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Abstract

The unfolded protein response (UPR) regulates cell fate following exposure of cells to

endoplasmic reticulum stresses. PERK, a UPR protein kinase, regulates protein synthesis

and while linked with cell survival, exhibits activities associated with both tumor progres-

sion and tumor suppression. For example, while cells lacking PERK are sensitive to UPR-

dependent cell death, acute activation of PERK triggers both apoptosis and cell cycle

arrest, which would be expected to contribute tumor suppressive activity. We have evalu-

ated these activities in the BRAF-dependent melanoma and provide evidence revealing a

complex role for PERK in melanoma where a 50% reduction is permissive for BrafV600E-

dependent transformation, while complete inhibition is tumor suppressive. Consistently,

PERK mutants identified in human melanoma are hypomorphic with dominant inhibitory

function. Strikingly, we demonstrate that small molecule PERK inhibitors exhibit single

agent efficacy against BrafV600E-dependent tumors highlighting the clinical value of target-

ing PERK.

Author Summary

PERK is critical for progression of specific cancers and has provided stimulus for the gen-

eration of small molecule PERK inhibitors. Paradoxically, the anti-proliferative and pro-

death functions of PERK have potential tumor suppressive qualities. We demonstrate that
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PERK can function as either a tumor suppressor or a pro-adaptive tumor promoter and

the nature of its function is determined by gene dose. Preclinical studies suggest a thera-

peutic threshold exists for PERK inhibitors.

Introduction

Folding and maturation of secreted proteins occurs in the endoplasmic reticulum (ER). Cellu-

lar stresses that generate mis-folded proteins trigger a stress response termed the unfolded pro-

tein response pathway (UPR) [1–5]. Activation of the UPR is characterized by increased

transcription of genes encoding ER molecular chaperones such as BiP/GRP78 and GRP94,

protein disulfide isomerase, and CHOP (C/EBP homologous protein) [6–10]. Mammalian

cells contain three ER transmembrane effectors of the UPR. Ire1 is composed of a luminal

domain that senses stress, a single transmembrane domain, and a cytosolic tail that contains

both a protein kinase domain and an Rnase domain [11, 12]. Ire1 regulates expression of

numerous ER chaperones through activation of the X-box binding protein 1 (Xbp1) transcrip-

tion factor [13]. Accumulation of Xbp1 is mediated by Ire1-dependent splicing that generates

a shorter Xbp1 mRNA that is more efficiently translated [14, 15]. PERK, also an ER transmem-

brane protein kinase, is activated in a manner analogous to the Ire1 [16] and catalyzes serine

51 phosphorylation of eIF2α resulting in reduced protein synthesis [17–19]. The third signal-

ing components are the transmembrane transcription factors ATF6α/β. While normally teth-

ered to the ER, upon stress, ATF6 migrates to the trans-Golgi, where it is processed by S1P and

S2P proteases to release the N-terminal DNA-binding transcription factor domain [20–22].

Physiologically, the UPR is an adaptive pathway. Through increased synthesis of chaper-

ones, reduced protein synthesis and cell cycle arrest, cells have a window of opportunity to

restore ER homeostasis prior to committing to apoptosis. Consistently, knockout of individual

UPR signaling molecules, such as PERK or Ire1, severely compromises cell survival following

stress [23–26]. When a cell is unable to alleviate the burden of mis-folded proteins, such as

under conditions of chronic stress, the UPR triggers apoptosis [27–31]. Among the various

pathways engaged, Perk-dependent activation of the pro-apoptotic CHOP transcription factor

is the most heavily investigated [28–34]. The balance of pro-survival and pro-apoptotic signals

following stress ultimately determines cell fate.

Although perturbations in protein folding in the ER can be achieved through the use of

pharmacological agents that disrupt protein glycosylation (tunicamycin) or perturb calcium

homeostasis (thapsigargin) [35–38], the rapid expansion of tumor cells results in a microenvi-

ronment wherein critical metabolic nutrients such as glucose, oxygen and growth factors

become limiting resulting in UPR activation. Acute expression of oncogenes is also associated

with UPR engagement [39–42]. Normal cells respond to chronic UPR activation via growth

arrest and/or apoptosis thereby preventing cell expansion, while tumor cells typically bypass

the anti-proliferative impact of UPR activation and instead depend upon the pro-adaptive sig-

naling suggesting a potential point of therapeutic intervention. Indeed deletion of PERK can

reduce tumor progression [42, 43]. Likewise, deletion of Xbp1, a transcription factor whose

accumulation is dependent upon Ire1 activity, also reduces tumorigenesis [44]. Such results

have stimulated attempts to generate small molecules that inhibit PERK or Ire1. Consequently,

highly specific and potent inhibitors of the PERK enzyme have been developed [45–48].

While the UPR is considered important for tumor progression, there is potential for

tumor suppressive activity given it antagonizes cyclin D1. With the advent of PERK specific

inhibitors and an eye towards therapeutic utility, we have addressed the role of PERK in
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BrafV600E driven melanoma and provide evidence for a dose-dependent function of PERK in

melanoma genesis.

Results

BrafV600E/+; Perk+/-deficient mice develop melanoma

Perk harbors anti-proliferative activity [49] in addition to cell survival activities, suggesting a

potential for tumor suppressive properties. We ascertained the impact of deletion of one versus

two alleles of Perk in melanocytes harboring activated BrafV600E. We utilized a conditional

allele of Perk to circumvent issues of pancreatic atrophy that occurs in a global Perk knockout

[50–52]. Previous work with the mice wherein BrafV600E expression alone is induced in mela-

nocytes revealed induction of cellular senescence rather than tumor development [53]. Bypass

of BrafV600E-dependent senescence has only been observed in mice wherein a second tumor

suppressor such as p16Ink4A [54–57], PTEN [53], or Fbxo4 has been deleted [58]. Remarkably,

BrafV600ECA/+;Perk+/- mice developed melanoma with high penetrance within 4–6 weeks

which rapidly disseminated to peripheral tissue (Fig 1A–1C). Immunohistochemistry (IHC)

for S100 confirmed melanocytic origin melanocytes (Fig 2).

To address underlying mechanisms, we analyzed “pre-malignant skin” from TyrCre;

BrafCA/+;Perk +/+ or Perk+/- or Perk -/- mice. IHC revealed reduced accumulation of, p-Akt

and pS6 in Perk+/- skin relative to wt, but higher than Perk-/- consistent with dosage depen-

dence (Fig 2). Likewise, consistent with the presence of one wild type Perk allele, modestly ele-

vated p-eIF2α and CHOP was observed relative to Perk-/- tissue. BrafV600ECA/+;Perk+/- tissue

exhibited the highest level of staining CD31 staining, with BrafV600ECA/+;Perk+/+ having inter-

mediate levels and BrafV600ECA/+;Perk-/- exhibiting the lowest level consistent with previous

work [10, 59]. These results demonstrate that deletion of one allele of Perk reduces p-eIF2α,

pro-apoptotic CHOP yet maintains or even increases vascularity, as determined by CD31

staining.

Deletion of one PERK allele reduces BrafV600E-induced senescence and

drives cyclin D1-dependent melanoma

The observation that PERK+/- melanocytes are permissive for BrafV600E-dependent transfor-

mation implies that acute activation of BrafV600E triggers PERK activity and PERK tumor sup-

pression. To assess this hypothesis, primary human melanocytes were infected with retrovirus

encoding BrafV600E. Expression of mutant Braf triggered increased p-eIF2α and elevated

CHOP (Fig 3A and 3B). Conversely chaperone expression was not increased suggesting the

absence or weak activation of ATF6 (Fig 3A). BrafV600E expression was associated with

increased SAβ-galactosidase consistent oncogene induced senescence (Fig 3B). Armed with

evidence for BrafV600E-dependent activation of Perk in vitro, we assessed BrafV600E-dependent

activation of Perk in vivo. Following activation of BrafV600E expression specifically in melano-

cytes with topical application of 4-OHT, we noted increased expression of Chop; however, no

increase in chaperone expression was observed and Xbp1 splicing was reduced suggesting that

BrafV600E selectively induces Perk in vivo (Fig 3C). To assess oncogene induced senescence, we

measure SA-βGal in the skin of mice harboring BrafV600E in Perk+/+, +/- and -/- backgrounds.

Here we noted reduced SA-βGal staining specifically in Perk+/- relative to +/+ tissue demon-

strating that deletion of one Perk allele permitted bypass of BrafV600E-induced senescence (Fig

3D; quantification, S1 Fig). We also noted significant overexpression of cyclin D1 in Braf-
V600ECA/+/Perk+/- relative to BrafV600ECA/+/Perk+/+ (Fig 3E and 3F). Consistent with Perk

functioning as an antagonist of cyclin D1 protein synthesis [60].
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The susceptibility of Perk+/- but not Perk-/- mice to BrafV600E-dependent melanoma gene-

sis, along with the retention of 50% Perk protein expression in all tumors examined (Fig 1)

suggested the intriguing possibility that the remaining Perk allele was necessary for malignant

progression. We addressed whether the remaining Perk allele was necessary for tumor pro-

gression by treating tumor-bearing mice with LY-4. LY-4 is a PERK specific inhibitor with a

2nM IC50 and little activity towards other eIF2α kinases (S1 Table). Kinome and Treespot

analysis demonstrates the selectivity of LY-4 for PERK relative to> 400 additional kinases

(S2A and S2B Fig; S2 Table). After confirming that LY-4 inhibits PERK activity in cultured

melanoma cells (Fig 4A), mice were exposed to tamoxifen to induce BRAFV600E and delete a

single Perk allele; LY-4 treatment was initiated when tumors were 2-3mm3. LY-4 treatment

reduced tumor growth by nearly 90% (Fig 4B and 4C). Treatment reduced p-eIF2α (Fig 4D),

p-Akt, [61]; LY-4 treatment also elevated p62 and reduced LC3BII (Fig 4D–4F) consistent

with reduced autophagy. LY-4 also reduced phospho-H3, Ki67 and CD31, while increasing

TUNEL positivity demonstrating reduced proliferation and increased apoptosis (S3A Fig) as

mechanisms contributing to LY-4-dependent tumor inhibition. No pancreatic toxicity was

noted in LY-4 treated animals (S3B and S3D Fig). Finally, LY-4 did not inhibit MAPK activa-

tion (Fig 5F; S3C Fig) demonstrating its impact on tumor growth does not reflect inhibition of

downstream BrafV600E targets.

The observation that Perk+/- was permissive while Perk-/- was resistant to BrafV600E mela-

noma, suggested a model where tumors remained dependent upon Perk for its pro-survival

activity, but that reduced Perk dosage permitted senescence bypass, through either lack of apo-

ptosis (e.g. reduced CHOP induction) or cyclin D1 induction reflecting reduced inhibition of

Fig 1. Deletion of one Perk allele cooperates with BrafV600E to drive metastatic melanoma. A) Kaplan-Mayer survival curve of TyrCre

+/-;BrafV600ECA/+;Perk+/- mice treated with 4-HT. B) Western blot of melanoma skin lysates from TyrCre+/-;BrafV600ECA/+;Fbxo4;Perk +/+ or

TyrCre+/-;BrafV600ECA/+;Perk+/- or Perk-/- mice (blot anti-Perk, p-eIF2α, eIF2α). C) Melanoma from TyrCre+/-;BrafV600ECA/+;Perk+/- mice

analyzed by H&E. Scale bars = 50μm.

doi:10.1371/journal.pgen.1006518.g001
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Fig 2. Mono-allelic Perk deletion reduces pro-apoptotic signals and maintains pro-survival signaling.

H&E and IHC of premalignant skin from TyrCreCA/+;BrafV600ECA/+, Perk +/+ or Perk+/- and Perk-/- mice for

the indicated targets and quantification of staining/staining index (SI) of IHC; scale bars = 50μm.

doi:10.1371/journal.pgen.1006518.g002
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Fig 3. BrafV600E induces ER stress and reduced PERK gene dosage attenuates BrafV600E-dependent

senescence in premalignant skin. A) BrafV600E-dependent regulation of ER stress genes (CHOP, Grp78,

Grp94, ATF4, GADD34, ERDJ4, XBP1) in primary melanocytes (QPCR; *p<0.05; p-values analyzed by two-

tailed Student t test) B) β-galactosidase staining of primary BrafWT vs BrafV600E melanocytes. (Scale bars

50μm; *p<0.05; p-values analyzed by two-tailed Student t test); western analysis of cell lysates using

indicated antibodies. C) UPR gene expression assay (QPCR) for Chop, Xbp1, Bip in premalignant skin from

BrafWT or BrafV600E mice. D) β-galactosidase assay in premalignant skin isolated from TyrCreCA/+;

PERK Regulates BrafV600E-Dependent Melanomagenesis
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BrafV600ECA/+; Perk+/+ or Perk+/- or Perk-/- mice. Arrowheads indicate positive staining. Scale bars = 50μm.

E) Detection of cyclin D1 in the tissues indicated by immunoblot. Total Erk1/2 is provided as a loading control.

The line denotes excision of irrelevant lanes. F) Quantification of E. Cyclin D1 protein levels expressed as a

ratio relative with total ERK.

doi:10.1371/journal.pgen.1006518.g003

Fig 4. BrafV600ECA/+;Perk+/- tumors are dependent upon the remaining Perk allele. A) LY4 PERK inhibitor inhibits stress-

dependent PERK signaling in cultured melanoma cells. B-C) Measurement of melanoma tumor volume B) and tumor weight C) in

TyrCre+/-;BrafV600ECA/+;Perk +/- mice treated with LY-4; p-values analyzed by two-tailed Student t test. D-F) Western blot of

melanoma skin lysates obtained from TyrCre+/-;BrafV600ECA/+;Perk +/- mice treated with PERK inhibitor LY-4. G) Kaplan-Mayer

survival curve of TyrCre+/-;BrafV600ECA/+;Chop+/- or TyrCre+/-;BrafV600ECA/+;Chop-/- mice expressed relative to control

genotypes. H) Kaplan-Mayer survival curve for BrafV600ECA/+;D1+/-;Perk+/- expressed relative to control genotypes.

doi:10.1371/journal.pgen.1006518.g004
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Fig 5. Bi-allelic Perk deletion abolishes BrafV600ECA/+;Fbxo4+/- melanoma initiation, but Perk

inhibition cannot recede tumor progression. A) Kaplan-Mayer survival curve of BrafV600ECA/+, Fbxo4 +/-

and Perk +/+, +/- or -/- mice treated with 4-Hydroxytamoxifen (4-HT). B) Western blot of melanoma lysates

from TyrCreCA/+; BrafV600ECA/+; Fbxo4 +/-; Perk +/+, Perk+/- or Perk-/- mice C) IHC analysis of skin from

TyrCre+/-;BrafV600ECA/+;Fbxo4 +/-; Perk+/+ or Perk -/- mice; H&E or IHC with antibodies for S100, p-eIF2α,

Chop, cyclin D1, p-Akt, CD31 and quantification of staining/staining index (SI) of IHC. Scale bars = 50μm. D)

Tumor volume in TyrCre+/-;BrafV600ECA/+;Pten-/- mice treated with LY-4; p-values analyzed by two-tailed

Student t test. E-F) Western blot of melanoma skin lysates from TyrCre+/-; BrafV600ECA/+;Pten-/- mice treated

with LY-4.

doi:10.1371/journal.pgen.1006518.g005
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translation under Perk deficiency. To test this, we 1) reduced expression of pro-apoptotic

Chop or 2) reduced cyclin D1 levels. If reduced Chop was a key progression, Chop+/- or -/-

mice should be susceptible to BrafV600E-melanoma. However, deletion of Chop in

BrafV600ECA/+ mice did not permit melanoma development (Fig 4G). To evaluate the role of

cyclin D1 overexpression, in BrafV600E/Perk+/- tissue, we deleted one allele of CCND1 and

deletion completely abrogated melanoma genesis (Fig 4H). Overexpression of cyclin D1 drives

development of lymphomas by triggering DNA damage, which in turn activates p53 [62, 63];

as such, tumor progression selects either apoptosis or p53 loss [62, 64–66]. Consistent with

cyclin D1 overexpression contributing to melanoma in the Perk+/- background, p53 was over-

expressed suggesting stabilizing mutations (Fig 4F). DNA sequencing revealed p53 mutations

in 7 of 7 tumors with mutations apparent throughout the DNA-binding domain (S3 Table).

Melanoma genesis in BrafV600E;Fbxo4 mutant mice are dependent upon

one functional Perk allele

The results presented above reveal that Perk+/- melanocytes are permissive for BrafV600E-mel-

anomagenesis while, Perk-/- are not. The capacity of LY-4 to inhibit progression of BrafV600E;

Perk+/- melanomas, implies an “addiction” to the remaining Perk allele suggesting a potential

therapeutic threshold for Perk inhibition. To address Perk function in a mouse model of meta-

static melanoma [58], we generated Tyr-Cre/BrafV600ECA/+/Fbxo4mt/Perkf/f or Tyr-Cre/Braf-
V600ECA/+/Fbxo4mt/Perkf/+ permitting inducible activation of BrafV600E and deletion of one or

two alleles of Perk in melanocytes upon application of 4-OHT. We have previously demon-

strated that inactivation of Fbxo4 in the BrafV600ECA/+ background triggers cyclin D1-depen-

dent, metastatic melanoma [58]. Deletion of both Perk alleles effectively inhibited BrafV600E-

dependent melanoma in the setting of Fbxo4-deficiency, while deletion of one allele of Perk
(Perk+/-) was not sufficient to either inhibit or accelerate melanoma genesis (Fig 5A; S4A Fig).

The absence of tumor inhibition is consistent with data in Fig 1 demonstrating the permissive-

ness of Perk+/- melanocytes to BrafV600E. The fact that we do not observe decreased latency in

the Fbxo4mt/Perk+/- background is consistent with both Fbxo4 and Perk signaling converg-

ing on the inhibition of cyclin D1.

To address mechanism, we assessed Perk activity and downstream readouts in premalig-

nant skin. Perk deletion reduced eIF2α phosphorylation and Chop expression in premalignant

skin as detected by western analysis (Fig 5B). The variability in signal likely reflects the fact

that Perk is only deleted in melanocytes and we are analyzing whole skin. We next assessed

various markers by IHC. We first stained sections with S100 to identify melanocytes and sub-

sequent sections with the antibodies indicated. Deletion of Perk was associated with increased

cyclin D1 specifically in pre-malignant melanocytes (Fig 5C) consistent with Perk-antagoniz-

ing cyclin D1 translation [49, 67, 68]. IHC also revealed decreased p-Akt and CD31 consistent

with Perk-dependent regulation of both Akt signaling [61, 69–71] and angiogenesis [72–74]

(Fig 5C).

We next utilized BrafV600E;Pten-/- mice, an independent melanoma model, to determine

whether Perk was required for tumor progression [75, 76]. Mice were exposed to 4-OHT to

induce BRAFV600E and delete Pten; LY-4 treatment was initiated when tumors were 2-3mm3.

LY-4 inhibited melanoma progression (Fig 5D, S4E Fig) and this outcome was accompanied

by reduced eIF2α phosphorylation and CHOP accumulation suggesting on-target effects of

this drug (Fig 5E). LY-4 treatment also led to accumulation of p62 suggesting reduced autop-

hagy, and elevated cleaved caspase 3 indicative of increased rate of apoptosis (Fig 5E). IHC

confirmed that LY-4 treatment resulted in decreased p-eIF2α, Chop, and p-H3 (S4B Fig).

Reduced CD31 staining was also noted (S4B Fig), consistent with previous work linking Perk
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signaling with tumor angiogenesis [72–74]. IHC also revealed increased TUNEL positive

tumor cells (S4B Fig). We also monitored blood glucose levels in LY-4 treated mice, given pre-

vious evidence that Perk inhibition caused pancreatic toxicity (45). Importantly, blood glucose

levels remained stable (blood glucose level was lower than 200 mg/dL), with no evidence of

pancreatic damage during the course of treatment (S4C and S4D Fig).

Human melanoma-derived cells are dependent on functional PERK

If melanoma progression-depends upon the retention of functional PERK, it stands to reason

that human melanoma-derived cell lines will maintain and depend upon PERK activity. To

address the contribution of PERK to melanoma, we determined whether PERK was functional

in melanoma cell lines. We utilized melanoma cells lines lacking detectable mutations in

PERK, but expressing the following Braf alleles: BrafWT or BrafV600E/D (1205 Lu, 451LU,

WM983B, WM35, WM3918, WM239A, WM3211, WM1791C, C8161 (http://www.wistar.org/

lab/meenhard-herlyn-dvm-dsc/page/melanoma-cell-lines-0). PERK expression was detected

and was functional in all cell lines assessed (Fig 6A). To assess PERK contributions to mela-

noma cell survival following ER stress, we established two independent melanoma cell lines

(WM3918, WM239A) expressing a previously validated, tetracycline-inducible shRNA

directed against human PERK [43, 77]. PERK expression was undetectable 3-days post-doxy-

cycline in shRNA-harboring cells (Fig 6B). To assess whether PERK function is important for

melanoma cell growth and survival, we took advantage of previous work revealing a role for

PERK in promoting survival following cell detachment from solid matrix [78, 79]. Consis-

tently, PERK knockdown in either WM3918 or WM239A reduced colony formation in soft

agar (Fig 6C; left graphs). Addition of thapsigargin further reduced anchorage-independent

growth (right graphs). PERK function also increased cell survival in clonogenic survival assays

(Fig 6D). In contrast, PERK knockdown cells grew well on plastic under normal growth condi-

tions (Fig 6D top; Fig 6E). As an independent method for assessing PERK contribution to mel-

anoma cell survival thereby ensuring that the impact of shRNA was PERK-dependent, we

utilized a previously characterized small molecule inhibitor of PERK, GSK2656157 [45–47] or

LY-4. GSK2656157 or LY-4 treatment inhibited PERK activity (as judged by reduced auto-

phosphorylation) and suppressed melanoma cell survival under ER-stress (S5A and S5B Fig).

These data demonstrate that retention of functional PERK is critical for melanoma cell

survival.

PERK mutants found in human melanomas are hypomorphic and

capable of promoting tumorigenic phenotype

The susceptibility of the PERK+/- genotype to melanoma genesis suggests a potential for inac-

tivation of PERK in human melanoma. We searched the human cancer genome atlas and iden-

tified mutations throughout PERK coding exons at a frequency of ~7% (Fig 7A). To assess the

functional consequence of these mutations to PERK function, we generated analogous alleles

in murine Perk (A418V, T424A, H432Y, Y470C, P479Q, P991R, Δ910-analogous to human

911fs which deletes AA910-1116) and reconstituted Perk-/- MEFs by retroviral transduction.

Importantly, all mutants remained localized to ER structures analogous to wild type Perk (S6B

Fig). Nevertheless, all mutants exhibited reduced activities with PerkΔ910 exhibiting the least

activity as determined by p-eIF2α, Chop induction and cyclin D1 repression (Fig 7B and 7D).

Consistent with all mutations compromising Perk function, Perk-/- MEFs reconstituted with

melanoma-derived Perk mutants exhibited increased sensitivity to ER stress as determined by

clonogenic survival assay (Fig 7E). Importantly, co-administration of LY-4 with tunicamycin

further reduced cell survival demonstrating that mutant Perk allele activity still contributed to
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survival following ER stress and that all alleles remained LY-4 sensitive (Fig 7E). Given that

reduced Perk function cooperated with BRAF in vivo, we expected that hypomorphic Perk

might increase spontaneous cell transformation. Consistently, cells expressing mutant Perk

formed foci and grew in soft agar, both surrogates of cell transformation (Fig 7F; S6A Fig).

Finally, because Perk mutations will occur in the context of one wild type Perk allele,

we considered the potential of these tumor-derived Perk mutants to exhibit dominant

negative activity relative to endogenous Perk. To address this, we transduced NIH3T3

cells, which retain wild type Perk, with retrovirus encoding selected mutant Perk alleles

(Fig 7G). Following transduction, cells were exposed to thapsigargin and we subsequently

measured Chop expression as a read out of Perk function. Consistent with dominant

Fig 6. PERK is active in human melanoma cell lines and is required for melanoma genesis. A) PERK is functional

human melanoma cell lines. B) Dox-dependent PERK knockdown in WM3918 cells. C) WM3918 and WM239A growth in

soft agar with or without PERK knockdown, +/- thapsigargin (Tg); V-vector; doxycycline (Dox); shPERK (soft agar); p-

values analyzed by two-tailed Student t test D) Clonogenic survival assay of PERK knockdown WM3918 cells treated with

thapsigargin (Tg); doxycycline. E) Cell cycle profile of PERK knockdown WM3918 cells.

doi:10.1371/journal.pgen.1006518.g006
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negative activity, we noted reduced Chop expression in cells expressing most Perk mutants.

This data reveals that hypomorphic alleles of Perk exhibit dominant inhibitor activity with

respect to endogenous Perk and suggests physiological relevance of Perk mutants, in mela-

noma development.

Fig 7. Characterization of a tumor-derived mutation of the PERK kinase. A) Depection of melanoma-derived

PERK mutations. B-D) Western analysis of MEF lysates expressing murine versions of Perk alleles tested under

ER-stress conditions. E) Clonogenic survival assay of Perk-/- fibroblasts reconstituted with Perk alleles (indicated

on left) and treated with with chemicals indicated at the top. Cells stained with Geimsa after 14 days post-treatmen.

F) Quantification of colonies that formed in soft agar for Perk-/- fibroblasts reconsituted with the indicated Perk

mutants. G) Tumor-derived Perk alleles exhibit dominant negative activity.

doi:10.1371/journal.pgen.1006518.g007
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Discussion

While PERK has pro-survival and thus pro-tumorigenic activities, it also triggers pro-apopto-

tic signals and opposes cell division via inhibition of cyclin D1 translation. This latter PERK

attribute begs the question of whether under certain conditions, or in specific tissues, PERK

might function as a tumor suppressor. Supporting potential tumor suppressive function for

the UPR, HRAS-dependent transformation of primary human melanocytes was potentiated

by genetic inhibition of PERK, Ire1 and ATF4 [40]. To directly assess the contribution of Perk

to melanoma genesis in vivo, Perk was deleted in a mouse melanocytes coordinately with acti-

vation of BrafV600E [58]. Deletion of single Perk allele resulted in melanocytes permissive to

overt transformation through expression of BrafV600E alone. Typically, BrafV600E-dependent

melanoma can be achieved by deletion or inactivation of known tumor suppressors, such as

PTEN [53, 80], p16Ink4A [81–83], Fbxo4 [58]. In the absence of inactivating mutations in one

of these genes, BrafV600E expression is associated with permanent growth arrest or senescence.

Mono-allelic deletion of Perk thus represents a previously unappreciated mechanism for

bypass of BrafV600E-dependent senescence. In addition, it is the only example wherein deletion

of one versus two alleles results in diametrically opposing results with regard to tumor sup-

pression versus tumor progression.

The basis of Perk haploinsufficiency likely reflects dose-dependent signaling duration and/

or intensity. Accordingly, loss of one allele reduces pro-apoptotic signals (CHOP expression

reduced), increases expression of a pro-oncogenic protein (cyclin D1) and maintains sufficient

pro-survival signals through the remaining allele. Additionally, we noted that excision of one

Perk allele suppressed BrafV600E-induced senescence. This likely reflects dysregulation of cyclin

D1, given previous work that associates cyclin D1/CDK4 function with senescence [84, 85].

Importantly, BrafV600E/Perk+/- melanomas are dependent upon the remaining Perk allele.

There have been sporadic reports implicating potential tumor suppressor like functions for

Perk. Acute ablation of Perk in mammary epithelium increased tumor formation due to the

accumulation of genomic instability [43]. Anti-proliferative activity of Perk was also attributed

to differential impacts on mammary tumorigenesis [79].

In contrast to mono-allelic deletion, excision of both Perk alleles did not cooperate with

BrafV600E demonstrating that retention of one functional allele of Perk is required for tumor

progression. The demonstration that BrafV600E/Perk+/- melanomas are dependent upon the

remaining Perk allele supports this conclusion. These results reveal an unanticipated role for

Perk in melanoma initiation, given previous work arguing that Perk is not required for tumor

initiation [42, 43]. Bi-allelic Perk deletion did not impact oncogene-induced senescence or

Erk1/2 phosphorylation demonstrating Perk is not required for BrafV600E signaling. This data

reveals that Perk is required for the establishment of BrafV600E melanoma, but does not address

whether PERK is a therapeutic target. Strikingly, treatment of mice with established BrafV600E/

PTEN-dependent tumors triggered significant inhibition of tumor growth providing support

for Perk as a bona fide therapeutic target. LY-4 treatment was associated with increased apo-

ptosis, reduced markers of angiogenesis and decreased proliferation. Importantly, LY-4 treat-

ment inhibited eIF2α phosphorylation and CHOP induction demonstrating on target effects

of this agent.

While a reduction in CHOP expression may also facilitate tumor progression by limiting

cell death, it is not the primary driver susceptibility, as a Chop deletion in the BrafV600E back-

ground does not permit melanoma genesis. In contrast, cyclin D1 overexpression is a key

tumorigenesis-driving event. Dysregulation of the cyclin D1/CDK4 pathway occurs in a

majority of melanomas and increased cyclin D1/CDK4 activity (e.g. loss of p16Ink4A or Fbxo4)

cooperates with BrafV600E to drive melanoma. Second, reducing cyclin D1 expression through
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by deletion of a single allele inhibits melanoma genesis. Third, we have previously shown that

cyclin D1-driven tumors are specifically opposed by p53 [63] and p53 is subject to mutations

within its DNA binding domain in Perk+/- tumors while p16Ink4a is still expressed.

If Perk heterozygosity were relevant to BrafV600E-dependent human melanoma, one would

predict the occurrence of inactivating mutations in PERK in human melanoma. Consistently

PERK mutations occur at a frequency of approximately 7%. Initial characterization of these

mutants revealed reduced PERK activity. Cells expressing these mutants fail to effectively

repress cyclin D1, exhibit reduced CHOP expression and are prone to spontaneous transfor-

mation, analogous to cyclin D1 overexpressing cell lines.

Collectively, our data reveals a complex role for Perk in melanoma genesis. While Perk pro-

survival activity is necessary for melanoma genesis and melanoma progression, its ability to

antagonize cell division through cyclin D1 supports a model wherein Perk regulation of cell

fate is a delicate balance wherein less is not necessarily better. Importantly, LY-4 exhibited

clear therapeutic potential for BrafV600E-dependent melanoma. Since Perk mutant tumors are

dependent upon the remaining Perk allele, Perk status is unlikely to feature into patient

response. An open question remains as to whether Perk tumor suppressive function is tissue

specific. While previous work revealed no evidence for such in mammary tissue (43), addi-

tional analysis is required to address this issue.

Methods

Ethics statement

All animal use and experiments were approved by The Medical University of South Carolina

Office of Compliance and Institutional Animal Care and Use Committee (IACUC) (approved

animal use protocol #AR3340).

Animal husbandry

All animals and experiments were carried out in compliance with Institutional Animal Care

and Use Committee guideline of Medical University of South Carolina. Animals were obtained

from the followings: TyrCreER, BrafCA/+, Fbxo4+/- [58]; Perkl/l [51]CyclinD1+/- (from Jackson

Laboratory); Chop-/- (from Jackson Laboratory, stock #: 005530). Appropriate intercrosses

were established to generate TyrCre;BrafV600ECA/+;Fbxo4+/- or -/-;Perk+/+, TyrCre;BrafCA/+;

Fbxo4+/-or-/-; Perkl/+, TyrCre;BrafCA/+;Perkl/+, TyrCre;BrafV600ECA/+;Perkl/+;D1+/-, TyrCre;

BrafV600ECA/+;Chop+/-or-/- mice and controls.

For LY-4 treatment studies, tumor volume was measured twice per week and calculated

with the following formula: volume = (length × width × width)/2. LY-4 treatment was initiated

when a tumor reached ~3mm3 (formulated in 20% Captisol in 25mM of NaH2PO4 buffer, pH

2.0) by oral gavage twice per day. Blood glucose was monitored every five days using a Free-

style meter (TheraSense, Inc.) during LY-4 treatment.

Animal experiments were conducted in accordance with IACUC protocols and University

Laboratory Animal Research (ULAR) guidelines. 4-Hydroxytamoxifen (4-OHT) was freshly

prepared in dimethyl sulfoxide (DMSO) (5mM) and applied topically for three consecutive

days to postnatal day 2 pups.

Real-time PCR

The mouse skin tissue and human primary melanocytes were homogenized in Trizol (Invitro-

gen) and total RNA was extracted with chloroform. The cDNA was synthesized by using

MMLV reverse transcriptase III and random primers (Invitrogen) following the
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manufacturer’s protocol. QPCR assay was prepared by using SyBr PCR mix (Applied Biosys-

tems) and amplified using ABI Prism 7000 Sequence Detection System (Applied Biosystems)

with the following primers: Chop (F: 5’-CCAACAGAGGTCACACGCAC-3’; R: 5’-TGACT

GGAATCTGGAGAGCGA-3’), Uxbp1 (F: 5’-CACCTTCTTGCCTGCTGGAC-3’; R: 5’-

GGGAGCCCTCATATCCACAGT-3’), Sxbp1 (F: 5’-GAGTCCGCAGCAGGTG-3’; R: 5’-

GTGTCAGAGTCCATGGGA-3’), Bip (F: 5’-ACCCTTACTCGGGCCAAATT-3’; R: 5’-

AGAGCGGAACAGGTCCATGT-3’), Gapdh (F: 5’-GGAGCGAGACCCCACTAACA-3’; R:

5’-ACATACTCAGCACCGGCCTC-3’). Infected skin melanocytes were lysed directly with

TRIzol reagent (Sigma) followed by the isolation of total RNA according the user’s instruc-

tions. One μg total RNA was reverse transcribed using a Maxima First Strand cDNA Synthesis

Kit for qRT-PCR (Thermo Fisher). Fast SYBR. Green Master Mix (life Technologies) was used

with cDNA template and primers to evaluate the expression of target genes and GAPDH.

Primers used were purchased from Integrated DNA Technologies. Amplifications were per-

formed using an Applied Biosystems. 7500 Real-Time PCR System (Life Technologies). All

experiments were performed in triplicate. Expression ratios of controls were normalized to 1.

Western analysis

The melanoma tumor tissues and cultured cells were harvested in Tween 20 buffer containing

50mM HEPES (pH 8.0), 150mM NaCl, 2.5mM EGTA, 1mM EDTA, 0.1% Tween 20, and pro-

tease/phosphatase inhibitors (1mM phenylmethylsulphonyl fluoride, 20 U of aprotinin/ml,

5mg of leupeptin/ml, 1mM DTT, 0.4mM NaF, and 10mM β-glycerophosphate). Lysates were

sonicated prior to clearing by centrifugation at 4˚C for 30 min. Proteins were resolved by

SDS-PAGE, transferred to membrane, and subjected to immunoblot. Antibodies utilized

include PERK (Rockland), p-eIF2α S51 (Cell Signaling), BiP (Cell Signaling), total eIF2α (Cell

Signaling), Cyclin D1 (mouse monoclonal D1-72-13G), Cul4a (Bethyl, A300-739A), p-

AktS473 (Cell Signaling), total Akt (Cell Signaling), GAPDH (Cell Signaling) and β-actin

(Sigma Aldrich).

Senescence-associated β-galactosidase

Tumor tissue samples were harvested from mice and snap frozen in tissue-Tek O.C.T.

6-micron thick frozen tissue sections were prepared according to standard procedures (Sigma,

Senescence-Galactosidase Staining Kit #9860).

Histology

10% buffered formalin was used to fix tissues (overnight), followed by dehydration with etha-

nol, paraffin embedding, and sectioning. 5- to 8-μm sections were used for immunohis-

tochemistry (IHC), sections were dewaxed and rehydrated in gradient ethanol followed by

melanin depigmentation. Sections were immersed in 10% hydrogen peroxide and boiled for

20 min at 65˚C. After microscopic inspection, the sections were rinsed with tap water for 5

min. Standard protocols were utilized for hematoxylin and eosin (H&E) staining. Antibodies

utilized for IHC include: cyclin D1 (mouse monoclonal D1-72-13G), S-100 (Dako), CHOP

(Cell Signaling), p-eIF2α (Cell Signaling), pAkt (Cell Signaling), pS6 (Cell Signaling), γH2Ax

(Cell Signaling), pATM (Cell Signaling), p21 (Santa Cruz Biotechnology), H4R3me2 (Epige-

netic), pRb (Santa Cruz Biotechnology), CD31 (Cell Signaling), pERK (Cell Signaling), pH3

(Cell Signaling), Carbonic anhydrase IX/CA9 (Novus Biologicals). Antigens were retrieved

with Antigen Retrieval Citra Plus (Biogenic) by boiling for 15 min, and antibodies were visual-

ized with a Vectastain ABC Elite kit (Vector Laboratories) and a peroxidase substrate kit DAB

(Vector Laboratories). Sections were also tested for apoptosis by using TdT In Situ Apoptosis
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Detection Kit—DAB (R&D Systems). For quantification of IHC, the average percentage of

positively stained cell evaluated form each section were scored according to staining index (SI)

scale (- = no stain; + =< 33%; ++ = 33%-66%; +++ =>66%). Representative fields from each

sections were chosen are presented in figures.

Soft agar assays

Soft agar assays, were performed in 6-well plates (2500 cells seeded) containing 0.4% low melt-

ing point agarose (Lonza) lower layer, and on top of 0.8% agarose-top layer. Cells were growth

in 37˚C, 5%CO2 for 21–26 days and colonies were quantified.

Statistics

GraphPad Prism software was utilized to analyze Kaplan-Meier tumor-free survival graphs. A

two-tailed Student t test was utilized for other statistical analyses (P values of<0.05 indicating

statistical significance). Error bars in the figures represent.
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