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Abstract Populations are often divided categorically into distinct racial/ethnic groups based on

social rather than biological constructs. Genetic ancestry has been suggested as an alternative to

this categorization. Herein, we typed over 450,000 CpG sites in whole blood of 573 individuals of

diverse Hispanic origin who also had high-density genotype data. We found that both self-

identified ethnicity and genetically determined ancestry were each significantly associated with

methylation levels at 916 and 194 CpGs, respectively, and that shared genomic ancestry accounted

for a median of 75.7% (IQR 45.8% to 92%) of the variance in methylation associated with ethnicity.

There was a significant enrichment (p=4.2�10-64) of ethnicity-associated sites amongst loci

previously associated environmental exposures, particularly maternal smoking during pregnancy.

We conclude that differential methylation between ethnic groups is partially explained by the

shared genetic ancestry but that environmental factors not captured by ancestry significantly

contribute to variation in methylation.
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Introduction
Race, ethnicity, and genetic ancestry have had a complex and often controversial history within bio-

medical research and clinical practice (Risch et al., 2002; Cooper et al., 2003; Yudell et al., 2016;

Burchard et al., 2003; Phimister, 2003). For example, race- and ethnicity-specific clinical reference

standards are based on population-based sampling on a given physical trait such as pulmonary func-

tion (Hankinson et al., 1999; Quanjer et al., 2012). However, because race and ethnicity are social

constructs and poor markers for genetic diversity, they fail to capture the heterogeneity present

within racial/ethnic groups and in admixed populations (Borrell, 2005). To account for these hetero-

geneities and to avoid social and political controversies, the genetics community has grouped indi-

viduals by genetic ancestry instead of race and ethnicity (Yudell et al., 2016). Indeed, recent work

from our group and others have demonstrated that genetic ancestry improves diagnostic precision

compared to racial/ethnic categorizations for specific medical conditions and clinical decisions

(Kumar et al., 2010; Udler et al., 2015; Nalls et al., 2008).

However, racial and ethnic categories also reflect the shared experiences and exposures to known

risk factors for disease, such as air pollution and tobacco smoke, poverty, and inadequate access to

medical services, which have all contributed to worse disease outcomes in certain populations

(Nguyen et al., 2014; Evans and Kantrowitz, 2002). Thus, it is unclear whether defining groups

through genetic ancestry can capture these shared exposures. In this work we seek to explore the

contributions of genetically defined ancestry and social, cultural and environmental factors to under-

standing differential methylation between ethnic groups.

Epigenetic modification of the genome through methylation plays a key role in the regulation of

diverse cellular processes (Smith and Meissner, 2013). Changes in DNA methylation patterns have

been associated with complex diseases, including various cancers (Kulis and Esteller, 2010), cardio-

vascular disease (Udali et al., 2013; Kato et al., 2015), obesity (Bell et al., 2010), diabetes

(Chambers et al., 2015), autoimmune and inflammatory diseases (Liu et al., 2013), and

eLife digest Whether a person develops a particular disease can depend on both genetic and

environmental factors. Many studies have found that people of different races and ethnicities have

different likelihoods of acquiring certain diseases. Race and ethnicity are social constructs; that is,

they are not necessarily defined biologically. However, shared ancestry will produce genetic links

between members of a group. In addition, members of an ethnic group often share a culture or

environment that may influence their risk of disease. For example, the ‘Mediterranean diet’ inspired

by the dietary habits of Southern Italians has been shown to reduce the risk of heart disease,

diabetes and cancer.

The addition of chemical groups – such as methyl groups – to DNA strands can affect the activity

of nearby genes. Methylation is controlled by both genetic and environmental factors, and altered

patterns of DNA methylation are seen in some diseases. It is therefore an ideal biological process to

study to determine how race/ethnicity and ancestry contribute to a person’s susceptibility to

disease.

Galanter et al. have now studied the patterns of methylation found in the blood of 573 people

from diverse Latino ethnic sub-groups. The different groups displayed significantly different patterns

of methylation at hundreds of locations across the genome. Genetic ancestry explained

approximately 75% of the variation in methylation between the sub-groups. In addition, the

methylation patterns at DNA locations known to be affected by environmental exposures – for

example, by exposure to tobacco while in the womb – were disproportionately likely to be

methylated differently in different sub-groups.

Now that more is known about the relative effects of race/ethnicity and genetic ancestry on

methylation, the next step is to apply this knowledge to disease processes. This will help us to

better understand the source of health disparities across different groups of people.

DOI: 10.7554/eLife.20532.002
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neurodegenerative diseases (Lardenoije et al., 2015). Epigenetic changes are thought to reflect

influences of both genetic (Bell et al., 2011) and environmental factors (Feil and Fraga, 2011), and

have been shown to vary between racial groups (Barfield et al., 2014). The discovery of methylation

quantitative trait loci (meQTL’s) across populations by Bell et al. established the influence of genetic

factors on methylation levels in a variety of tissue types (Bell et al., 2011), with meQTL’s explaining

between 22% and 63% of the variance in methylation levels. Multiple environmental factors have

also been shown to affect methylation levels, including endocrine disruptors, tobacco smoke

(Joubert et al., 2012, 2016), polycyclic aromatic hydrocarbons, infectious pathogens, particulate

matter, diesel exhaust particles (Jiang et al., 2014), allergens, heavy metals, and other indoor and

outdoor pollutants (Ho et al., 2012). Psychosocial factors, including measures of traumatic experien-

ces (Chen et al., 2013; Ressler et al., 2011; van der Knaap et al., 2014), socioeconomic status

(Lam et al., 2012; Borghol et al., 2012), and general perceived stress (Vidal et al., 2014), also

affect methylation levels. Since both genetic and environmental exposures affect methylation, this

represents an ideal phenotype to explore the contributions of these two factors on differential meth-

ylation between ethnic groups.

In this work, we leveraged genome-wide methylation data in 573 Latino children of diverse Latino

sub-ethnicities enrolled in the Genes-Environment and Admixture in Latino Americans (GALA II)

study (Oh et al., 2012) whose genetic ancestry had been determined from dense genotyping arrays.

This allowed us to explore the extent to which the differences in methylation between Latino sub-

groups could be explained by their shared genetic ancestry. We found that many of the methylation

differences associated with ethnicity could be explained by shared genetic ancestry. However, even

after adjusting for ancestry, significant differences in methylation remained between the groups at

multiple loci, reflecting social and environmental influences upon methylation.

Our findings have important implications for both the use of ancestry to capture biological

changes and of race/ethnicity to account for social and environmental exposures. Epigenome-wide

association studies in diverse populations may be susceptible to confounding due to environmental

exposures in addition to confounding due to population stratification (Michels et al., 2013). The

findings also have implications for the common practice of considering individuals of Latino descent,

regardless of origin as a single ethnic group.

Results
The study included 573 participants, the majority of whom self-identified as being either of Puerto

Rican (n = 220) or Mexican origin (n = 276). Table 1 displays baseline characteristics of the GALA II

study participants with methylation data included in this study, stratified by ethnic subgroups (Puerto

Rican, Mexican, Other Latino, and Mixed Latinos who had grandparents of more than one national

origin). Figure 1 shows the distribution of African, European, and Native American ancestry among

the 524 participants with genomic ancestry estimates.

Methylation data used in this study has been previously made publicly available at the Gene

Expression Omnibus at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE77716 (Rahmani et al., 2016). Genotyping data has been deposited in dbGaP; link will be acti-

vated when the data becomes publicly available (Burchard, http://www.ncbi.nlm.nih.gov/gap/?

term=phs001180).

Global patterns of methylation
Differences in ethnicity and ancestry resulted in discernible patterns in the global methylation profile

as demonstrated in a multidimensional scaling analysis (Figure 2A). As expected (Houseman et al.,

2012; Lam etal., 2012), the first few principal coordinates are strongly correlated to imputed cell

composition (Figure 2B–C). There are also significant associations of self-identified sub-ethnicity

with PC2 (p-ANOVA = 0.003), PC3 (p-ANOVA = 0.004), PC6 (p-ANOVA = 0.0001), PC7 (p-

ANOVA = 0.0003) (Figure 3A), and PC8 (p-ANOVA = 0.0003), after adjusting for age, sex, disease

status, cell components, and technical laboratory factors (plate and position). Genetic ancestry was

associated with PC3 (p=0.002), PC7 (p=0.0004) (Figure 3B) and PC8 (p=0.001) in a two degree of

freedom ANOVA test, adjusting for age, sex, disease status, cell components, technical factors, and

ethnicity. Supplementary file 1A summarizes the results of the simple correlation analysis of
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methylation with ethnicity and ancestry, as well as the adjusted nested ANOVA models described

above and the mediation results described below.

A mediation analysis (Tingley et al., 2014) revealed that the associations between ethnicity and

PCs 3, 7, and eight were significantly mediated by Native American ancestry, which

explained ~100% (95% CI: 37–100%, p=0.01) of PC3, 83% (95% CI 37–100%, p<0.001) of PC7 and

66% (95% CI: 25% to 100%, p<0.001) of PC8. Inclusion of Native American ancestry in the regression

model of PCs 3, 7, and eight caused the ethnicity associations to be non-significant. However, the

associations of ethnicity with PCs 2 and 6 were not explained by Native American, African or Euro-

pean ancestry (mediation p>0.05), suggesting that the ethnic differences in these principal compo-

nents are associated with global methylation patterns not captured by the shared genetic ancestry

of each ethnic group. When genetic ancestry was regressed on the methylation data with the princi-

pal coordinates recalculated using the residuals of the regression between methylation and ancestry,

there was an association between ethnicity and PC6 (p-ANOVA = 0.003). However, there was no

association with any of the other principal coordinates. These observations suggest that while shared

genetic ancestry can explain over 50% of the association between ethnicity and global methylation

patterns in three PC’s, other non-genetic factors, such as environmental and social exposure differ-

ences associated with ethnicity influence methylation and are not captured by measures of genetic

ancestry in two others.

Epigenome-wide association of self-identified ethnicity
An epigenome-wide association study of self-identified ethnicity (see Materials and methods for

details of ascertainment of ethnicity) and methylation identified a significant difference in methyla-

tion M-values between ethnic groups at 916 CpG sites at a Bonferroni-corrected significance level of

Table 1. Baseline characteristics of GALA II participants with methylation data, stratified by ethnicity.

Continuous variables are reported with inter-quartile range in brackets.

Mexican Puerto rican Mixed latino Other latino

n 276 220 16 61

Males (%) 125 (45.3%) 127 (57.7%) 6 (37.5%) 28 (45.9%)

Age 11.4 [9.3: 14.7] 12.3 [10.4: 14.2] 11.8 [10.7: 14.9] 11.8 [10: 15.7]

Asthma cases (%) 124 (44.9%) 147 (66.8%) 9 (56.3%) 31 (50.8%)

Ancestry (n = 524)

African 4.3%
[2.9%: 6.0%)

22.8%
[16.6%: 29.4%)

8.5%
[5.6%: 19.2%)

12.3%
[6.3%: 25.8%)

Native American 55.4%
[44.5%: 65.7%)

11.2%
[9.8%: 13%)

31.5%
[20.9%: 45.6%)

32.8%
[10.4%: 49.3%)

European 40.5%
[29.9%: 50.2%)

65.7%
[59.2%: 71%)

50.5%
[44.6%: 57.6%)

48.9%
[40%: 58.5%)

Recruitment Site

Chicago 140 (50.7%) 15 (6.8%) 11 (68.9%) 15 (24.6%)

New York 18 (6.5%) 10 (4.5%) 1 (6.3%) 23 (37.7%)

Puerto Rico 0 193 (87.7%) 0 0

San Francisco 78 (28.3%) 0 2 (12.5%) 23 (37.7%)

Houston 40 (14.5%) 2 (0.9%) 2 (12.5%) 5 (8.2%)

Cell Counts (estimated)

Granulo cytes 51.2%
[46.0%: 55.7%)

51.6%
[46.8%: 57%)

51%
[43.6%: 57.2%)

49.1%
[43.8%: 55.8%)

Lympho cytes 41.9%
[36.9%: 46.6%)

41.8%
[36.9%: 46.5%)

41.9%
[36.1%: 51.6%)

43.9%
[36.8%: 49.6%)

Mono cytes 7.1%
[5.8%: 8.3%)

6.74%
[5.74%: 8.24%)

6.6%
[5.7%: 7.6%)

7.4%
[6.2%: 8.6%)

DOI: 10.7554/eLife.20532.004
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less than 1.6 � 10�7 (Figure 4A and Supplementary file 1B). The most significant association with

ethnicity occurred at cg12321355 in the ABO blood group gene (ABO) on chromosome 3 (p-ANOVA

6.7 � 10�22) (Figure 4B). A two degree of freedom ANOVA test for genomic ancestry was also sig-

nificantly associated with methylation level at this site (p=2.3�10�5) (Figure 4C), and when the anal-

ysis was stratified by ethnic sub-group, showed an association in both Puerto Ricans and Mexicans

(p=0.001 for Puerto Ricans, p=0.003 for Mexicans). Although adjusting for genomic ancestry attenu-

ated the effect of ethnicity, a significant association between ethnicity and methylation remained

(p=0.04). Recruitment site, an environmental exposure proxy, was not significantly associated with

methylation at this locus (p=0.5), suggesting that environmental differences associated with ethnicity

beyond geography and ancestry are driving the association.

To determine the contribution of shared genetic ancestry and other factors associated with eth-

nicity, we repeated the analysis adjusting for ancestry. A significant association remained in 314 of

the 834 (37.8%, p=1.7�10�183 for enrichment) CpG sites associated with ethnicity (Figure 5A and

Supplementary file 1B) (82 sites were excluded because they demonstrated unstable coefficient

estimates and inflated standard errors due to strong correlations between ethnicity and ancestry,

especially Native American ancestry [see Figure 1]).

Table 2 and Figure 5b show the proportion of variance explained by ethnicity, genomic ancestry,

and their joint effect in the 916 CpG’s associated with ethnicity, as well as the 314 CpG’s that

remained associated with ethnicity after adjustment for ancestry and the 520 CpG’s whose associa-

tion with ethnicity was no longer significant when ancestry terms were introduced into the model.

Even after adjusting for genomic ancestry, ethnicity explained 1.7% (IQR 0.785% to 3.0%) but as

much as 13.4% of the variance in methylation across these loci. Genomic ancestry explained a

median of 4.2% (IQR 1.8% to 8.3%) of the variance in methylation at all loci associated with ethnicity

and accounts for a median of 75.7% (IQR 45.8% to 92%) of the total variance in methylation

explained jointly by ethnicity and ancestry (median of 6.8%, IQR 4.5% to 10.0%) (Figure 5B).

Ethnicity and ancestry jointly explained as much as 38.5% of the variance in methylation in one

CpG (cg0966827) and there were 17 CpG’s where ethnicity and ancestry jointly explain more 25% of

the variance. Among the 314 CpG’s that remained associated with ethnicity after adjustment for

ancestry, ethnicity accounted for a larger share of the joint variance than genomic ancestry (3.5%,

IQR 2.2% to 5.1% versus 1.8%, IQR 0.8% to 4.0%). We saw a moderate amount of correlation

Figure 1. Ancestry estimates for GALA II participants, by ethnic group. Mexicans, on average, had a greater proportion of Native American ancestry

than Puerto Ricans; Puerto Ricans had a greater proportion of European and African ancestry. Mixed and other Latinos were intermediate.

DOI: 10.7554/eLife.20532.003
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Figure 2. Patterns of global methylation. (A) Distribution of the first 10 principal coordinates of the methylation data. Plots in the diagonal show the

univariate distribution; those in the lower left triangle show bivariate relationship between each pair of PCs, while those in the upper right show the

bivariate density. (B) Bivariate or ANOVA associations between principal coordinates and technical factors (chip, position), cell counts, genetic ancestry

Figure 2 continued on next page
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between the 314 methylation sites associated with ethnicity after adjusting for ancestry (median R2

of 0.044, IQR 0.01 to 0.13).

Sensitivity tests for departures from linearity, fine scale population substructure and the exclusion

of the 16 participants who self-identified as ‘Mixed Latino’ sub-ethnicity, did not meaningfully affect

Figure 2 continued

(European, Native American, African), recruitment site (New York, NY, San Francisco, CA, Chicago, IL, Houston, TX, and Puerto Rico), demographic

factors (ethnicity, age, sex), and case status. (C) Correlation coefficients between the various factors and principal coordinates.

DOI: 10.7554/eLife.20532.005

Figure 3. Associations between ethnicity, ancestry and global methylation. (A) Association between ethnicity and principal coordinate 7. (B) Association

between Native American ancestry proportion and PC7, colored by ethnicity. Native American ancestry explains approximately 81% of the association

between PC7 and ethnicity.

DOI: 10.7554/eLife.20532.006
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our results (See Supplementary file 1B–F). To rule out any residual confounding due to recruitment

sites, we conducted an additional analysis on the effect of recruitment site on methylation both for

the overall study and for the Mexican participants (the largest study population in this analysis). We

observed no significant independent effect of recruitment site suggesting that confounding due to

recruitment region was limited, at least within the United States.

Figure 4. Associations between ethnicity and methylation (A) Manhattan plot showing the associations between

ethnicity and methylation at individual CpG loci. (B) Violin plot showing one such locus, cg19145607. Mexicans are

relatively hypermethylated compared to Puerto Ricans (p=1.4�10–19). (C) Plot showing the association between

Native American ancestry at the locus and methylation levels at the locus colored by ethnicity; Native American

ancestry accounts for 58% of the association between ethnicity and methylation at the locus.

DOI: 10.7554/eLife.20532.007
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Figure 5. Relationship between genomic ancestry and the association between ethnicity and methylation. (A) Venn diagram showing the effect of

adjustment for ancestry on the association between ethnicity and methylation. The components of the diagram represent the number of CpG’s that

remained associated with ethnicity after adjustment for ancestry and the number of CpG’s that were associated with ancestry. (B) Relative proportion of

variance in methylation explained by ethnicity and genomic ancestry across loci significantly associated with ethnicity. Mediation analysis of associations

Figure 5 continued on next page
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To explore the effect of departures from a linear association between ancestry and methylation,

we incorporated both higher order polynomials and cubic splines of ancestry into our models. We

observed a significant departure from linearity (p<0.05) in only 26 (for splines) and 25 (for polyno-

mials) of the 314 CpG’s where an association between ethnicity and methylation remained after

adjusting for ancestry; however, the association between ethnicity and methylation remained even

after adjusting for non-linearity at all sites (Supplementary file 1C,D).

Environmental differences between geographic locations or recruitment sites are a potential non-

genetic explanation for ethnic differences in methylation. We investigated the independent effect of

recruitment site on methylation by analyzing the associations between recruitment site and individual

methylation loci after adjusting for ethnicity. We did not find any loci significantly associated with

recruitment site at a significance threshold of 1.6�10�7. We then performed an analysis to assess

the effect of recruitment sites on methylation stratified by ethnicity. We did not find any loci signifi-

cantly associated with recruitment site and methylation among Mexican participants. We were

underpowered to perform a similar analysis for Puerto Ricans because there were only 27 Puerto

Rican participants recruited outside of Puerto Rico. To ensure that the absence of association in

Mexicans was not due to the loss of power from the smaller sample size, we repeated our analysis of

the association between ethnicity and ancestry randomly down-sampling to 276 participants to

match the sample size in the analysis of geography in Mexicans. While down-sampling the study to

this degree resulted in a loss of power, 128 methylation sites were still associated with ancestry. We

conclude that recruitment site was unlikely to be a significant confounder of our associations

between ethnicity and methylation and was not a significant independent predictor of methylation.

While most population substructure in Latinos would be expected to arise from differences in

continental ancestry (Galanter, 2012; Bryc et al., 2010), there is evidence of finer scale (sub-conti-

nental) ancestry in Latino populations (Moreno-Estrada et al., 2014). We tested for the effect of

fine scale substructure by calculating principal components for all participants with genotyping data

using Eigensoft (Patterson et al., 2006). We found significant associations between principal com-

ponents 3–10 (PC’s 1 and 2 were almost perfectly collinear with ancestry, with an adjusted

R2 > 0.998 for all three ancestry proportions, and were therefore excluded) and ethnicity. We there-

fore added these 8 PC’s to models of ethnicity and methylation, and found an association between

these genetic PC’s and methylation in 63/314 CpG’s that had remained associated with ethnicity

after adjusting for ancestry. Adjusting for higher order substructure in these CpG’s explained the

association between ethnicity and methylation in 51 additional loci. This left 263 loci associated with

ethnicity after adjustment for ancestry where there was either no association between PC’s 3–10 and

methylation or the inclusion of these PC’s did not affect the association between ethnicity and meth-

ylation. (Supplementary file 1E)

At these 314 loci, the median total variance accounted for by ethnicity, ancestry, and fine-scale

substructure was 10.4% (IQR 6.6% to 16.1%), of which ethnicity explained a median of 1.7% (IQR

0.8% to 3.8%), ancestry explained a median of 2.9% (IQR 1.0 to 4.6%) and fine scale substructure

explained a median of 3.4% (IQR 2.0% to 4.2%). Among the 263 CpG’s whose association with

Figure 5 continued

between ethnicity and methylation M-values for (C) Native American ancestry and (D) African ancestry. For simplicity, only significant mediation effects

are shown.

DOI: 10.7554/eLife.20532.008

Table 2. Proportion of variance in methylation explained by ethnicity and ancestry. Numbers represent the median and interquartile

range.

Component
All CpG’s associated with eth-
nicity (n = 916)

CpG’s associated with ethnicity after adjusting
for ancestry (n = 314)

CpG’s whose association with ethnicity is explained
by ancestry (n = 520)

Joint 6.8% (4.5% to 10%) 6.2% (4.4% to 8.8%) 7.8% (5.3% to 11.1%)

Ethnicity 1.7% (0.78% to 3.0%) 3.5% (2.2% to 5.1%) <1%

Ancestry 4.2% (1.8% to 8.3%) 1.8% (0.8% to 4.0%) 6.6% (4.0% to 10.2%)

DOI: 10.7554/eLife.20532.009
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ethnicity could not be explained by fine-scale substructure, ethnicity explained a median of 1.9%

(IQR 1.0% to 4.0%; max 26.7%), ancestry explained 2.8% (IQR 1.0% to 6.2%), and fine scale ancestry

explained 3.2% (IQR 1.9% to 4.7%).

As only 16 participants self-identified as ‘Mixed Latino’, we performed a sensitivity analysis to test

the effect of excluding these participants from the analysis and only examining Puerto Ricans, Mexi-

cans, and ‘Other Latinos’. We found that excluding self-identified ‘Mixed Latino’ participants from

the analysis did not significantly alter the results in most cases (Supplementary file 1F). Of the 916

CpG’s associated with ethnicity at a genome-wide scale (p<1.6�10–7) in models including individu-

als self-identified as ‘Mixed Ethnicity’, 894 (97.5%) were still significant at a genome-wide scale when

‘Mixed Latinos’ were excluded. All but two of the CpG’s that did not meet genome-wide signifi-

cance were significant when correcting for 916 tests (p<5�10–5). In addition, an additional 290 CpG

loci that did not meet genome-wide significance in the original analysis were significant at a

genome-wide scale when self-identified ‘Mixed Latinos’ were excluded. While these loci did not

meet genome-wide significance in the original analysis that included Mixed Latinos, they all had

p-values lower than 2 � 10�6. Thus we conclude that a sensitivity test excluding individuals of mixed

Latino ethnicity did not significantly alter the conclusions.

We conclude that shared genetic ancestry explains much but not all of the association between

ethnicity and methylation. Other, non-genetic factors associated with ethnicity likely explain the eth-

nicity-associated methylation changes that cannot be accounted for by genomic ancestry alone.

Ethnic differences in environmentally-associated methylation sites
Methylation at CpG loci that had previously been reported to be associated with environmental

exposures whose exposure prevalence differs between ethnic groups were tested for association

with ethnicity in this study. A recent meta-analysis of maternal smoking during pregnancy, an expo-

sure that varies significantly by ethnicity (Oh et al., 2012), identified associations with methylation at

over 6000 CpG loci (Joubert et al., 2016). We found 1341 of 4404 that passed QC in our own study

(30.4%) were nominally associated with ethnicity (p<0.05), which represented a highly significant

(p<2�10�16) enrichment. Using a Bonferroni correction for the 4404 loci tested, 126 maternal-smok-

ing related loci were associated with ethnicity (p<1.1�10�5), and 27 loci were among the 916 CpG’s

reported above as associated with ethnicity (Supplementary file 1G). Of these, 14 were among the

314 CpG’s whose association with ethnicity could not be explained by ancestry and 12 were among

the 263 CpG’s whose association with ethnicity could not be explained by ancestry or fine-scale sub-

structure. We also examined methylation loci from an earlier study of maternal smoking in Norwe-

gian newborns (Joubert et al., 2012) as well as studies of diesel exhaust particles (Jiang et al.,

2014) and exposure to violence (Chen et al., 2013). These results are supportive of our hypothesis

that environmental exposures may be responsible for the observed differences in methylation

between ethnic groups and are presented in Supplementary file 1H.

In an earlier study of maternal smoking in Norwegian newborns (Joubert et al., 2012) that identi-

fied 26 loci associated with maternal smoking during pregnancy, 19 passed quality control (QC) in

our own analysis, and the association between methylation and ethnicity was found to be nominally

significant (p<0.05)at 6 (31.6%) CpG loci. Adjusting for 19 tests (p<0.0026), cg23067299 in the aryl

hydrocarbon receptor repressor (AHRR) gene on chromosome five remained statistically significant

(Supplementary file 1H). These results suggest that ethnic differences in methylation at loci known

to be responsive to tobacco smoke exposure in utero may be explained in part by ethnic-specific dif-

ferences in the prevalence of maternal smoking during pregnancy.

We also found that CpG loci previously reported to be associated with diesel-exhaust particle

(DEP) exposure (Jiang et al., 2014) were significantly enriched among the set of loci whose methyla-

tion levels varied between ethnic groups. Specifically, of the 101 CpG sites that were significantly

associated with exposure to DEP and passed QC in our dataset, 31 were nominally associated with

ethnicity (p<0.05), and five were associated with ethnicity after adjusting for 101 comparisons

(p<0.005). Finally, we found that methylation levels at cg11218385 in the pituitary adenylate cyclase-

activating polypeptide type I receptor gene (ADCYAP1R1), which had been associated with expo-

sure to violence in Puerto Ricans (Chen et al., 2013) and with heavy trauma exposure in adults

(Ressler et al., 2011), was significantly associated with ethnicity (p=0.02).

We also found 194 loci with a significant association between global genetic ancestry and methyl-

ation levels (after adjusting for ethnicity) at a Bonferroni corrected association p-value of less than
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1.6 � 10�7 (Figure 6 and Supplementary file 1I), including 48 that were associated with ethnicity in

our earlier analysis. Of these significant associations, 55 were driven primarily by differences in Afri-

can ancestry, 94 by differences in Native American ancestry, and 45 by differences in European

ancestry. The most significant association between methylation and ancestry occurred at

cg04922029 in the Duffy antigen receptor chemokine gene (DARC) on chromosome 1 (ANOVA

p-value 3.1 � 10�24) (Figure 6B). This finding was driven by a strong association between methyla-

tion level and global African ancestry; each 25 percentage point increase in African ancestry was

associated with an increase in M-value of 0.98, which corresponds to an almost doubling in the ratio

of methylated to unmethylated DNA at the site (95% CI 0.72 to 1.06 per 25% increase in African

ancestry, p=1.1�10�21). There was no significant heterogeneity in the association between genetic

ancestry and methylation between Puerto Ricans and Mexicans (p-het = 0.5). Mexicans have a mean

unadjusted methylation M-value 0.48 units lower than Puerto Ricans (95% CI 0.35 to 0.62 units,

p=1.1�10�11). However, adjusting for African ancestry accounts for the differences in methylation

level between the two sub-groups (p-adjusted = 0.4), demonstrating that ethnic differences in meth-

ylation at this site are due to differences in African ancestry.

The distribution of methylation M-values at cg04922029 is tri-modal, raising the possibility that a

SNP whose allele frequency differs between African and non-African populations may be driving the

association. We therefore looked at the association between methylation at cg0422029 and ancestry

at that locus. We found almost perfect correlation between methylation and African ancestry at the

locus (p=6�10�162) (Figure 7A). Each African haplotype at the CpG site was associated with an

increase in methylation M-value of 2.7, corresponding to a 6.5-fold increase in the ratio of methyl-

ated to unmethylated DNA per African haplotype at that locus. We then looked for SNPs within

10,000 base pairs of the CpG site that explained the admixture mapping association. We found that

methylation at cg04922029 was significantly correlated with SNP rs2814778 (Figure 7B), the Duffy

Figure 7. Association between local ancestry and methylation. (A) Association between cg04922029 on the DARC locus and African ancestry, color

coded by ethnic group. There is near perfect correlation between the two. (B) Association between SNPs located within 1 Mb of cg04922029 and

methylation levels at that CpG. (C) Association between rs2814778 (Duffy null) genotype and methylation at cg04922029, color coded by the number of

African alleles present. There is near perfect correlation between genotype, ancestry and methylation at the locus. (D) Allele frequency of rs2814778 by

1000 Genomes population. The C allele is nearly ubiquitous in African populations and nearly absent outside of African populations and their

descendants.

DOI: 10.7554/eLife.20532.011
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Figure 6. Associations between genomic ancestry and individual methylation loci. (A) Manhattan plot showing the associations between genomic

ancestry and methylation at individual CpG loci. (B) Plot showing one such locus, cg04922029, and genomic African ancestry, showing a strong

correlation between African ancestry and hypermethylation at that site.

DOI: 10.7554/eLife.20532.010
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null mutation, 212 base pairs away; each copy of the C allele was associated with an increase in

M-value of 1.5, or a 2.9-fold increase in the ratio of methylated to unmethylated DNA (p=3.8�10�90)

(Figure 7C).

When we examined the effect of local ancestry at the other 194 CpG’s we find that a substantial

proportion of the effect of global ancestry on local methylation levels is due to local ancestry acting

in –cis. Among the 194 CpG sites associated with global ancestry, local ancestry at the CpG site

explained a median of 10.4% (IQR 3.0% to 19.4%) of the variance in methylation, accounting for a

median of 52.8% (IQR 20.3% to 84.9%) of the total variance explained jointly by local and global

ancestry (Figure 8).

Discussion
In a diverse population of Latinos, we have shown that a substantial number of loci are differentially

methylated between ethnic sub-groups. While genomic ancestry can explain the association

between ethnicity and methylation at 66% of the 916 loci associated with ethnicity, factors other

than shared ancestry that correlate with ethnicity, such as social, economic, cultural and environmen-

tal exposures account for the association between ethnicity and methylation at 34% (314/916) of

loci.

We conclude that systematic environmental differences between ethnic subgroups likely play an

important role in shaping the methylome for both individuals and populations. Loci previously asso-

ciated with diverse environmental exposures such as in utero exposure to tobacco smoke

(Joubert et al., 2012, 2016), as well as diesel exhaust particles (Jiang et al., 2014) and psychosocial

stress (Chen et al., 2013) were enriched in our set of loci where methylation was associated with eth-

nicity. Twenty-seven of the loci associated with maternal smoking during pregnancy in a large con-

sortium meta-analysis (Joubert et al., 2016) were differentially methylated between Latino sub-

groups at a genome-wide significance threshold of 1.6 � 10�7. Interestingly, this included both loci

whose association persisted after adjustment for ancestry and fine-scale population substructure and

are thus presumed to be due to environmental differences between ethnic groups and loci in which

the association between ethnicity and methylation could be fully explained by genetically defined

ancestry.

There are a number of plausible reasons for overlap between CpG’s associated with ancestry and

those associated with environmental exposure. It is possible that this represents a gene-environment

interaction, and that individuals with certain genetic backgrounds are more susceptible to the effects

Figure 8. Relative proportion of variance in methylation explained by global and local ancestry across loci significantly associated with global ancestry.

DOI: 10.7554/eLife.20532.012
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of environmental exposures such as in utero tobacco smoke than those of other genetic back-

grounds. It has been previously reported that Hispanic smokers with high Native American ancestry

had reduced risk of methylation across 12 genes, suggesting an ancestry by smoking interaction

(Leng et al., 2013). Because the majority of studies that comprised the consortium that identified

differentially methylated regions enrolled participants of European descent, such interactions might

not have been evident in their study.

It is also possible that environmental exposures correlate with ancestry and that participants with

certain ancestral backgrounds may have been more exposed to in utero tobacco smoke than those

of other backgrounds. Several studies have shown correlations between genetic ancestry and envi-

ronmental exposures, including socioeconomic status (Florez et al., 2011), overweight and obesity

(Ziv et al., 2006), and birth site and country of residence (González Burchard et al., 2005).

Though our analysis of global ancestry showed that a majority of the variance explained jointly by

local and global ancestry can be traced to specific loci in the genome acting in –cis, a substantial

proportion cannot. Some of the residual association between global ancestry and methylation may

be due to genetic effects acting in –trans; however, the possibility that some of it may be due to

environmental exposures correlating with global ancestry cannot be excluded. Thus, it is plausible

that genomic ancestry is acting as a proxy for both genetic and environmental effects in our study. If

this is the case, our study likely underestimates the degree to which environmental factors explain

differential methylation between ethnic groups.

Finally, it is possible that our analysis identified DMRs that are independently modifiable by both

genetic and environmental exposures. Thus, regions of the genome that are differentially methylated

due to genetic polymorphisms may also be more susceptible to differential methylation due to envi-

ronmental exposures.

Thus, inclusion of relevant social and environmental exposures in studies of methylation may help

elucidate racial/ethnic disparities in disease prevalence, health outcomes and therapeutic response.

However, in many cases, a detailed environmental exposure history is unknown, unmeasurable or

poorly quantifiable, and race/ethnicity may be a useful, albeit imperfect proxy. However, if a com-

prehensive catalog of the effects of exposures can be compiled, it may be possible to use genome-

wide methylation analysis as a biomarker of exposure long after the exposure has passed and can no

longer be measured.

Our comprehensive analysis of high-density methyl- and genotyping from genomic DNA allowed

us to investigate the genetic control of methylation in great detail and without the potential destabi-

lizing effects of EBV transformation and culture in cell lines (Grafodatskaya et al., 2010). The stron-

gest patterns of methylation are associated with cell composition in whole blood (Lam et al., 2012).

However, the specific type of Latino ethnic-subgroups (Puerto Rican, Mexican, other, or mixed) is

also associated with principal coordinates of genome-wide methylation.

Our approach has some potential limitations. It is possible that fine-scale population structure

(sub-continental ancestry) within European, African, and Native American populations may contrib-

ute to ethnic differences in methylation, as we had previously reported in the case of lung function

(Moreno-Estrada et al., 2014). However, despite the presence of additional substructure among

the GALA II participants, PC’s 3–10 explained the association between ethnicity and ancestry at only

51 loci. PCs from chip-based genotypes will not capture all forms of genetic variation. Clusters of

ethnicity specific rare variants of large effect or strong ethnicity-specific selective sweeps in the last

8–12 generations (Galanter et al., 2012) could also give rise to methylation differences, but these

are inconsistent with existing rare variant and selection analyses (Hernandez et al., 2011;

Tang et al., 2007). Our models of genetic ancestry assumed a linear effect of ancestry on methyla-

tion, whereas a nonlinear association or other model misspecification could have led to incomplete

adjustment for genetic ancestry, and thus, led to a residual association between ethnicity and meth-

ylation. However, when we added second and third order polynomials or cubic splines to our mod-

els, we found evidence for a nonlinear association between ancestry and methylation at only 25 and

26 loci, respectively, and it did not affect the association between ethnicity and methylation.

Although it is impossible to account for all types of non-linearity and non-additivity (such as gene by

gene or gene by environment interaction), our analysis suggests that non-linear effects are unlikely

to be significant. Since our study was geographically diverse, recruiting participants at five recruit-

ment sites in the United States and Puerto Rico, it is possible that systematic differences associated

with site of recruitment might have influenced observed methylation differences between ethnic
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groups. However, when we included recruitment site as a covariate, we found no significant effect

on methylation independent of ethnicity.

The presence of a strong association between genetic ancestry and methylation raises the possi-

bility that epigenetic studies can be confounded by population stratification, similar to genetic asso-

ciation studies, and that adjustment for either genetic ancestry or selected principal components is

warranted. This possibility was first demonstrated in a previous analysis of the association between

self-described race and methylation (Barfield et al., 2014). However, the study only evaluated two

distinct racial groups (African Americans and Whites), while the present study demonstrates the pos-

sibility of population stratification in an admixed and heterogeneous population with participants

from diverse Latino national origins. The tendency to consider Latinos as a homogenous or mono-

lithic ethnic group makes any analysis of this population particularly challenging. Our finding of loci

whose methylation patterns differed between Latino ethnic subgroups, even after adjusting for

genetic ancestry, suggests that any analysis of these populations in disease-association studies with-

out adjusting for ethnic heterogeneity is likely to result in spurious associations even after controlling

for genomic ancestry. However, the methylation loci identified in this study, as well as studies of

environmental exposures, could be particularly interesting loci for the study of biomedical outcomes,

particularly those with disparate prevalence between racial/ethnic groups, such as asthma

(Barr et al., 2016). If methylation loci associated with ethnicity or ancestry were shown to be associ-

ated with a biomedical outcome, it could help explain racial/ethnic disparities in disease.

In summary, this study provides a framework for understanding how genetic, social and environ-

mental factors can contribute to systematic differences in methylation patterns between ethnic sub-

groups, even between presumably closely related populations such as Puerto Ricans and Mexicans.

Methylation QTL’s whose allele frequency varies by ancestry lead to an association between local

ancestry and methylation level. This, in turn, leads to systematic variation in methylation patterns by

ancestry, which then contributes to ethnic differences in genome-wide patterns of methylation. How-

ever, although genetic ancestry has been used to adjust for confounding in genetic studies, and can

account for much of the ethnic differences in methylation in this study, ethnic identity is associated

with methylation beyond the effects of shared genetic ancestry. This is likely due to social and envi-

ronmental effects captured by ethnicity. Indeed, we find that CpG sites known to be influenced by

social and environmental exposures are also differentially methylated between ethnic subgroups.

These findings called attention to a more complete understanding of the effect of social and envi-

ronmental variables on methylation in the context of race and ethnicity to fully understanding this

complex process.

Our findings have important implications for the independent and joint effects of race, ethnicity,

and genetic ancestry in biomedical research and clinical practice, especially in studies conducted in

diverse or admixed populations. Our conclusions may be generalizable to any population that is

racially mixed such as those from South Africa, India, and Brazil, though we would encourage further

study in diverse populations, and likely has implications for all studies of diverse populations. As the

National Institutes of Health (NIH) embarks on a precision medicine initiative, this research under-

scores the importance of including diverse populations and studying factors capturing the influence

of social, cultural, and environmental factors, in addition to genetic ones, upon disparities in disease

and drug response.

Materials and methods

Participant recruitment
All research on human subjects was approved by the Institutional Review Board at the University of

California and each of the recruitment sites (Kaiser Permanente Northern California, Children’s Hos-

pital Oakland, Northwestern University, Children’s Memorial Hospital Chicago, Baylor College of

Medicine on behalf of the Texas Children’s Hospital, VA Medical Center in Puerto Rico, the Albert

Einstein College of Medicine on behalf of the Jacobi Medical Center in New York and the Western

Review Board on behalf of the Centro de Neumologia Pediatrica), and all participants/parents pro-

vided age-appropriate written assent/consent. Latino children were enrolled as a part of the ongoing

GALA II case-control study (Oh et al., 2012).
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A total of 4702 children (2374 participants with asthma and 2328 healthy controls) were recruited

from five centers (Chicago, Bronx, Houston, San Francisco Bay Area, and Puerto Rico) using a combi-

nation of community- and clinic-based recruitment. Participants were eligible if they were 8–21 years

of age and self-identified as a specific Latino ethnicity and had four Latino grandparents. Asthma

cases were defined as participants with a history of physician diagnosed asthma and the presence of

two or more symptoms of coughing, wheezing, or shortness of breath in the two years preceding

enrollment. Participants were excluded if they reported any of the following: (1) 10 or more pack-

years of smoking; (2) any smoking within 1 year of recruitment date; (3) history of lung diseases other

than asthma (cases) or chronic illness (cases and controls); or (4) pregnancy in the third trimester. Fur-

ther details of recruitment are described elsewhere (Oh et al., 2012). Latino sub-ethnicity was deter-

mined by self-identification and the ethnicity of the their four grandparents. Due to small numbers,

ethnicities other than Puerto Rican and Mexican were collapsed into a single category, ‘other Latino’.

Participants whose four grandparents were of discordant ethnicity were considered to be of ‘mixed

Latino’ ethnicity.

Trained interviewers, proficient in both English and Spanish, administered questionnaires to

gather baseline demographic data, as well as information on general health, asthma status, accultur-

ation, social, and environmental exposures.

Methylation
Genomic DNA (gDNA) was extracted from whole blood using Wizard Genomic DNA Purification

Kits (Promega, Fitchburg, WI). A subset of 573 participants (311 cases with asthma and 262 healthy

controls) was selected for methylation. Methylation was measured using the Infinium HumanMethyla-

tion450 BeadChip (Illumina, Inc., San Diego, CA) following the manufacturer’s instructions.

1 mg of gDNA was bisulfite-converted using the Zymo EZ DNA Methylation Kit (Zymo research,

Irvine, CA) according to the manufacturer’s instructions. Bisulfite converted DNA was isothermally

amplified overnight, enzymatically fragmented, precipitated, and re-suspended in hybridization

buffer. The fragmented, re-suspended DNA samples were dispensed onto Infinitum HumanMethyla-

tion450 BeadChips and incubated overnight in an Illumina hybridization oven. Following hybridiza-

tion, free DNA was washed away, and the BeadChips were extended through single nucleotide

extensions with fluorescent labels. The BeadChips were imaged using an Illumina iScan system, and

processed using the Illumina GenomeStudio Software.

Failed probes were identified using detection p-values using Illumina’s recommendations. Probes

on sex chromosomes and those known to contain genetic polymorphisms in the probe sequence

were also excluded, leaving 321,503 probes for analysis. Raw data were normalized using Illumina’s

control probe scaling procedure. Beta values of methylation (ranging from 0 to 1) were converted to

M-values via a logit transformation (Du et al., 2010).

Genotyping
Details of genotyping and quality control procedures for single nucleotide polymorphisms (SNPs)

and individuals have been described elsewhere (Galanter et al., 2014). Briefly, participants were

genotyped at 818,154 SNPs on the Axiom Genome-Wide LAT 1, World Array 4 (Affymetrix, Santa

Clara, CA) (Hoffmann et al., 2011). We removed SNPs with >5% missing data and failing platform-

specific SNP quality criteria (n = 63,328), along with those out of Hardy-Weinberg equilibrium

(n = 1845; p<10–6) within their respective populations (Puerto Rican, Mexican, and other Latino), as

well as non-autosomal SNPs. Subjects were filtered based on 95% call rates and sex discrepancies,

identity by descent and standard Affymetrix Axiom metrics. The total number of participants passing

QC was 3804 (1902 asthmatic cases, 1902 healthy controls), and the total number of SNPs passing

QC was 747,129. The number of participants with both methylation and genotyping data was 524.

Ancestry and PCA analysis
GALA II participants were combined with ancestral data from 1000 Genomes European (CEU) and

African (YRI) populations and 71 Native American (NAM) samples genotyped on the Axiom

Genome-Wide LAT one array. A final sample of 568,037 autosomal SNPs with relevant ancestral

data was used to estimate local and global ancestry. Global ancestry was estimated using the pro-

gram ADMIXTURE (Alexander et al., 2009), with a three population model. Local ancestry at all
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positions across the genome was estimated using the program LAMP-LD (Baran et al., 2012),

assuming three ancestral populations.

Principal components for the genetic data were determined using the program EIGENSTRAT

(Patterson et al., 2006).

Statistical analysis
Using a variance in methylation m-value of 0.2 units, which corresponded to approximately the 90th

percentile of the variance in m-value in our pilot data, we determined that in order to have an 80%

power to detect a difference in mean methylation between the two major ethnic groups of 0.25

units, using a Bonferroni significance threshold of 1.6 � 10�7 a sample, a sample size of 251 partici-

pants in each group was required. That total sample size of 502 participants gave us 80% power to

detect correlations between ancestry and methylation of medium (Pearson r > 0.25) effect, meaning

that we had 80% power to detect loci where ancestry accounted for at least 6.25% of the variance in

methylation.

Unless otherwise noted, all regression models were adjusted for case status, age, sex, estimated

cell counts, and plate and position. To account for possible heterogeneity in the cell type makeup of

whole blood we inferred white cell counts using the method by Houseman et al (Houseman et al.,

2012). Indicator variables were used to code categorical variables with more than two categories,

such as ethnicity. In these cases, a nested analysis of variance (ANOVA) was used to compare models

with and without the variables to obtain an omnibus p-value for the association between the cate-

gorical variable and the outcome. For analyses of dependent beta-distributed variables (such as Afri-

can, European, and Native American ancestries), or cell proportion, k-1 variables were included in

the analysis, and a nested analysis of variance (ANOVA) was used to compare models with and with-

out the variables to obtain an k-1 degree of freedom omnibus p-value for the association between

predictor (such as ancestry) and the outcome variable.

The Bonferroni method was used to adjust for multiple comparisons. For methylome-wide associ-

ations, the significance threshold was adjusted for 321,503 probes, resulting in a Bonferroni thresh-

old of 1.6 � 10�7. Analyses were performed using R version 3.2.1 (The R Foundation for Statistical

Computing)(R Core Team) and the Bioconductor package version 2.13.

Multidimensional scaling of the logit transformed methylation data (M-values) was performed by

first calculating the Euclidian distance matrix between each pair of individuals and then calculating

the first 10 principal coordinates of the data (Figure 2A). We performed both a simple correlation

analysis of these principal coordinates to demographic factors (age, sex, ethnicity), estimated cell

counts and technical factors (batch, plate, and position) to identify factors that correlated with global

methylation patterns [see Figure 2B). In addition, we performed a multiple regression analysis of

methylation principal coordinates by ethnicity and ancestry, adjusting for case status, age, sex, esti-

mated cell counts, and plate and position (Supplementary file 1A).

We also sought to establish the extent to which global differences in methylation between Puerto

Ricans and Mexicans could be explained by differences in ancestry between the two groups. We

estimated the proportion of the ethnicity association that was mediated by genomic ancestry using

the R package ‘mediation’ (Tingley et al., 2014) for methylation principal coordinates, which dem-

onstrated a significant association with ethnicity.

We also sought to correlate ethnicity and methylation at a locus-specific level. We thus performed

a linear regression between methylation at each CpG site and self-reported ethnicity (Mexican,

Puerto Rican, Mixed Latino, and Other Latino), followed by a three degree of freedom analysis of

variance to determine the overall effect of ethnicity on methylation We repeated the analysis exclud-

ing the 16 participants that were self-described as ‘Mixed Latino’, and tested for non-linearity in two

ways: by adding second and third order polynomials to the model, and by adding a 3-degree of

freedom cubic spline and comparing models with the non-linear terms to those without using a

nested ANOVA. At loci where there was evidence for non-linearity, we tested whether ethnicity

remained associated with methylation after adjusting for ancestry as well as the deviations from lin-

earity. Finally, we tested for the presence of population sub-structure beyond that conveyed through

ancestry by adding the genetic principal components 3–10 (PCs 1 and 2 were co-linear with ancestry

with a coefficient of determination R2 > 0.998) and comparing models with those PCs to those with-

out. At loci where there was evidence for association between PC’s 3–10 and methylation, we tested

Galanter et al. eLife 2017;6:e20532. DOI: 10.7554/eLife.20532 18 of 24

Research article Genes and Chromosomes Human Biology and Medicine

http://dx.doi.org/10.7554/eLife.20532


whether ethnicity remained associated with methylation after adjusting for ancestry as well as the

PC’s 3–10.

We calculated the proportion of variance in methylation explained by ethnicity and genomic

ancestry at each site where ethnicity was significantly associated with methylation. To do this, we fit

a model that included both ethnicity and global ancestry as well as the confounders described above

and calculated the proportion of variance explained by multiplying the ratio of the variance between

predictors (ethnicity and genomic ancestry) and outcome (methylation) by the square of the effect

magnitude (ß).

We also examined whether differences in methylation patterns by ethnicity could be associated

with known loci that had previously been reported to vary based on common environmental expo-

sures, including maternal smoking during pregnancy (Joubert et al., 2012), diesel exhaust particles

(DEP) (Jiang et al., 2014), and exposure to violence (Chen et al., 2013). We have previously shown

that exposure to these common environmental exposures or similar exposures varied by ethnicity

within our own GALA II study populations (Oh et al., 2012; Nishimura et al., 2013; Thakur et al.,

2013).

In addition, we examined the association between global ancestry and methylation across all

CpG loci using a two-degree of freedom likelihood ratio test as well as by examining the association

between individual ancestral components (African, European, and Native American) and methylation

at each CpG site. At each site where methylation was significantly associated with genomic ancestry

proportions, we determined the relative effect of global ancestry (q, theta) and local ancestry (g ,

gamma) in a joint model by calculating the proportion of variance explained as above.

To determine whether ancestry associations with methylation were due to variation in local ances-

try, we correlated local ancestry at each CpG site with methylation at the site. Because ancestry LD

is much stronger than genotypic LD, it is possible to accurately interpolate ancestry at each CpG site

based on the ancestry estimated at the nearest SNPs (Galanter et al., 2014; Rosenberg et al.,

2010). Measures of locus-specific ancestry were correlated with local methylation using linear regres-

sion. We performed a two-degree of freedom analysis of variance test evaluating the overall effect

of all three ancestries as well as single-ancestry associations comparing methylation at a given locus

with the number of African, European and Native American chromosomes at that CpG site.
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