (P<0.05). Thus, the decidua of the UNDERFED group had fewer ves-

sels, most of which contained hyalinized and sclerotic walls and lesser supporting stroma than

the other groups (Fig 3). The labyrinth stroma in both restricted groups was significantly

reduced in width compared to the CONTROL group (2.46 ± 0.14, 2.04 ± 0.19 and 3.03 ± 0.20

mm, for EARLY-UNDERFED, UNDERFED and CONTROL groups, respectively; P<0.05).

The reduced width corresponded with the stromal collapse of the labyrinth which contained
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lesser cellularity (vascular endothelium and trophoblasts) than the CONTROL group. Thus

the UNDERFED group showed moderate to severe signs of collapse followed by the slightly

less severe EARLY-UNDERFED group (Fig 3). Necrosis was observed in all experimental

groups without significant differences (Fig 3). Mild mineralization was associated with the

necrosis and was likewise insignificant between groups (Fig 3). The width of the junctional

zone was similar between groups (CONTROL: 0.42 ± 0.08 mm; EARLY-UNDERFED:

0.35 ± 0.07 mm and UNDERFED: 0.30 ± 0.09 mm; P>0.05). Mild heterophilic inflammation

was observed in the three layers of all the experimental groups and was within normal limits

for this organ (Fig 3).

Concerning placental apoptotic rate, higher rates determined by TUNEL assay were found

in both undernourished groups at the decidua and labyrinth zones (Fig 4a). At the junctional

zone, only the UNDERFED group evidenced a significant higher rate when compared to the

EARLY-UNDERFED and CONTROL groups (Fig 4a). Results from the assessment of cas-

pase-3 levels (Fig 4b) were similar to those found in TUNEL assay in decidua and junctional

Table 1. Effects of MFR on conceptus development from CONTROL, EARLY-UNDERFED or UNDERFED groups. Data obtained from 9 to 12 dams;

Number of fetuses per group: CONTROL n = 105, EARLY-UNDERFED n = 126, UNDERFED n = 117. Data presented as mean±SEM. Different superscripts

indicate significant differences between groups (P<0.01). NS non-significant differences.

CONTROL EARLY-UNDERFED UNDERFED P

Litter size

Gravid uterus (g) 762.96±52.82a 757.65±47.78a 572.19±45.74b <0.001

Total number of fetuses (n) 12.11±1.20 11.90±1.09 10.33±1.04 NS

Viable fetuses (n) 11.66±1.16 11.18±1.08 9.75±1.00 NS

Mummified fetuses (n) 0.22±0.19 0.36±0.17 0.16±0.16 NS

Resorptions (n) 0.22±0.20 0.36±0.18 0.41±0.17 NS

Implantation rate (%) 88.69±9.06 92.27±8.01 93.37±7.63 NS

Fetuses

Crown-Rump length (cm) 9.90±0.09a 9.45±0.08b 9.13±0.08c <0.001

Fetal weight (g) 42.10±0.67a 41.10±0.60a 35.67±0.63b <0.001

Head weight (g) 10.08±0.12a 9.78±0.10a 8.87±0.11b <0.001

Trunk weight (g) 31.48±0.54a 30.89±0.48a 26.25±0.51b <0.001

Brain weight (g) 1.03±0.01a 1.06±0.01a 0.96±0.01b <0.001

Brain ratio (%) 2.49±0.04a 2.63±0.04b 2.77±0.04c <0.001

Liver weight (g) 3.59±0.09a 3.21±0.08b 2.68±0.09c <0.001

Liver ratio (%) 8.42±0.15a 7.60±0.14b 7.41±0.14b <0.001

Brain:Liver ratio 0.31±0.01a 0.37±0.01b 0.39±0.01b <0.001

Placenta

Placenta Efficiency 7.0±0.12a 6.76±0.11a 7.51±0.12b <0.001

Total placenta weight (g) 5.99±0.15a 5.91±0.14a 4.67±0.15b <0.001

Decidua

Weight (g) 1.56±0.05a 1.52±0.04a 1.22±0.04b <0.001

Length (cm) 3.55±0.07a 3.72±0.07a 3.24±0.07b <0.001

Breadth (cm) 1.43±0.04 1.38±0.03 1.37±0.04 NS

Thickness (cm) 0.40±0.02a 0.37±0.01a 0.31±0.01b <0.001

Labyrinth zone

Weight (g) 4.12±0.12a 3.88±0.11a 3.13±0.12b <0.001

Length (cm) 3.66±0.05a 3.57±0.05a 3.28±0.05b <0.001

Breadth (cm) 2.68±0.06a 2.60±0.06a 2.35±0.06b <0.001

Thickness (cm) 0.52±0.02a 0.49±0.02ab 0.46±0.02b <0.01

doi:10.1371/journal.pone.0169194.t001
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Fig 3. Histological findings of the rabbit placenta at D28 of pregnancy in CONTROL,

EARLY-UNDERFED and UNDERFED groups. Figures A to C: Labyrinth (Lz) and junctional (Jz) zones of

the rabbit placenta in the three experimental groups. (D & E) CONTROL AND EARLY-UNDERFED groups.

Densely cellular labyrinth with endothelium lined vascular channels and trophoblasts. (F) Labyrinth of the

UNDERFED group with variably spaced endothelium lined vascular channels separated by collagen fibers

(stromal collapse) and trophoblasts. Figures G to I: Junctional zone in the three experimental groups. (G)

CONTROL group. Dense connective tissue matrix supporting stromal cells, trophoblasts and blood capillaries

that extend into the labyrinth. (H) EARLY-UNDERFED group. Dense connective tissue containing stromal

cells and trophoblasts. (I) UNDERFED group. Dense connective tissue slightly thinner and supporting fewer

stromal cells and trophoblasts than the two other experimental groups. The overlaying labyrinth contains

moderately spaced vascular channels with decreased cellularity. Figures J to L: Decidua (D) in the three

experimental groups. (J) CONTROL GROUP. Normal decidua with large vascular sinuses, stroma, fibrin and

necrosis. (K) EARLY-UNDERFED group. Large vessel within the decidua surrounded by abundant

edematous stroma. (L) UNDERFED group. Markedly thinned decidua layer with spaced vessels containing

hyalinised walls, a thrombus, and surrounded by dense stromal collagen. Number of placentas per group:

CONTROL = 8, EARLY-UNDERFED = 11, UNDERFED = 12; Statistical analyses were performed by Chi

square test. In the charts and table different superscripts indicate significant differences between groups

(P<0.0001), NS non-significant differences.

doi:10.1371/journal.pone.0169194.g003
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zone. In contrast, the labyrinth showed higher rates of immunostaining in the UNDERFED

group followed by the EARLY-UNDERFED group and compared to the CONTROL group.

Discussion

The current study shows that MFR applied to pregnant rabbits, despite the absence of signifi-

cant changes in maternal bodyweight, plasma leptin concentration or glucidic metabolites,

affects maternal lipid concentrations during early to mid-gestation but not during late gesta-

tion, when fetal growth is exponential. MFR applied only during the preimplantational period

Fig 4. Apoptosis assessments of the rabbit placenta at D28 of pregnancy. (a) Apoptosis quantified by

TUNEL (positive staining) in decidua, junctional zone and labyrinth. (b) Localization and percentage

of Caspase-3 (positive immunostaining) in decidua, junctional zone and labyrinth. Number of

placentas per group: CONTROL = 8, EARLY-UNDERFED = 11, UNDERFED = 12; Statistical analyses were

performed by ANOVA. Data presented as mean±SEM. Different superscripts in the charts indicate significant

differences between groups (P<0.05).

doi:10.1371/journal.pone.0169194.g004
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did not result in low fetal weight, but was enough to disrupt crown-rump length and impair

organogenesis. Consistent with these findings, severe alterations on placental and fetal devel-

opment can be observed when MFR is maintained throughout gestation (Fig 5).

The lack of effects of MFR on maternal bodyweight found in the current study supports

previous studies in rabbits [30, 38, 41] and differs from other animal species in which the

application of MFR resulted in maternal bodyweight loss, like rodents [50–53], sheep [54, 55]

and primates [56, 57]. These differences between species and experimental studies may be

related to feeding management (ad libitum feeding vs maintenance requirements), fat stores

prior to the experimental phase, or may be as well associated to reproductive strategies adopted

by the mothers [58]. In this sense, undernourished dams had similar implantation rates and

litter sizes compared to the CONTROL group. These results may suggest that undernourished

mothers do not invest more than indispensable in their offspring growth, as a preventive strat-

egy for future gestations and for their own energetic balance [58]. Despite the fact that off-

spring growth was affected, undernourished females could have accumulated resources to deal

with the lactation, to guarantee a better offspring feeding, postnatal survival and growth and

therefore ensure the transmission of maternal genes to future generations [58].

Concomitantly, plasma leptin concentrations did not decline in any of the groups in our

study, opposite to previous works in rabbit [37], mouse [51, 59] and sheep [55]. We hypothe-

size that the absence of differences in our study may be explained by different facts. At first

glance, the most obvious reason could be related to the number of animals sampled. However,

sample size was calculated according to the study of Menchetti et al. [37], which found varia-

tions in leptin profile using a similar number of pregnant rabbits. Other explanations may

involve an increased production of leptin either by maternal, placental or fetal tissues [52, 60].

This hypothesis may reinforce the idea that despite the restriction, food amount could be

enough to satisfy maternal and fetal requirements. Expression of leptin-RNA in maternal adi-

pose and fetoplacental tissues should corroborate this idea. Lastly, leptin concentrations could

be influenced by hormonal milieu, specially insulin and/or glucose [61], estrogens [62] or glu-

cocorticoids, which have been shown to induce leptin expression [63].

In contrast, maternal plasma lipids changed but only in early to mid-gestation. Such period

of pregnancy can be considered as an anabolic state, due to the low requirements of the devel-

oping offspring [64, 65]. In contrast, we did not observe any variations in lipid profile during

the last third of gestation, a period of accelerated breakdown of fat depots to satisfy fetal

demands [66, 67]. In this regard, plasma cholesterol and LDL-c concentrations increased in

Fig 5. Summary illustration showing the effects of MFR in the EARLY-UNDERFED and UNDERFED

groups on placental and fetal outcome.

doi:10.1371/journal.pone.0169194.g005

Food Restriction during Rabbit Pregnancy

PLOS ONE | DOI:10.1371/journal.pone.0169194 January 3, 2017 11 / 18



the undernourished groups during the period comprising D7 to D14 of pregnancy, suggesting

a certain level of fat mobilization may be needed to deal with the implantation process [68],

yolk sac formation and the establishment of the chorio-allantoic placental circulation [69]. In

contrast, HDL-c concentrations raised in the CONTROL group to return excess of cholesterol

from peripheral tissues back to the liver in response to an adequate level of resources [70]. Fur-

thermore, maternal triglycerides concentrations were lower in both undernourished groups

which may be a mechanism to increase deposition of fat in maternal adipose tissue for lacta-

tion [71]. Overall, these findings may reinforce, once more, the aforementioned strategies

adopted by the mothers to constrain allocation of resources during late gestation on behalf of

themselves and future lactation.

Following this argument, the placenta is central to this “tug of war” over nutrient allocation

as it is the surface area for exchange between mother and fetus [58; 72]. Experiments based on

genetic and dietary manipulations have demonstrated that the placenta interprets fetal and

maternal interests, adapting its phenotype and function according to resource availability [72–

74]. An example of these fascinating adaptations is that undernourished placentas can over-

come MFR and maintain or even increase their nutrient transfer capacity to help maintain

fetal growth [50]. In our study, placental weight was reduced in the UNDERFED group. Such

finding supports the hypothesis that the preimplantational period may be a critical timing for

placental establishment, since the same level of MFR applied after implantation (D9 of gesta-

tion in rabbits) did not reduce placental weight [31].

Conversely, no gross macroscopic differences were found in the EARLY-UNDERFED,

reinforcing previous findings in sheep that were only restricted during early-mid gestation,

and then returned to normal feeding [75]. Interestingly, the microscopic assessment of placen-

tal thickness showed a significant reduction in labyrinth expansion in both undernourished

groups, which supports previous work [35]. The progressive reduction in the surface area of

the labyrinth may affect placental nutrient transporters and contribute to the poor fetal out-

come. In rats, MFR by 50% downregulated GLUT3 transporter expression, resulting in off-

spring with IUGR [76]. Furthermore, in a primate model of MFR [77], expression of glucose

and amino acid transporters (GLUT1, TAUT, SNAT2, LAT1, and LAT2) were reduced as well

as placental and fetal weights. Future work should evaluate such findings in our rabbit model

of MFR and its connection with IUGR.

The reduction in the size of the decidua only observed in the UNDERFED group could be

associated to two different processes. Firstly, a reduced trophoblast invasion could have

impaired the correct remodeling process of the spiral arteries. Thus, the high incidence of scle-

rotic processes in the decidual vascular bed only observed in the UNDERFED group could be

linked to the high circulating levels of cholesterol observed in this group on D14. In this sense,

lipid peroxides and oxygen radicals can alter endothelial cells, resulting in fibrin deposition in

the vessel walls [67]. Consequently, the arterial sinuses system in the rabbit, which can be iden-

tified within this period of gestation [78] and is responsible to retain maternal blood flow and

then supply it to fetal area could be altered, resulting in IUGR. On the other hand, the reduc-

tion in decidua size could be a mechanism of these placentas to support fetal demands for

growth by depletion of their glycogen reserves allocated in the small uninucleated cells of this

placental section [79], and therefore may explain the increase in placental efficiency and the

reduction in weight. However, this last effect remains speculative in this study; further investi-

gations should corroborate this hypothesis and determine placental glycogen storage in

restricted placentas of rabbit dams, as glycogen reserves in the murine placenta are an impor-

tant source of glucose in the final stages of gestation [80]. However, what we have demon-

strated is that imbalanced diets during pregnancy generate higher rates of apoptosis that could

have affected placental development and function. Our study sets the bases on placental
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apoptosis in rabbit placenta at term and is in line with the range of degree of apoptosis

reported in previous studies of MFR [49] and placental localization in mouse [81], showing

higher rates of apoptosis in the decidua with respect to the other zones. Thus, this study has

corroborated that apoptosis in placenta tissue is a biological phenomenon and could be a

mechanism of placental remodeling [82], that may be associated to physiological degenerative

mechanisms of the rabbit placenta near term [79, 83]. However, MFR significantly increases

their rates, which may have resulted in placental insufficiency and therefore in IUGR.

As expected, UNDERFED fetuses evidenced the clearest signs of IUGR, with reductions in

fetal size (weight and length) and organs (brain and liver). This reduction in fetal weight

induced by MFR has been previously demonstrated in other animals such as rodents [53, 84]

and sheep [85]. Our data have revealed that MFR applied only during the preimplantational

period did not reduce fetal weight despite that both fetal size and organogenesis were affected.

The results obtained by the ratios assessments, suggest certain level of asymmetric IUGR in

both MFR groups; reinforcing the innate mechanisms of vasodilation and blood shunting of

the fetus to safeguard the growth of key organs like the brain (process known as “brain-sparing

effect”), even at the expense of the growth of other tissues (e.g. the liver, thymus or skeletal

muscle) [31, 86, 87]. The possible postnatal consequences of these prenatal adaptations

induced by MFR remain unclear in our model. In previous work, rabbit offspring developed

in a MFR environment evidenced altered eating, drinking and locomotor behaviors [88],

which may suggest changes in brain network organization. In humans, IUGR infants with

brain sparing, showed worse neurodevelopmental and behavioural outcomes than those with-

out signs of such mechanism [87]. In rodents, as recently reviewed by Sferruzzi-Perri and

Camm [12], MFR can induce early modifications in cerebral structure, contributing to late-

onset diseases in the offspring. Moreover, the cost of sparing the brain reduced liver mass in

both undernourished groups, which is highly important for neonatal life, as it enables fat depo-

sition and acts as a source of growth factors and glycogen. In addition, this prenatal reduction

of liver mass along with the possible hepatic gene dysregulation already reported in IUGR rats

[89] could predispose the offspring to suffering from metabolic diseases in adulthood, such as

obesity, insulin resistance and type-2 diabetes [90–92]. These adaptations are likely to have

implications for subsequent postnatal growth and the quality of the meat as recently reviewed

by Chavatte-Palmer [2, 8]. In sheep, 50% MFR resulted in offspring with increased fat deposi-

tion and altered glucose metabolism [93]. However, the most recent studies performed in rab-

bits, have not found differences in meat quality parameters restricting dams by 50% [94] or

75% [95].

In conclusion, the present study has helped increase awareness of the effects of MFR in ges-

tation. The results of the present study suggest that MFR may induce strategic decisions in the

mothers to safeguard their bodyweight and metabolic status at the expense of reductions in the

growth of their litters. These maternal decisions are associated with moderate changes in lipid

metabolism in circumscribed periods of the pregnancy (mainly during embryo development

and early placental formation), but not in leptin secretion or glucidic metabolites. Thus, MFR

impairs placenta development and enhances apoptotic processes, which ultimately could

reduce its functionality and lastly induce IUGR. Fetuses will be reduced in size, and organo-

genesis can be impaired, even if the exposure only occurs during the preimplantation period.

Therefore, these results should be taken into consideration when these kind of nutritional

strategies were applied in livestock animals, as no clear evidence are found in the mothers, but

the progeny can be affected. Furthermore, this study reinforces the use of rabbits as valid bio-

medical models in the perinatal field. Additional studies are needed to determine the possible

consequences induced by the MFR in the offspring fitness.
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