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Abstract

Prostate cancer (PCa) recurrences are often predicted by assessing the status of surgical margins 

(SM) – positive surgical margins (PSM) increase the chances of biochemical recurrence by 2–4 

times which may lead to PCa recurrence. To this end, an electrical impedance acquisition system 

with a microendoscopic probe was employed in an ex-vivo study of human prostates. This system 

measures the tissue bioimpedance over a range of frequencies (1 kHz to 1MHz), and computes a 

number of Composite Impedance Metrics (CIM). A classifier trained using CIM data can be used 

to classify tissue as benign or cancerous. The system was used to collect the impedance spectra 

from 14 excised prostates, which were obtained from men undergoing radical prostatectomy, for a 

total of 23 cancerous and 53 benign measurements. The data revealed statistically significant 

(p<0.05) differences in the impedance properties of the benign and tumorous tissues, and among 

the measurements taken on the apical, base, and lateral surface of the prostate. Further, in the 

leave-one-patient-out cross validation, a maximum predictive accuracy of 90.79% was achieved by 

combining high frequency CIM phase data to train a support vector machine classifier with a 

radial basis function kernel. The observations are consistent with the physiology and morphology 

of benign and malignant prostate tissue. CIMs were found to be an effective tool in distinguishing 

benign from cancerous tissues.
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I. Introduction

Prostatic adenocarcinoma (PCa) is the most diagnosed form of cancer and the second 

leading cause of cancer-specific death in men in the USA. In 2015, 26% (220,800 men) of 

all diagnosed cancers in men are expected to be within the prostate, and approximately 

27,540 men are expected to die of the disease [1]. Men that have higher risk prostate cancer 

often opt for radical prostatectomy (RP) as a curative therapy, with the Center for Disease 

Control reporting that over 100,000 radical prostatectomies are performed annually in the 

USA [2]. Nearly 4 out of 5 RPs are performed robotically, and the procedure is usually 

referred to as Robot-Assisted Laparoscopic Prostatectomy (RALP) [3]. RALP is an 

interventional procedure in which the entire prostate is removed from the body with the 

objective of eradicating all PCa, most commonly using a da Vinci surgical robotic system 

(Intuitive Surgical Inc., Sunnyvale, CA). In some cases, however, inspection of the final 

prostatectomy specimen will show that there is cancer microscopically at the edge of the 

gland, due to incision of the capsule or spread of cancer into periprostatic tissues. Such an 

instance is termed Positive Surgical Margin (PSM) and it can lead to recurrence of cancer in 

the years following the surgery. Currently, the routine protocol for margin assessment is to 

pathologically assess the excised prostate for PSM, which is used to determine if adjuvant 

treatment is necessary.

Patients with PSM are at a significantly increased risk of cancer recurrence [4]–[6]. Orvieto 

et al. reported that the ten-year biochemical disease-free survival rate for patients with PSMs 

was 59.9%, and the same statistic for patients with negative surgical margins (NSM) was 

89.6% [5]. Further, in combination with several other risk factors including extra capsular 

extension and Gleason grade (a tissue architecture feature used to characterize the 

aggressiveness of prostate cancer and to assess prognosis [7]), surgical margin status is still 

useful as an independent indicator of risk for biochemical recurrence [8]. Thus, an 

intraoperative device that can assess the status of surgical margins in real-time, thereby 

enabling the surgeon to remove positive margins (with the objective of achieving NSM), 

would potentially reduce the incidence of PCa recurrence following RALP.

At present, no routine procedures or technology is used in the OR for intraoperative 

detection of cancer at the margins. A fraction of hospitals have been evaluating the 

histology-based intraoperative frozen section (IFS) technique for assessing margin status [9], 

[10], and a limited number of studies have noted its efficacy [10]–[13]. However, each IFS 

sample requires at least 20 minutes for evaluation [13], samples a small tissue volume [14], 

and disrupts the surgical workflow as it requires the robot to be dedocked to retrieve the 

sample.

Towards development of system that can intraoperatively assess surgical margins, several 

research groups have evaluated the use of optical and photodynamic techniques for the 

detection of prostate cancer. Salomon et al. reported a method incorporating triple 

spectroscopy (laser-induced auto fluorescence, white-light remission, and high-frequency 

impedance) to distinguish between benign and malignant prostatic tissue with a specificity 

of 87.3% and a sensitivity of 87.5% in an ex vivo study [15]. Using a dual spectroscopy 

approach (auto-fluorescence and light reflectance), Sharma et al., achieved an accuracy of 
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85–90% (depending on cancer grade) in classifying benign and malignant tissues [16]. 

Previous studies by our group reported statistical significance between benign and prostatic 

adenocarcinoma using a coaxial cable based bipolar probe [17], [18]. Other approaches 

include methods based on diffuse optical tomography [19], optical coherence tomography 

[20], and coherent anti-Stokes Raman scattering [21]. While these techniques are promising, 

their potential for clinical translation and miniaturization for robotic surgeries remains 

unclear.

To achieve the ultimate goal of developing an intraoperative surgical margin assessment 

system for use during RALP, this study reports the results from an ex vivo human prostate 

study performed using an electrical impedance acquisition system [22], with a 

microendoscopic impedance probe [23]. The microendoscopic probe measures 11 mm in 

diameter making it suitable for introduction into the surgical cavity through one of the 

abdominal ports used by the robot to introduce surgical instruments into the operating site. 

This system leverages tissue electrical impedance as a biomarker to distinguish between 

benign and cancerous tissues [17], [24], [25]. Using this system, 14 human prostates were 

evaluated after they had been resected during a RALP procedure. A total of 23 cancerous 

and 53 benign impedance measurements were recorded from the excised prostates. For each 

measurement, composite impedance metrics (CIM) were calculated and used for data 

analysis. Methods were developed to classify a tissue site as being either benign or 

cancerous and a confidence value was computed for each classification. Image patches 

corresponding to the classification and confidence level can be generated and displayed to 

provide the surgeon with an intraoperative image of surgical margin status.

This paper is organized as follows. Section II (methods), describes the data collection 

process and composite impedance metrics. Section III summarizes results from hypothesis 

tests for statistical significance, receiver-operating characteristics (ROC) analysis, area under 

the curve, and the leave-one-patient-out cross validation. In Section IV, we discuss the 

prostate data in detail, including the physiological and morphological basis for using 

electrical impedance for cancer detection. A short conclusion completes the paper. 

Preliminary results from this study were presented at a conference [26].

II. Methods

Impedance data was recorded from several locations on the excised prostates, including the 

surface of the excised prostate, and the exposed surface of the sectioned (sliced) prostate 

(specified in section II.C). These surfaces are henceforth referred to as the exterior and 

interior surface respectively. The electrical impedance acquisition (EIA) system used in this 

study comprises a data acquisition (DAQ) unit and a microendoscopic impedance-sensing 

probe. Following subsections detail the impedance DAQ system, prostate data collection 

protocol, and the composite impedance metric that is used in this study for analysis of 

prostate bioimpedance measurements.

A. Impedance Measurement Hardware Description

To measure tissue bioimpedance, the electrical impedance acquisition system applies a 

sinusoidal signal (voltage or current) between a pair of electrodes in the microendoscopic 9-
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electrode probe (Fig. 1), while the probe is in contact with the tissue under test. Under 

excitation, the electric potential induced at all electrodes is recorded using the DAQ unit. For 

any combination of source and sink electrode, tissue impedance can be computed from the 

measured voltages and currents using Ohm’s law. To reduce errors in impedance 

measurements due to contact impedance at the tissue-electrode interface, a tetrapolar 

measurement technique (also known as the 4-wire method) is used. A high-speed electrical 

impedance sensing system, capable of using up to 32 electrodes, was designed to record data 

[27] (Fig. 1b).

For this study, a 9-electrode microendoscopic probe was fabricated to record impedance 

measurements within a 10mm diameter region (Fig. 1a). The probe consists of a 0.5m long, 

10 mm ID (inner diameter) silicon rubber tube (5041K76, McMaster Carr, Elmhurst, 

Illinois) that houses (i) the probe tip housing constructed with electrical-grade G-9 type 

garolite (McMaster Carr, Elmhurst, Illinois), (ii) nine 1mm diameter gold electrodes 

(205089-4-ND, DigiKey), (iii) nine 24 gauge Teflon coated cables interfacing the electrodes 

to the EIA system. All materials and the medical grade epoxy (30673, Ellsworth Adhesives) 

used in probe construction can withstand repeated sterilization and are suitable for 

intraoperative use. This probe is sufficiently small to fit within a standard 12 mm 

laparoscopic port used during RALP.

To study the efficacy of using this system to measure bio-impedance as a biomarker to 

distinguish between benign and malignant tumors, an ex-vivo study was performed (as a 

precursor to in-vivo experiments) on 14 human patients. Impedances were recorded from 

excised prostates by driving current through multiple pairings of electrodes in contact with 

the prostate, and recording the voltage induced at all other electrodes.

The electrical impedance acquisition system [22] used in this study is capable of applying 

current or voltage signals at frequencies ranging from 100 Hz to 10 MHz; however, the 

parasitic impedances associated with the multiplexer and the passive probe cable (~0.5m 

long), were the limiting factors in selecting the frequency range for this study (1 kHz – 1 

MHz). Measured signals can also be averaged at an averaging factor of 2 to 16384. The 

instrument can acquire data at frame rates exceeding 100 Hz at signal frequencies ≥10 kHz. 

The signal-to-noise ratio (SNR) with 8 averages is over 90 dB across the frequency 

spectrum. The instrument’s voltage measurement reciprocity error is less than 0.5% and 1% 

at signal frequencies up to 100 kHz and 1 MHz respectively.

The EIA system utilizes Field Programmable Gate Arrays (FPGA) for signal sampling, 

averaging and spectral characterization. Using a Discrete Fourier Transform (DFT) block 

implemented on the FPGA, the EIT system can calculate the noise power associated with 

each voltage measurement at an individual electrode for each input signal frequency. The 

noise power metric is the sum (L1 norm) of all harmonics (magnitudes) in the DFT output 

computed on the FPGA, excluding the fundamental and DC components. The FPGA 

computes a 512-point DFT spectrum, and there are 255 unique harmonics (not counting 

fundamental and DC components). When the sum of magnitudes of the 255 harmonics 

exceeds 1 (~3.9 mV per harmonic), the voltage measurement corresponding to the 

fundamental harmonic is considered unreliable (this could be due to improper tissue-
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electrode contact, extremely low or high load impedance, etc.). In comparison, at the voltage 

injecting electrode, the fundamental harmonic magnitude (L2 norm) is usually observed at 

~0.58 volts.

B. Impedance Measurement Technique

Impedance spectra were recorded at several probed sites on the exterior and interior surface 

of the prostate. For each probe site, impedance data is acquired by sequentially driving an 

excitation signal through multiple combinations of electrode-pairs such that each electrode-

pair denotes a so-called ‘pattern’. For example, in a nine-electrode system, the measurement 

of current flow between two current driving electrodes, and induced voltage recorded from 7 

voltage sensing electrodes constitutes a single pattern-data (Fig. 2). For this study, data was 

collected for several electrode-pair patterns under current excitation. The data was acquired 

for 72 electrode-pair patterns at 28 discrete frequencies ranging from 1 kHz – 1 MHz. For 

each electrode-pair pattern, 512 voltage samples from an integer number of cycles of the 

sine wave are acquired at every electrode. For our experiments, 64 sample sets containing 

512-points each are averaged together to increase SNR. The system requires ~55 seconds to 

acquire a full spectrum (28 frequencies) of data from each probing site when 72 patterns are 

used and signal averaging is set to 64. The system acquired data for 72 electrode-pair 

patterns for a 9-electrode probe (# of exhaustive pattern combinations = n*(n-1); n=9 => # of 

patterns = 72). In this study we used a subset of these patterns; full dataset can be used for 

Electrical Impedance Tomography (EIT), which is an intended future study outside the 

scope of this work.

C. Prostate Procurement and Histological Assessment

All ex-vivo prostate experiments were performed at Dartmouth-Hitchcock Medical Center 

(DHMC, Hanover, NH, USA), under an Institutional Review Board (IRB) approved 

protocol. Prior to a patient undergoing RALP procedure, the surgeon (Dr. Elias Hyams) 

obtains a consent form signed by the patient. After the surgery, the excised prostate is placed 

in an airtight bag and transported immediately to a pathology laboratory, where a pathologist 

measures the size and weight of the prostate.

Following these measurements, impedance data is recorded by probing the exterior surface 

of the prostate. Each prostate is probed on the exterior surface at the apex, base, and on the 

right and left posterior lateral surfaces (these represent locations with high incidences of 

positive surgical margins) (Fig. 3). The probed site is marked with green ink to enable its 

delineation during microscopic evaluation. Following these exterior surface measurements, 

the prostate is sectioned into ~3mm thick tissue slices. The prostate slices are arranged on a 

corkboard in the order in which they were sectioned (Fig. 3c). Each slice can be divided into 

four quadrants; right posterior, left posterior, right anterior, and left anterior. In each 

quadrant, a circular region of 10mm diameter is probed using the EIA system. A total of 4–8 

quadrants from the entire slice-set are probed to obtain the intraprostatic impedance 

measurements. Following data acquisition, the prostate slices are fixed in formalin for 

microscopic analysis.
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Each prostate quadrant was microtomed and stained with Hematoxylin and Eosin (H&E) for 

microscopic review using a procedure we have previously developed [23]. An experienced 

pathologist (Dr. Alan Schned) reviewed the stained tissue samples from each quadrant 

probed, identified regions of PCa and delineated the PCa boundaries with a marking pen. 

The boundaries are then transferred onto a slice map where the cancerous region can be 

observed with respect to each quadrant. These maps were used as ground truth to label the 

impedance datasets for classifier training and testing. Our group has used this approach in 

the past [23]. These histology maps are used to label each probed site as ‘benign’ or 

‘malignant’ (fig. 3e–f). The impedance data corresponding to prostate slice quadrants that 

contained >75% PCa within the probed region were labeled ‘malignant’, and the impedance 

data corresponding to prostate slice quadrants that did not contain PCa were labeled 

‘benign’. Cancer containing quadrants with <75% PCa were not included in this analysis.

D. Composite Impedance Metric (CIM)

A CIM can be calculated for each electrode-pair pattern type, by averaging the complex 

impedances obtained for a set of tetrapolar patterns that are geometrically similar. Figure 4 

illustrates a CIM for a current source and current sink electrode-pair combination of 

electrode 1 and electrode 5. This CIM is referred to as CIM1524, where the subscripts refer 

to the current source-sink combination of electrode 1 and electrode 5, and voltage difference 

measured across electrode 2 and electrode 4. The subscript ‘1524’ in this case represents the 

CIM obtained by averaging all non-reciprocal patterns that are geometrically similar to the 

pattern 1524, such as pattern 2635, pattern 3746, and so on. For example, CIM1524 is 

calculated using the following equation:

(1)

where Zijkl represent the complex-valued impedance computed when current is injected 

through electrode i and sunk through electrode l, and a voltage difference is measured 

between electrode j and k.

The CIMs can be used as features for classification algorithms; to create a feature set for 

classification, multiple complex-valued CIMs were computed at each signal frequency for 

probed sites on the exterior and interior surface of the prostate.

III. Results and Analysis

A. Exterior Measurements

Impedance data collected on the exterior surface of the prostate was grouped according to 

their location, i.e., apex, base and lateral surface. The apex, base and right and left lateral 

surface of the prostate were probed four, one and three times each (base, mid and apex), as 

shown in Fig. 3b. CIMs were computed for each probed site at all frequencies, and were 

averaged together according to their location on the prostate (i.e. apex, base, or lateral 

aspects). For one out of the 14 patients, impedance data on the exterior surface could not be 

collected due to a delay in acquiring the prostate specimen from the operating room. Overall, 
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there were 13, 78, and 52 CIM data points recorded from the base, lateral surface, and apex, 

respectively. The CIM data for these impedance measurement types (by location) were 

averaged to calculate the mean CIM spectra (Fig. 5). The noise power metric returned by 

EIA system at the source electrode was used to filter out unreliable measurements. Since the 

mean CIM is a complex quantity, we can calculate the associated resistance (R), reactance 

(X), magnitude (|Z|), and phase (ϕ) components of CIM, as the real, imaginary, magnitude, 

and angle component of CIM, respectively. Figure 5 shows the R, X, |Z|, ϕ spectra of mean 

CIM1524 corresponding to the apex, base and lateral surface measurements over the signal 

frequency range (1kHz – 1MHz).

To compute the mean (μ) and standard deviation (σ ), of CIM components (R, X, |Z|, ϕ), the 

data within 5th and 95th percentile was used. It can be observed that the impedances vary 

corresponding to the prostatic tissue being probed. The trend suggests that the R and |Z| of 

CIM1524 is highest at the lateral prostatic tissues, and lowest at the base prostatic tissues at a 

given frequency, with a maximum mean resistance (at 1kHz) of 149.6 Ω, 207.9 Ω and 250.4 

Ω at the base, apex and lateral surfaces, respectively. The reactance and phase angle show an 

opposite trend; for example, the mean reactance of CIM1524 at 100kHz was −24.9 Ω, −44.9 

Ω, −63.2 Ω, at the base, apex and lateral surface, respectively. These plots suggest that 

bioimpedance varies with respect to prostate anatomy.

To test the assumption of data (CIM1524) being drawn from a uniformly distributed 

population, probability plots were generated, fig. 6. With the exception of a fraction of 

outliers, the CIM properties appear to be normally distributed; as a result, t-statistic was used 

for hypothesis tests (assuming unequal variance) to evaluate whether the differences in apex, 

base, and lateral surface CIM1524 are statistically significant. The t-statistic was calculated 

for differences in mean CIM-R, mean CIM-X, mean CIM-|Z|, and mean CIM-ϕ, by first 

taking into account all of the data without removing any outliers. Next, the hypothesis test 

was repeated with outliers extending beyond the 5th and 95th percentile being removed. Data 

points exceeding the noise power threshold were removed in both of the hypothesis test 

scenarios (with and without outlier removal), since the system can detect such unreliable 

data points automatically. Unacceptable noise power was observed in 1%, 4.6% and 3.8% of 

total voltage measurements from the apex, base, and lateral surface measurements, 

respectively, and these data points were removed. Hypothesis testing revealed statistically 

significant differences for the test statistic for all four CIM quantities (R, X, |Z|, ϕ), and all 

three pairs of the apex, base, and lateral surface CIMs. Table 1 summarizes the results.

With outliers removed (beyond 5th and 95th percentile), the reactance (X) and phase (ϕ) 

components of CIM1524 provide a large range of signal frequencies (9–400 kHz and 20–400 

kHz, respectively) where electrical properties are significantly different for apex, base, and 

lateral surface measurements. Further, with the exception of 50 kHz at the Apex-Base 

hypothesis test, signal frequencies 20–100 kHz had a CIM1524 that was significantly 

different for apex, base, and lateral surface measurements. Excluding 50 kHz, all four 

CIM1524 components (R, X, |Z|, ϕ) were significantly different for apex, base and lateral 

surface measurements.
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Without outlier removal, the CIM1524 magnitude (|Z|) shows significant differences in the 

frequency range 20–90 kHz. CIM1524 phase (ϕ) shows significant differences for the 

frequency range 2–400 kHz, with an exception of 3, 6, and 300 kHz. Keeping the outliers 

does not significantly alter the frequency range where resistance and reactance components 

of CIM1524 show statistically significant differences.

Overall, at 30 kHz, and 60–90 kHz, all four CIM1524 components (R, X, |Z|, ϕ) are 

significantly different for apex, base, and lateral measurements, with or without outlier 

removal. If the data beyond 8th and 92nd percentile is discarded as outlier, all four CIM1524 

components were found to be significantly different for apex, base and lateral surface 

measurements in the frequency range 1–100 kHz. Additionally, it can be noted that the 

resistance component does not show significant differences in the higher frequency range 

(>100 kHz). This can be attributed to the fact that as the signal frequency increases, the 

reactive components begins to draw more current (than the current drawn at low 

frequencies), which leads to a reduction in measured resistance at higher frequencies and 

ultimately results in the differences in resistance component of CIM being not significant.

B. Interior Measurements

The impedance data collected on the prostate slices was grouped into two categories: benign 

and malignant. Impedance data collected from a site (one of the quadrants of the prostate 

slice) was labeled as benign, if the quadrant that was probed was devoid of any PCa 

(identified using histologist’s report). Similarly, if the quadrant had majority cancer (>75% 

PCa), the impedance data collected from that quadrant was labeled as malignant. Based on 

the pathologists report, 53 quadrants (and the corresponding impedance measurements) were 

labeled benign, and 23 quadrants were labeled malignant. Additionally, 33 probed locations 

were found to have partial presence of malignant tissues; because an exact registration 

between the probed site and cancerous regions could not be established for these 

measurements, they were not included in this study. Subsequently, CIM1524 spectra were 

computed for the benign and malignant impedance data.

Figure 7 shows the R, X, |Z|, ϕ spectra of mean CIM1524 corresponding to the benign and 

malignant measurements over the signal frequency range (1kHz–1MHz). The trend apparent 

from these plots suggests that the resistance and magnitude components of CIM1524 are 

higher for malignant data. At 1 kHz, the mean resistance of CIM1524 is 300.9Ω for benign 

tissue as compared to 344.5Ω for the malignant tissue. Similarly, the mean magnitude of 

CIM1524 at 1kHz was 303.5Ω and 347.2Ω, for benign and malignant tissues, respectively.

Since the reactive component at 1kHz is very low in comparison to the resistive component, 

the overall magnitude turns out to be close to the resistive component at low frequencies. 

The mean reactance and phase components of CIM1524 also show contrast between benign 

and malignant tissues, with a mean reactance of −76.8Ω for benign measurement, as 

compared to the −95.9Ω for the malignant measurement. Similarly, at 200 kHz, the mean 

phase component of CIM1524 was computed to be −0.51 radians and −0.57 radians for the 

benign and malignant measurements, respectively. In summary, all four components of 

CIM1524 show contrast between benign and malignant tissues.
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Similar to our evaluation of exterior surface measurements, a hypothesis test was performed 

to check the null hypothesis that the benign and malignant measurements have the same 

mean. The probability plots (not shown) ensured that the data was sampled from a uniformly 

distributed population. Thus, a t-statistic was used for hypothesis tests (assuming unequal 

variance). The t-statistic was calculated for differences in mean CIM components, with and 

without removing the outliers. Data points that exceeded the noise power threshold were 

removed in both of the hypothesis test scenarios (with and without outlier removal), which 

resulted in 0.6% and 1% of total voltage measurements being removed from the benign and 

malignant measurements, respectively.

Hypothesis tests showed statistically significant differences for the test statistic for all four 

CIM quantities (R, X, |Z|, ϕ), for benign and malignant measurements (Table 2). The table 

suggests that the largest frequency range with significant CIM differences occur for the 

CIM-phase (ϕ) component, with ϕ differences being significant in the 10–1000 kHz range. 

Similarly, CIM-X is significantly different for benign and malignant tissues in the 5–200 

kHz frequency range. The resistance and reactance differences are only significant in the 5–

30 kHz range and 5–50 kHz range, respectively. The frequency range with significant CIM 

difference expands with outliers (data beyond 5th and 95th percentile) being removed. The 

CIM-phase is significantly different over a larger range of frequency, and is a strong 

candidate for being used as a feature in classifying benign and malignant tissues.

Lastly, among the external measurements, 1%, 4.6% and 3.8% of total voltage 

measurements from the apex, base, and lateral surface measurements, respectively, were 

removed. In comparison, only 0.6% and 1% of voltage measurements were removed from 

benign and malignant measurements, respectively. There are a few factors that might have 

led to higher percentage of unacceptable noise power in the external measurements. The 

external surface of the prostate was exposed to the air, and became more dehydrated than 

internal tissue because it was exposed to the air for a longer period of time prior to probing; 

the larger impedance associated with a dehydrated prostatic capsule could cause a subset of 

measurements to have unacceptable noise power. Further, the internal prostate slice surface 

is relatively flat compared to the external surface; this results in electrodes-tissue contact 

being more consistent in the internal surface. In contrast, the external surface has varying 

degree of curvature depending on location; this might lead to lower contact area between 

electrode and the tissue for some electrodes. Both of these issues (dehydrated surface and 

uneven surface) could result in higher levels of noise power in the external measurements.

C. Classification

Hypothesis tests confirmed that the EIA instrument was able to sense electrical property 

differences between benign and malignant tissues, as measured using CIM1524. In this 

section, we show the receiver operating characteristic (ROC) data for a classifier trained 

using the CIM1524 data, and discuss ways to combine multiple types of CIMs and CIM 

properties for classifying the measurement as benign or malignant.

Using the CIM1524 data, ROC curves and the associated area under curve (AUC) were 

calculated at each operating signal frequency, fig. 8. The AUC plots show that the 

thresholding based classifier has higher probability of classifying malignant measurement as 
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malignant using the CIM-R and CIM-|Z| data over the low frequency range, than the higher 

frequency CIM-R and CIM-|Z| data. Similarly, the CIM-X and CIM-ϕ AUC plots suggest 

that the thresholding based classifier affords higher probability of classifying a malignant 

measurement as malignant using the high frequency CIM-ϕ data. The ROC analysis was 

repeated using CIM1423 and confirmed the trends observed in the AUC plots obtained using 

CIM1524 data, fig. 8.

To evaluate the predictive value of using CIM data to distinguish between benign and 

malignant morphologies, a leave-one-patient-out (LOPO) cross validation strategy was used. 

The training dataset was formed by using data acquired from all but one patient, and was 

used to train a radial basis function (RBF) kernel based Support Vector Machine (SVM) 

classifier. The predictive accuracy obtained using CIM1524 data is shown in the Fig. 9; it can 

be observed that the CIM1524-ϕ data at 1 MHz leads to highest predictive accuracy of 

80.75%.

The ROC, AUC, and predictive accuracy tests were further extended to evaluate if any other 

type of CIMs afforded higher AUC and accuracy. Eight of the CIMs that were used for this 

evaluation have been graphically represented in Fig. 10. First six of the eight electrodes were 

chosen by keeping the source and sink fixed at electrode 1 and 5, respectively, and by 

sensing the voltage difference at several other electrodes with reference to electrode 2. 

Similarly, last two of the eight CIMs were chosen by keeping source and sink fixed at 

electrode 1 and 4, and by measuring the potential difference at electrode 3 and 9 with 

reference to electrode 2. The corresponding cross validation accuracy plots for these CIM 

types have been shown in Fig. 9. In general, the CIM-ϕ data provides the highest AUCs at 

signal frequencies exceeding 100 kHz, with CIM1527-ϕ resulting in ~80.4% accuracy at 300 

kHz, and CIM1523-ϕ resulting in ~82.6% accuracy at 1 MHz.

Further, since each CIM represents the response of a different tissue morphology, 

combination of CIMs were tried to evaluate potential improvements in the classification 

accuracy. Based on the AUC and predictive accuracy plots corresponding to each CIM, 

following trend was observed. CIMs that were calculated using potential difference across 

electrodes that were relatively further apart (e.g. CIM1524), resulted in large potential 

difference across the sensing electrodes by virtue of their geometrical arrangement. Such 

CIMs usually led to high classifier AUC (≥ 0.8) and accuracy (≥ 0.75) at signal frequencies 

exceeding 100 kHz, when the classifier was trained and tested on the CIM-ϕ data; e.g. 

CIM1524-ϕ and CIM1526-ϕ. To test the SVM-based classifier on a combination of CIM data, 

the phase data from CIMs that led to AUC of at least 0.75 was pooled together (total 17 

features), with data acquired at each signal frequency (for a single CIM) defined as an 

independent feature.

Next, the SVM-based classifier was used to perform leave-one-patient-out (LOPO) cross 

validation using the selected CIM dataset. Using the entire feature set, led to a predictive 

accuracy of 69.5%. To identify the most discriminative set of features that maximize 

predictive accuracy, combinations of n (= 2, 3, 4, 5) features from the feature set containing 

a total of 17 features were tried (referred to as best-n feature trials). We found that a 

combination of two CIMs (CIM1524, CIM1526), led to LOPO cross validation accuracy of 
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90.3%. Further, by using three and four of the 17 features, the classification accuracy was 

89.7% (approximately same). The predictive accuracy reduced slightly to 88.7% when 5 of 

the best case feature combinations were used. High frequency CIM1524-ϕ and CIM1526-ϕ 
data were common features in the feature combinations that led to highest predictive 

accuracy in the best-n feature trials.

Overall, by combining the CIM-ϕ data, the maximum accuracy achieved was 90.3%, using 

the best-two feature set. Further, to find an optimal threshold that maximizes the product of 

specificity and sensitivity towards cancer detection of the SVM-based classifier, an ROC 

analysis was performed by thresholding the RBF-kernel-based raw SVM score; ROC curve 

has been shown in Fig. 11. At optimal threshold that maximizes predictive accuracy, the 

predictive accuracy was found to be 90.8% with a specificity of 94.3% and a sensitivity of 

82.6%.

IV. Discussion

A. CIM Patterns and Intraprostatic Measurements

In order to show that the differences in electrical properties of benign and malignant tissues 

are significant (as sensed by our EIA system), the exterior and interior measurements in the 

previous section were analyzed using the CIM1524 data. The ROC, AUC, and accuracy tests 

performed using several other CIM patterns suggested that only a few CIM patterns led to 

high predictive accuracy (>70%) in the leave-one-patient-out cross validation. These 

findings were not completely surprising; their correlation with the tissue physiology can be 

understood as follows.

The EIA system applies an ac current on the order of 1–10 mA (amplitude varies with signal 

frequency), and the amplitude of applied current does not change as the system switches 

through the source-sink electrode combinations (or ‘patterns’) at a given signal frequency. If 

the tissue medium is assumed to be homogenous, the amplitude of induced potential at all 

other electrodes varies in proportion to a geometry factor, which in turn depends on the 

distance between the source and the sink electrode. This is the reason why CIM patterns 

such as CIM1524, were expected to be more sensitive to changes in tissue structure (benign/

malignant) thus leading to higher classification accuracy, than patterns such as CIM1593.

Further, it can be observed from fig. 7 that at malignant site the magnitude of CIM1524 was 

higher (472.4 Ω at 1 kHz) than the magnitude of CIM1423 (347.2 Ω at 1 kHz). This is 

explained as follows. The amplitude of current at a given signal frequency remains constant 

for electrode source-sink pattern e1-e5 (for CIM1524) and e1-e4 (for CIM1423). Additionally, 

the current flows through a longer distance in case of e1-e5 pattern than in case of e1-e4 

pattern, which results in potential difference measured across e1-e5 for CIM1524 being 

greater than the potential difference measured across e1-e4 for CIM1423; this leads to 

potential difference across e2-e4 (CIM1524) to be greater than e2-e3 (CIM1423). Thus, as per 

the Ohm’s law (R = V/I), the CIM magnitude at a probed site is higher for CIM1524, than for 

CIM1423.
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B. Exterior Measurements

Impedance data recorded from the exterior surface of the prostate were grouped according to 

their location, i.e., apex, base and lateral surface. Results revealed that the electrical 

properties of tissues at the apex, base and lateral surface differ significantly from each other, 

with CIM magnitude being highest at the lateral surface, and lowest at the base. These 

observations correspond well with prostate anatomy.

The base region is a relatively inert portion of the prostate, comprised of relatively loose 

stroma; it falls within the conical-shaped central zone defined per the McNeal model of the 

prostate [28], and comprises roughly 20% of the prostatic volume. The apex of the prostate 

is poorly demarcated from the extraprostatic tissue; skeletal muscle fibers of the sphincter 

intermingle with the fibromuscular stroma and even some benign glands of the prostate in 

the apical and anterior portions of the prostate. The peripheral zone of the prostate, which 

accounts for 70–80% of the prostatic volume and consists of up to 80% of the glandular 

tissues found in the prostate, occupies most of the posterolateral portions of the prostate. 

This portion of the prostate is bordered by a relatively well-defined fibrous “capsule”. Since 

the flow of current is opposed more by the fibrous and glandular tissues than stroma, it is 

expected that the impedance magnitude would be highest at the lateral surface (densely 

packed with fibrous and glandular tissue), and lowest at the base (low density of glandular 

tissue, loose stroma).

The differences in electrical properties at the exterior surface of the prostate will be useful 

for establishing electrical property baseline for benign/malignant distinction at different 

surgical margins.

C. Results and Classification

The interior measurements primarily interrogated the peripheral region of the prostate (70–

80% of the prostatic volume), and revealed significant differences in the electrical properties 

between malignant and benign tissues. Although this observation is consistent with the 

literature [15], [17], [18], [24], [25], it should be noted that the data for this study was 

acquired with an impedance probe that was constructed using 1mm diameter gold-plated 

electrodes (205089-4-ND, DigiKey) that have a small contact area (thus high contact 

impedance) and as such are more prone to the effects of stray impedances than the 

electrodes with large contact area. Additionally, the probe can withstand autoclave 

sterilization protocol, which requires that the probe be maintained at 135°C for 6 minutes, 

and can be used for in-vivo trials.

The electrical property differences between benign and malignant tumors arise primarily 

because of the differences in the volume of extracellular fluid (ECF) present in each 

pathology. ECF is an electrolytic medium in the extracellular space that comprises 

Na+ (150mM), K+ (5mM), and Cl−(100mM) ions. As cancer cells proliferate, the ECF 

volume reduces due to the growth of the neoplasm. The flow of current is primarily confined 

within the ECF at low frequencies; this results in CIM magnitudes (|Z|) measured at 

malignant sites being significantly larger than the CIM-|Z| measured at the benign sites. 

However, as the signal frequency increases, the reactive impedance associated with the 
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capacitive cellular wall increases, and results in current shunting through the intracellular 

fluid. Essentially, at high signal frequencies, the tightly packed neoplastic cells in the 

malignant site result in the CIM phase (ϕ) component being significantly higher than the 

CIM-ϕ measured at a benign site.

The classification algorithm used in this study was SVM with an RBF kernel. The SVM 

based approach is flexible and led to a maximum predictive accuracy of 90.3% in benign/

malignant binary classification, using the high frequency phase data from CIM1524 and 

CIM1526. Additionally, using Platt’s scaling technique [29], [30], it is possible to select an 

optimal threshold for classification, and to obtain the posterior probability, which can be 

used as an indicator of confidence in the classification. It is envisioned that the posterior 

probability can be used to create a confidence-encoded image patch, which can be displayed 

to the surgeon intraoperatively, (Fig. 12). Further, by detecting the pose of the impedance 

probe, using either optical [31], [32] or electromagnetic tracking [33], [34] a transformation 

between the 3D camera frame of reference and the frame of reference defined on the 

impedance probe head can be computed. This transformation can be used within an imaging 

protocol, where the surgeon probes a number of tissue sites in sequence, and a 

corresponding color-coded assessment patch is displayed at each of the probed site. This 

arrangement will allow the surgeon to sequentially image margins around the prostate.

With the classification and confidence information displayed on the screen, the surgeon can 

make an informed decision about margin resection during RALP, where high-confidence 

results from the EIA system can be used to deviate from the usual course of action. An 

example of such a decision is whether or not to extract neurovascular bundles (NVB) in 

RALP. In RALP, particularly for high-risk patients (Gleason score>8, nearly 20–30% of all 

cases, [35]), surgeons often opt for extracting NVBs [36]. However, NVB extraction 

significantly increases the chances of erectile dysfunction [37], [38], and urinary 

incontinence [39], which stands in contrast to the expectations that majority of patients have 

regarding regaining their sexual functionality following RALP [40]. The surgeons can use a 

high-confidence classification from the EIA system to intraoperatively assess the status of 

NVB and decide if nerve sparing can be considered.

In addition to NVB, extracapsular extension frequently occurs at the base and apex, where 

prostate connects to bladder and urethra respectively. It has also been shown that PSM 

>3mm in size with Gleason grade 8 or higher pose a much greater risk of disease recurrence 

than PSM < 3mm or Gleason grade < 8 [41]. Therefore, a high-confidence ‘cancer’ 

classification will enable the surgeons to resect large PSMs at the tissue site surrounding 

base and apex of the prostate, thereby reducing the chances of biochemical recurrence [42].

D. Limitations of the approach

There are three main limitations of the system used in this study: i) the threshold used for 

benign/cancer classification can change if the probe geometry is changed; ii) high frequency 

measurements are affected by stray impedance in the instrumentation, iii) data variability.

The first limitation arises from the fact that the impedance measurements are sensitive to the 

contact area of the electrodes, and the spacing between the source electrode and sink 
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electrode. Moreover, the effective contact area afforded by a specific electrode type can 

change depending on the size of the electrode and the type of material used to manufacture 

and coat the electrode. While the results obtained in this study, and the CIM-based approach 

should remain valid even if a different electrode design is used, the impedance thresholds 

can change.

The second limitation mainly arises due to the presence of multiplexers in the analog front 

end of the EIA system. The multiplexers are used to switch source and sink electrodes, and 

present up to 300pF capacitance at the output lines. Fortunately, these stray impedances do 

not fluctuate in value. As a result, the benign and malignant measurements are affected 

similarly. The effect of stray impedance is also partially mitigated by system calibration.

Lastly, as described in [17] the variability observed in the CIM data arises due to patient-to-

patient variations, operator-induced variability in data collection, and the approximation 

inherent in labeling the measurements. The patient-to-patient variability in data is always 

present and is difficult to model. The CIM data collected from 14 patients in this study was 

found to be uniform, and validated the analysis performed on the data. To reduce the 

operator-induced variability in data collection, the data used in this study was acquired by a 

single researcher (Aditya Mahara) who followed a fixed protocol of data collection to 

maintain approximately uniform applied pressure. Finally, the maps returned by the 

pathologists show an approximate position of the cancerous islands within the tissue slice. 

Thus, the registration between probed site and the surgeon’s map is approximate. However, 

since we label a measurement as ‘malignant’ only if the probed quadrant contains majority 

cancer, the adverse effects of approximate registration in this study are limited.

V. Conclusion

The results presented here lead to two conclusions. The EIA system used in this study, 

combined with the microendoscopic probe, can sense differences in electrical properties 

between: i) the benign and malignant tissues within the prostate and, ii) among the apex, 

base, and lateral surface tissues. The SVM based classifier resulted in high accuracy of 

benign/malignant classification in the leave-one-patient-out cross validation (90.8%) and can 

be used in the future to generate confidence-encoded image patches that present the benign/

malignant classification of a site, with a confidence value to the surgeon in an image form.
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Fig. 1. 
(a) Microendoscopic impedance probe with 9 electrodes used in this study, (b) Electrical 

impedance acquisition (EIA) system used for data collection.
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Fig. 2. 
An illustration of data collection in EIA for a single ‘pattern’. Electrode 1 (e1) and electrode 

4 (e4) were used to apply the current signal, and the induced electric potential was measured 

at all electrodes. The data corresponding to the (e1–e4) pattern consists of current 

measurement (I14), and measured voltage at all electrodes.
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Fig. 3. 
(a) Prostate exterior surface probing sites. Prostate is probed at 3 sites (inked) on the right 

and left posterior lateral surfaces, 4 sites around the apex, and 1 site at the base. (c) Prostate 

interior surface being probed at the right posterior location using the impedance probe. 

Prostate was sliced by a pathologist and placed on a cork board for evaluation, (d) Prostate 

being probed on the exterior surface using the impedance probe, (e) an example of a 

‘benign’ probing site, identified using the histological maps provided by the pathologist. 

Green spot represents the location of malignant tissues within the slice, (f) an example 

‘malignant’ probing site; data collected from the right posterior (lower right) side of slice in 

(e) is labeled ‘malignant’, whereas data collected from the right posterior side of slice in (f) 

is labeled benign.
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Fig. 4. 
Illustration to show the patterns used for computing CIM1524, which is an average of 8 

impedances values as shown in the figure. The 8 impedances values used are: Z1524, Z2635, 

Z3746, Z4857, Z5168, Z6271, Z7382, Z8413. Notice that the subscript ‘1524’ in CIM1524 is only 

used as an index to represent an average of data acquired for the 8 patterns shown here. 

These 8 patterns are ‘corresponding’ in the sense that each pattern is a rotated version of 

pattern 1524 (current applied through electrodes 1 and 5, and potential difference sensed 

across electrodes 2 and 4).
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Fig. 5. 
CIM1524 plots show resistance (top left), reactance (top right), magnitude (bottom left), and 

phase (bottom right) spectra for apex, base and lateral surface measurements. Differences in 

CIM properties can be observed.
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Fig. 6. 
Probability plot of Composite Impedance Metric (CIM) properties measured on the exterior 

surface. Out of the four CIM properties (R, X, |Z|, ϕ), the phase data appears to most closely 

conform with the assumption of normality.
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Fig. 7. 
Comparison of CIM spectra plotted using data collected from all 14 patients; CIM1524 (top 

row) and CIM1423 (bottom row).
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Fig. 8. 
Comparison of AUC over frequency using CIM1524 and CIM1423. The phase data at high 

frequencies (>100 kHz) offers higher AUC than the AUC resulted by using other CIM 

properties.
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Fig. 9. 
Predictive accuracy obtained using the CIM properties for different CIMs. Figure legend 

included in the top-left plot. High frequency phase data generally led to predictive accuracy 

> 75% at select frequencies. By combining high frequency phase data in the manner 

described in this paper, a maximum predictive accuracy of 90.79% was achieved. Fig. 10 

shows the arrangement of CIM patterns reported in this figure.
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Fig. 10. 
The 8 CIM pattern types that were used for the analysis resulting in Fig. 9.
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Fig. 11. 
ROC curve obtained by thresholding the raw support vector machine classifier score. The 

classifier was trained and tested using CIM features (R, X, |Z|, ϕ), at specific frequencies 

(AUC>0.75 at a frequency, Fig. 8). The resulting area-under-curve (AUC) was found to be 

0.86.
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Fig. 12. 
An illustration of probability-encoded image patch that can be displayed on the surgeon’s 

console for intraoperative assessment of the margin tissues. Platt’s scaling technique can be 

used to convert SVM raw score into a probability output.
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TABLE I

Hypothesis Testing To Compare CIM1524 Data For Apex, Base, And Lateral Surface Measurements

CIM Property
Frequency range (kHz) with p-value < 0.05

Lateral-Apex Apex-Base Lateral-Base

With OR

R 20–100 1–100 - {50} 1–100

X 9–400 1–400 1–600

|Z| 20–400 1–200 - {50} 1–300

Φ 20–500 1–500 2–500

Without OR

R 2–90 - {3,6} 1–90 2–500

X 7–400 - {20} 1–400 1–400 - {20,40, 50}

|Z| 20–400 1–90 1–200

Φ 2–400 -{3,6,300} 1–900 - {600} 2–500

OR: Outlier Removal (data beyond 5th and 95th percentile was removed)

The numbers represent range of signal frequencies for which the null hypothesis that the two datasets had same population mean can be rejected at 
a significance level of 0.05 (p-value<0.05). A t-test was performed. The numbers in the brackets list the frequencies that are exception within the 
given range of signal frequencies.
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TABLE II

Hypothesis Testing To Compare CIM1524 Data for Benign And Malignant Measurements

CIM Property
Frequency range (kHz) with P-value < 0.05

Malignant-Benign (with OR) Malignant-Benign (without OR)

R 4–50 5–30

X 5–1000 5–1000 -{300,500,700,800}

|Z| 4–100 5–50

Φ 7–1000 10–1000

OR: Outlier Removal (data beyond 5th and 95th percentile was removed)

The numbers represent range of signal frequencies for which the null hypothesis that the two datasets had same population mean can be rejected at 
a significance level of 0.05 (P-value<0.05). T-test was performed. The numbers in the parenthesis list the frequencies that are exception within the 
given range of signal frequencies.
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