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Summary

An emerging therapeutic strategy for cancer is to induce selective lethality in a tumor by exploiting 

interactions between its driving mutations and specific drug targets. Here, we use a multi-species 

approach to develop a resource of synthetic-lethal interactions among genes mutated in cancer, 

including tumor suppressor genes (TSG) and druggable genes. First, we screen in yeast ~169,000 

potential interactions amongst TSG orthologs and genes encoding drug targets across multiple 

genotoxic environments. Guided by the strongest signal, we evaluate thousands of TSG-drug 

combinations in HeLa cells, resulting in networks of conserved synthetic-lethal interactions. 

Analysis of these networks reveals that interaction stability across environments and shared gene 

function increase the likelihood of observing an interaction in human cancer cells. Using these 
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rules we prioritize >105 human TSG-drug combinations for future follow-up. We validate 

interactions based on cell and/or patient survival, including topoisomerases with RAD17 and 

checkpoint kinases with BLM.

Introduction

Alterations to the tumor genome fall broadly into two classes: gain-of-function mutations in 

growth-enhancing genes (oncogenes) and loss-of-function mutations in growth-inhibitory 

genes (tumor suppressor genes or TSGs). Whereas targeting oncogenes with chemical 

inhibitors or therapeutic antibodies has proven to be effective for cancer therapy (Sawyers, 

2004), it is not currently feasible to restore the function of mutated or deleted TSGs in the 

clinical setting (Morris and Chan, 2015). Rather than targeting a TSG directly, an emerging 

strategy is to identify ‘synthetic lethal’ genetic interactions between the TSG and other 

genes, such that simultaneous disruption of both gene functions causes rapid and selective 

cell death (Brody, 2005). For example, cells deficient for BRCA1 have a reduced capacity 

for repairing double-stranded DNA breaks and are especially vulnerable to further 

perturbations in DNA repair pathways (Fong et al., 2009). Olaparib, an FDA-approved drug, 

exploits this principle by targeting a component of single-strand DNA break repair, PARP1, 

thus causing selective cell death in BRCA1−/− or BRCA2−/− cells (Lord et al., 2015).

Recent efforts to map synthetic-lethal interactions in cancer typically fall into one of several 

categories. First, populations of tumor genomes may be analyzed statistically to detect pairs 

of genes that are seldom co-mutated or co-altered in the same tumor (Jerby-Arnon et al., 

2014), with one interpretation being that loss-of-function of both genes is synthetically lethal 

(Ciriello et al., 2012). This approach has the advantage of directly examining patient 

populations, although it is much better powered to test interactions between alterations that 

are very common than interactions in which one or both alterations is rare (Supplemental 

Experimental Procedures [SEP], Figure S1A).

Second, synthetic-lethal interactions may be mapped by directed combinatorial disruptions 

in human cell lines. Such disruptions use pairwise siRNA knockdowns (Roguev et al., 

2013), combinations of siRNA and drug treatments (Chan and Giaccia, 2011) or the 

CRISPR-Cas9 system to systematically test relevant interactions in an unbiased manner 

(Wong et al., 2016). However, the three largest screens in human cells performed to-date 

(Bassik et al., 2013; Martins et al., 2015; Wong et al., 2016), which screened approximately 

4500, 3600 and 2500 interactions respectively, fall short of the required throughput to 

interrogate the potential interaction space of all gene pairs involving a TSG; they also have 

uncharacterized off-target effects (Jackson and Linsley, 2010; Tsai et al., 2015). A hybrid of 

the above approaches is to screen a population of cancer cell lines against directed gene 

knockdowns or drugs, with the aim of identifying cell-line mutations that interact with 

particular targets (Basu et al., 2013; Cowley et al., 2014). Such hybrid methods face the 

challenges already mentioned, including bias towards the most commonly mutated genes.

While such approaches are still developing, a complementary strategy for mapping synthetic 

lethal interactions in cancer is to leverage conservation with genetic interactions identified 

more tractably in model species (Hartwell et al., 1997). In the yeasts S. cerevisiae and S. 
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pombe, techniques such as synthetic genetic arrays (SGA) and Pombe Epistasis Mapper 

(PEM) enable genetic interactions to be measured in an unbiased manner and at very large 

scale, with minimal off-target effects since the genes are disrupted by complete and specific 

knockout of the open reading frame (Roguev et al., 2007; Tong and Boone, 2006). Although 

the model organism approach is inherently limited to testing interactions of genes that are 

evolutionarily conserved, numerous such interactions have been observed, especially in the 

core conserved pathways in which TSGs are known to operate such as cell cycle, genome 

maintenance and metabolic growth (Roguev et al., 2008; Ryan et al., 2012). A number of 

TSGs important for human cancer were first identified and studied in yeast (Deshpande et 

al., 2013; Huang et al., 2003), which also provides an accessible model system in which to 

study mechanism of action (Simon et al., 2000). Nonetheless, it remains unclear to what 

extent synthetic lethal interactions observed in a model species can be ultimately translated 

for clinical application. Multiple factors have been postulated to influence whether an 

interaction will be translatable, including the genetic, epigenetic, and environmental context 

(Nijman and Friend, 2013). A proper study of such factors would require a large cross-

species dataset of genetic interactions relevant to cancer genes and functions.

Here, we generate such a comprehensive resource of conserved synthetic lethal interactions 

for the study of cancer cell biology and the design of targeted therapy. This network includes 

quantitative tests for interaction among many TSGs in yeast and genes that are currently 

targetable by selective inhibitors (‘druggable’ targets or DT). Strong interactions in this 

dataset are used to design a matched screen for lethal TSG-DT combinations in human 

cancer cells. This process results in a cross-species network of conserved interactions 

between human and yeast, allowing us to study features that best predict conservation and to 

extrapolate this knowledge to evaluate many potential tumor suppressor-drug interactions.

Results

Selection of conserved tumor suppressor and druggable genes

Our overall aim was to generate a broad network of synthetic lethal interactions connecting 

TSGs to DTs, using the ultra-high-throughput capacity of yeast as a springboard into human 

screens. To define a set of TSGs, we compiled a list of 129 genes known or suspected to 

harbor loss-of-function cancer driver mutations for which there were also orthologs in yeast 

(Figure 1A, Tables S1 and S2, Experimental Procedures [EP]). We examined evidence that 

these 129 genes were clinically relevant; on average 73% and 36% of >6000 tumors 

analyzed in the TCGA were found to contain either a somatic mutation or homozygous copy 

number loss, respectively, in at least one of these TSG (Figure 1B; SEP). This incidence was 

significantly higher than that observed for the average human gene (p < 0.001 based on 1000 

random samples; Figure 1B inset). As expected based on sequence similarity, we found that 

the 111 yeast orthologs of these human TSG were enriched for functional roles similar to 

their human counterparts, such as maintenance of genome integrity or coordination of cell 

cycle arrest (Figure 1C), indicating the relevance of these genes for studying conserved 

oncogenic processes.

To define a set of DTs, we began with an inclusive list of human genes either known or 

predicted to be druggable based on features including presence/absence of certain protein 
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domains and presence/absence of binding pockets in the three-dimensional structure (Russ 

and Lampel, 2005). Of these, we prioritized 956 genes, mapping to 433 yeast orthologs, 

chosen to provide broad functional representation (Figure 1A & Tables S1 and S2, EP). 

Approximately one third of these genes were known targets of small molecule compounds 

(Wishart et al., 2008), including 189 genes that were targets of a compound currently 

approved for use in humans by the US Food and Drug Administration (Figure 1A).

A TSG-DT genetic interaction map in yeast

Next, we used SGA technology in the yeast S. cerevisiae (Tong and Boone, 2006) to 

systematically test for genetic interactions among all possible TSG and DT orthologs. SGA 

uses high-throughput robotic colony pinning on agar to create and score growth of large 

numbers of double gene deletion strains in parallel, here yielding tests for interaction among 

43,505 gene-gene pairs. Despite the numerous previous genetic interaction studies in yeast, 

the majority of this space had not yet been tested (Figure 1D) (Ryan et al., 2012). In addition 

to untreated conditions, interactions were assayed in three environmental contexts: 

bleomycin, which causes single and double-strand DNA breaks; hydroxyurea, a 

ribonucleotide reductase inhibitor which interferes with DNA synthesis; and hydrogen 

peroxide, which causes cellular oxidation damage. Across all four environments this dataset 

represented ~169,000 distinct tests of gene-gene interaction.

The resulting growth measurements were analyzed using an established computational 

workflow (Collins et al., 2006) to assign quantitative S scores to all interaction 

measurements; positive S scores indicate an epistatic or suppressive interaction, while 

negative S scores indicate a synthetic sick or lethal relationship (Table S2). For interaction 

measurements that had also been made in previous studies (untreated conditions), 

consistency between the new and previous scores was high (r = 0.50 ± 0.1) and on par with 

the consistency of these studies in comparison to one another (r = 0.58 ± 0.2) 

(Bandyopadhyay et al., 2010; Collins et al., 2007; Costanzo et al., 2010; Fiedler et al., 2009; 

Guenole et al., 2013; Srivas et al., 2013; Wilmes et al., 2008). In total 1,420 synthetic-sick/

lethal interactions (S ≤ −2.5) and 996 epistatic interactions (S ≥ 2.0) were identified in 

untreated conditions, with an average of 14 and 11 synthetic lethal/sick interactions per TSG 

and DT, respectively (Figure 1E). In addition, a pan-cancer analysis of The Cancer Genome 

Atlas (Weinstein et al., 2013) identified 16 TSGs that, when mutated in tumors, are 

associated with coordinate upregulation in genes (FDR<0.1) for which a negative TSG-gene 

interaction is found in yeast (Figure S1B,C, EEP).

Chemo-genetic interaction mapping in human cancer cells

Guided by the yeast network, we next performed a tumor suppressor-drug interaction screen 

in human cancer cells. Recognizing that no single cancer cell line can represent all of human 

cancer, the HeLa cervical cancer cell line was selected given its favorable cell culture 

characteristics and extensive molecular characterization (Adey et al., 2013). We prioritized 

21 drugs for which the yeast DT were involved in the greatest numbers of synthetic lethal 

interactions (interaction ‘hubs’) (Figure 2A, EP). Dose response curves of each drug were 

established so that the proper inhibitory concentrations could be determined (IC20 and IC40, 

Figure 2B, Table S3A). Yeast synthetic-sick/lethal interactions with these DTs had 
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implicated a total of 82 TSGs; to this number we added another 30 human TSGs commonly 

mutated in human cancers, but without orthologous yeast genes.

Within this 21 drug ´ 112 TSG matrix (Table S3B), each drug was screened at both IC20 and 

IC40 doses in combination with each TSG knockdown. We observed minimal batch effects 

and high reproducibility with an average coefficient of variance (CV) of 3.8% per plate and 

92% of plates having CV < 5.0% (Figure S2A). Average replicate correlation across the 

entire screen was 0.95, which we found meets or exceeds the quality of previous genetic 

interaction screens in human cell lines (Figure S2B); IC20 and IC40 measurements were also 

significantly correlated (Figure S2C). To score chemical-gene interactions, the viability of 

each gene knockdown in the presence of drug was compared to the viability of non-targeting 

siRNA also in the presence of drug (Figure 2C, EP).

Applying a standard threshold of 3 standard deviations below the mean (z < −3) 

(Birmingham et al., 2009), a total of 127 synthetic sick/lethal genetic interactions were 

identified (Figure 2D, Table S4). This threshold identified the well-characterized interactions 

of the PARP inhibitor olaparib with both BRCA1 and BRCA2 (Lord et al., 2015) (Figure 

S2D). In contrast, ten-fold fewer epistatic/positive interactions were found (12 at z > 3), 

consistent with the design of the human test space based on yeast synthetic-lethal 

interactions. Examining the entire interaction score profile of each drug, we found that drugs 

targeting similar proteins had similar profiles (e.g. HDAC inhibitors vorinostat and 

rocilinostat, Figure S2E).

A conserved synthetic lethal interaction network

Having generated network resources in both yeast and human cancer cells, we were 

immediately interested in evidence of conservation between the two species. First, we found 

that gene pairs determined to interact negatively in humans had corresponding scores in 

yeast that were significantly more negative than the yeast scores for all remaining gene pairs. 

This result held true across a range of stringent cutoffs used to call human interactions, but 

not more lenient ones (all p-values in Table S5A and SEP). We also computed a Likelihood 

Score (LS) of human synthetic-sickness/lethality provided the interaction had been first 

observed in yeast (SEP); prior observation in yeast (i.e., gene pairs amongst the top 10% 

ranked by S score) increased the likelihood of human genetic interaction by approximately 

three-fold (p<0.031; Figure 3A & Table S5A). We note that this is less conservation then 

previously observed in a smaller-scale synthetic lethal screen centered around the gene 

FEN1 (van Pel et al., 2013).

Based on this general conservation, we next sought to identify the specific interactions with 

evidence of synthetic lethality in both species. To this end, we defined two Conserved 

Cancer Networks of synthetic-sick/lethal interactions, at both lenient (10%) and stringent 

(2%) cut-offs: CoCaNet10 (172 interactions, top 10% based on the rank product of human 

and yeast scores, SEP) and the more stringent CoCaNet2 (36 interactions, top 2%, Figure 

3B, Table S5B). CoCaNet10 included conserved interactions among 59 TSGs and 23 drug 

targets; the more stringent CoCaNet2 captured the strongest conserved interactions, 

including those among DNA damage checkpoint, cell cycle checkpoint, topoisomerase, and 

chromatin remodeling genes. Inspection of these networks revealed 13 interactions that had 
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been previously characterized in humans and 1 in yeast, including synthetic-sick 

relationships between CHEK1 or CHEK2 and WEE1 (Carrassa et al., 2012; Chila et al., 

2015), which we recovered in both orientations (CHEK1/2 inhibitor with WEE1 knockdown 

and WEE1 inhibitor with CHEK1/2 knockdown). All remaining conserved interactions, 

representing the vast majority, were observed for the first time in either species (Figure 

3C,D). The conserved networks, along with the complete human and yeast interaction data, 

are available in the supplement (Tables S2, S4, S5B) and have also been made available on 

the Network Data Exchange (NDEx, www.ndexbio.org; SEP), a database and online 

community for sharing and collaborative development of network models which we recently 

launched as part of the Cytoscape Cyberinfrastructure (Pratt et al., 2015).

Incidence of human interaction is informed by context stability and co-function

We next investigated whether certain network features, or rules of thumb, could increase the 

likelihood of observing an interaction in human cancer cells. To this end we annotated 

human gene pairs with a variety of data, including not only whether we had observed the 

interaction in yeast, but the number of experimental contexts in which the interaction was 

observed (interaction stability, SEP), and whether the genes are known to co-function in the 

same Gene Ontology biological process in either species.

Knowledge that the interaction not only occurs in yeast, but is stable across environmental 

contexts, led to an increase in likelihood of human interaction, up to tenfold from baseline 

(Figure 3A). On top of this information, knowledge that a gene pair functions in the same 

biological process (yeast and human GO terms) increased the likelihood of human 

interaction to 19-fold (Figure 3E). As a negative control, we found that random permutation 

of features led to significantly decreased predictive capability (Table S5A; SEP).

Using the integrated LS score from all informative features (yeast interaction, context 

stability, yeast co-function, human co-function), we then extrapolated likelihoods of 

interaction to as many human gene pairs as possible, including those that were outside of our 

chemo-genetic screen. For this purpose we used data from the chemo-genetic screen to train 

a regression model against all four features (SEP). In total, we assigned LS to >100,000 

human gene-pairs for which all feature types were available, creating an eXtended CoCaNet 

(CoCaNetX, Table S6). CoCaNetX provides an extended set of prioritized human 

interactions including nearly all human TSG and DT for which cross-species data can be 

drawn by orthology to yeast; we anticipate it will be useful for identifying potential 

synthetic lethal interactions in a human gene space orders of magnitude larger than that what 

can be experimentally tested with current technology.

Validation of novel interactions in cell survival assays

A systematic resource of tumor suppressor interactions motivates many future studies into 

the feasibility of repurposing an already approved drug for selective killing of tumor cells 

based on specific genetic alterations. We first explored this principle in cultured tumor cells, 

using the CoCaNet interaction neighborhoods of RAD17 and XRCC3, two tumor suppressor 

genes involved in repair of DNA damage. RAD17 has a homozygous deletion in 

approximately 5% of prostate and ovarian cancers and mutations in approximately 5% of 
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pancreas and stomach cancers, with sporadic alterations observed in tumors of other types; 

XRCC3 is deleted in approximately 4% of bladder and pancreatic cancers (Cerami et al., 

2012).

CoCaNet10 identified that RAD17 was involved in five conserved synthetic-sick/lethal 

interactions, with topoisomerases TOP1 and TOP2A, checkpoint kinases CHEK1 and 2, and 

CSNK1G1, the gamma isoform of casein kinase I (Figure 4A). Of these interactors, TOP1 

and TOP2A are targeted by FDA-approved drugs, while CHEK1 and 2 are targeted by 

molecules in clinical development (Ashour et al., 2015; Thompson and Eastman, 2013). 

CSNK1G1 is known to play a role in tumorigenesis, but its specific inhibitors have not yet 

entered clinical trials (Schittek and Sinnberg, 2014). Investigations in yeast had previously 

identified one of these interactions, between the orthologs of RAD17 and TOP1 (Vance and 

Wilson, 2002), but this interaction was identified in humans for the first time. We therefore 

examined the combination of chemical inhibitors targeting each of the five RAD17 
interactors with RAD17 knockdown in clonogenic assays, to ascertain whether the reduction 

in cell growth observed in the chemo-genetic screen, a cell population measurement, 

translates to a reduction in survival of individual tumor cell clones. We indeed observed that 

topoisomerase inhibition with irinotecan (anti-TOP1) or etoposide (anti-TOP2A), as well as 

casein kinase I inhibition with D4476 (anti-CSNK1G1), resulted in significantly reduced 

colony formation in the setting of RAD17 knockdown relative to non-targeting control 

(Figure 4B–D, Figure S3A). We also observed severe detrimental effects on colony 

formation when combining RAD17 knockdown with AZD7762, a dual inhibitor of CHEK1 

and 2; this interaction is explored in more detail in a companion manuscript (Shen et al., 

2015).

Turning attention to the tumor suppressor XRCC3, CoCaNet10 showed involvement of this 

gene in seven conserved synthetic sick/lethal interactions (Figure 4E). Each of these 

interactions was interrogated by clonogenic assays of the relevant drug in combination with 

XRCC3 knockdown. In order to determine if the CoCaNet interactions would generalize to 

human cell lines other than HeLa, for the XRCC3 neighborhood we elected to examine 

whether the interactions could be recovered in a different cellular background, the LN428 

glioblastoma cell line (Tang et al., 2011). Five of the seven combinations were found to be 

associated with a negative effect on LN428 survival in a clonogenic assay, including 

interactions of XRCC3 with mycophenolate mofetil (MMF, anti-IMPDH1) and vorinostat 

(pan-HDAC inhibitor), both of which are FDA-approved, as well as tipifarnib (anti-

RABGGTB), rocilinostat (anti-HDAC6), and entinostat (anti-HDAC1 and 2), which are in 

clinical development (Figures 4F,G and S3B,C). The remaining two combinations, 

PD0325901 (anti-MAP2K1) and Disulfiram (anti-ALDH2), showed no detectable survival 

effects. Additionally, the synthetic lethal interaction between yeast orthologs RPD3 and 

RAD57 was confirmed in both synthetic growth array and spot dilution assays in yeast 

(Figure 4H, Figure S3D). Together these studies show that, out of 12 interactions examined 

in follow-up clonogenic assay, 10 could be readily associated with a specific decrease in 

tumor cell clonal survival, spanning two cell line backgrounds.

Srivas et al. Page 7

Mol Cell. Author manuscript; available in PMC 2017 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Implications for clinical translation of synthetic lethal interactions

To gauge the clinical relevance of CoCaNet, we explored the association of these 

interactions with differences in clinical outcomes of cancer patients. Although co-mutation 

of both genes of a synthetic lethal pair is too rare of an event to power survival analysis, it 

has been shown that patients with tumors for which both genes of a synthetic-sick 

interaction are under-expressed tend toward longer survival times (Jerby-Arnon et al., 2014). 

This finding is consistent with the idea that decreased function of both genes promotes 

synthetic sickness, causing the tumor to be less robust and leading to improved patient 

outcomes.

We explored evidence for this principle in the CoCaNet resource, using the Jerby-Arnon et 

al. scoring method. Each of ~2000 breast cancer patients profiled in the Molecular 

Taxonomy of Breast Cancer International Consortium (METABRIC) database (Curtis et al., 

2012) was scored by counting the number of synthetic-sick/lethal interactions in CoCaNet10 

for which both genes were under-expressed in the patient’s tumor versus their normal tissue. 

The 10% of cases with the highest scores were marked as having potential ‘Induced 

Synthetic Lethality’ (ISL). The survival curve of these ISL cases was then compared to the 

10% of patients with lowest scores (Non-ISL patients).

Indeed, we found that ISL patients had significantly longer survival times relative to non-

ISL patients (Figure 5A, p = 6´10−4). Median survival had not yet been reached in this 

cohort; however, the upper-quartile survival time for ISL patients was six years greater (9.1 

years vs. 3.1 years, Figure 5B). The greatest contribution to increased survival was from SL 

interaction of BLM and CHEK1, which were under-expressed in 162 out of 196 ISL cases, 

followed by BLM and CHEK2 (Figure 5C; Table S5B lists the contribution to patient 

survival of all CoCaNet interactions). Survival stratification similar to CoCaNet10 was 

observed when defining ISL patients purely by human chemo-genetic interactions, 

independent of evolutionary conservation (CoCaNetHuman) and with the extended network 

predicted from integrated LS score (CoCaNetX). These survival differences were also 

similar to those that had been observed by the original developers of this scoring approach, 

for a different set of computationally derived synthetic-lethal interactions (Jerby-Arnon et 

al., 2014) (Figure 5B). Thus, the synthetic-sick/lethal interactions in CoCaNet appear 

relevant to the clinical response of human tumors by this type of survival analysis.

Discussion

Synthetic lethality has been of increasing interest as a strategy for cancer therapy, supported 

by major research investment and recent clinical success (Lord et al., 2015). Here, we have 

realized an original proposal of (Hartwell et al., 1997), in which comprehensive synthetic 

lethal interaction maps in yeast serve as a central resource for identifying therapeutic 

combinations of gene mutations and drugs in humans. Although this proposal was advanced 

nearly 20 years ago, the majority of the relevant tumor suppressor interactions, in either 

yeast or humans, are being made available here for the first time. In particular, five network 

maps are included as part of the resource: the complete network of genetic interactions 

between TSGs and DTs in yeast (Table S2), the corresponding orthologous network of 

chemo-genetic interactions in humans (CoCaNetHuman, Figure 2, Table S4), the 
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intersection of these data sets to derive networks of conserved interactions at two 

stringencies (CoCaNet2, CoCaNet10; Figure 3, Table S5B), and an extended network of 

predicted interactions among all human TSG and DT based on rules learned from study of 

the first four networks (CoCaNetX, Table S6).

Armed with a systematic map of tumor suppressor - drug interactions, one can begin to 

functionally interpret the catalog of mutations identified in cancer genome sequencing 

studies and to suggest therapies that might be repurposed against mutations identified in a 

new patient. For instance, the inhibitor of type I topoisomerases irinotecan is currently only 

indicated by the FDA for use in colon cancer; the conserved network resource developed 

here suggests that topoisomerase inhibitors should be evaluated for efficacy in cancers 

harboring loss-of-function alterations in RAD17 (Figure 3C, Figure 4A). Similarly, HDAC 

inhibitors such as vorinostat are currently approved for the treatment of cutaneous T-Cell 

lymphoma; our results suggest these drugs should also be evaluated for efficacy against 

tumors with XRCC3 loss-of-function (Figure 3D, Figure 4E). As clinical genomic 

sequencing becomes more common, the synthetic-lethal maps provided by CoCaNetHuman, 

CoCaNet2/10, and CoCaNetX may become increasingly valuable tools to understand 

exceptional responses to therapy (Al-Ahmadie et al., 2014). In addition, these networks can 

continue to be curated as they are used to guide further in vitro and in vivo investigation, and 

ultimately by molecular tumor boards to help identify targeted therapy for individual cancer 

patients (Schwaederle et al., 2014); communal sharing, revision and evolution of networks is 

a key feature of the NDEx database in which these networks are deposited (Pratt et al., 

2015). The potential impact of CoCaNet on precision cancer therapy is large, as greater than 

40% of TCGA patients have loss-of-function in at least one TSG with a synthetic lethal 

interaction involving the target of a currently FDA approved drug (SEP, Figure 5D).

A specific example of how CoCaNet might be used to derive clinically actionable 

information involves a synthetic-sick/lethal interaction identified between irinotecan and 

ATM. In metastatic colorectal cancer (mCRC), treatment with either FOLFIRI (5-

flourouracil plus irinotecan) or FOLFOX (5-flourouracil plus oxaliplatin) is indicated, with a 

response rate to either regimen of approximately 40%. However, diagnostic tests to 

determine which regimen will be most likely to induce a response for an individual patient 

are lacking (Choueiri et al., 2015). As irinotecan is synthetic-sick/lethal with ATM, 

FOLFIRI may be the preferred regimen in the 7% of mCRC tumors for which ATM has an 

inactivating mutation (TCGA, 2012). Examination of the TCGA mCRC cohort identifies 16 

ATM-mutated patients, of which 6 were initially treated with irinotecan; in these patients 

there is indeed a 15-month trend towards better survival (44 months versus 29 months for 

other regimens). Given the small sample size this trend is not presently significant (log-rank 

p = 0.3) but it does prompt a follow-up study of ATM as a marker for irinotecan therapy.

Other examples of potential clinical translation are found in the genetic interaction profiles 

of three of the traditional cytotoxic chemotherapeutic drugs — vinorelbine, methotrexate, 

and irinotecan. Although each of these drugs has a distinct mechanism of action, all have 

strong interactions with multiple cancer genes involved in cell cycle regulation (CDK12, 

CDC73, CHEK1, WEE1) (Figure 2C, Figure S4A). Yet another interaction cluster of interest 

combines commonly mutated genes in DNA damage response pathways (BRCA1, XRCC3, 
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BLM, WRN, ATAD5) with multiple chemical inhibitors of the checkpoint kinases 

(MK-8776, MK-1775, AZD7762) (Figure 2C, Figure S4B). Of note, interactions with 

Bloom syndrome protein (BLM) and the checkpoint kinases CHEK1 and CHEK2 were the 

strongest contributors to the survival stratification seen in the METABRIC cohort (Figure 

5C). Both CHEK1 and CHEK2 can phosphorylate BLM, a RecQ family DNA helicase that 

participates in homologous recombination, telomere maintenance, and DNA replication 

(Kaur et al., 2010). Such results are consistent with prior reports of synthetic lethal 

interactions between checkpoint kinase inhibitors and other DNA repair genes, including 

TP53, CDKN1A, RAD17 and multiple members of the Fanconi Anemia pathway, as well as 

the fact that checkpoint kinase inhibitors synergize with radiation (Chen et al., 2009; 

Origanti et al., 2013; Shen et al., 2015). The interaction cluster observed here suggests the 

existence of a large synthetic lethal network connecting DNA repair to cell cycle 

checkpoints. Given that loss-of-function events in any individual gene are typically rare in 

cancer (Hofree et al., 2013), the ability to identify clusters of interactions among related 

TSGs and drugs could allow for aggregating individual “N-of-1” patients (Collette and 

Tombal, 2015) into larger cohorts for more robust clinical investigation of these 

combinations.

As genetic interaction maps are further developed and refined in studies of human cancer, a 

worthy question concerns the continued value of prior screening in model organisms like 

yeast. Our analysis highlights several ways in which cross-species data may continue to be 

quite valuable. First, rapid screens in model organisms allow for very large interaction test 

spaces and multi-condition designs, in preparation for more challenging interaction screens 

in humans. In this regard, screening the complete space of human TSG-DT genetic 

interactions is likely to remain inaccessible for some time, and certainly with the precision 

enabled by model organism genetics. Second, an interaction conserved in yeast anchors the 

new finding to an experimentally tractable organism in which follow-up studies of 

mechanism of action may be more readily pursued. Finally, conservation in multiple species, 

especially those as evolutionarily divergent as yeast and humans, suggests that these 

interactions involve core elements of the eukaryotic cell. Might this mean that these cross-

species conserved interactions will also be relevant across a wide range of cancer cells with 

diverse cell lineages and genetic alterations? Although this possibility deserves further study, 

one might take comfort in synthetic-lethal interactions that not only relate to human cells, 

but to creatures evolutionary divergent by more than a billion years (Nei et al., 2001).

Experimental Procedures

Generating the yeast genetic interaction data

We constructed all possible mutants between yeast orthologs (Table S1B) of query and array 

genes listed in Table S1A using synthetic genetic array (SGA) technology (Tong and Boone, 

2006). In the final step, double mutants were pinned on agar plates containing no drugs 

(untreated), hydoxyurea (100 uM), bleomycin (5 ug/mL), or hydrogen peroxide (0.01%) and 

incubated at 30°C for either 48 hours (untreated) or 72 hours (hydroxyurea, bleomycin, 

hydrogen peroxide). Pictures of the plates were taken with a Canon CCD camera and colony 

sizes were quantified using HT Colony Grid Analyzer. Finally, data were normalized and S 
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scores computed using the EMAP toolbox (Collins et al., 2006). All data is provided in 

Table S2. Note that data is provided for 79,184 gene-pairs; these include additional data 

from queries/arrays screened which had no human ortholog, but were included for quality-

control purposes.

Generating the human chemo-genetic interaction map

Starting with the DT with the greatest number of synthetic lethal interactions, we used the 

Drug Gene Interaction database (Griffith et al., 2013) to identify a chemical inhibitor for the 

first 21 of these genes. When multiple compounds were available per DT, priority was given 

to drugs currently approved by the FDA.

For the chemo-genetic screen, 500 cells were dispensed per well in 384-well plates and 

reverse-transfected with siRNAs at a final concentration of 10nM using Lipofectamine 

RNAimax (Life Technologies). The 21 drugs were split into four batches; for each batch two 

plates containing only DMSO solvent were included so the toxicity of siRNAs alone could 

be evaluated. Each TSG was targeted by four different siRNAs (On-Target-Plus Human 

Genome Collection, DHARMACON) pooled in the same well; three independent replicates 

for each TSG were screened on separate assay plates at both IC20 and IC40 doses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Resource of conserved and divergent interactions for design of cancer 

therapy.

• Global yeast screen directs network assembly in human cancer cells.

• As a rule, co-functionality and context-stability predict translation to 

humans.

• Many interactions involving clinically relevant genes including BLM 
and XRCC3
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Figure 1. Study design, quantitative genetic interaction mapping in S. cerevisiae
A Scheme illustrating selection of tumor suppressor genes (TSG) and druggable targets (DT) 

in S. cerevisiae. B Percent of patients in the TCGA harboring either a somatic mutation (n = 

6911) or homozygous deletion (n = 7462) in any of the TSG chosen for screening. Incidence 

of both somatic mutation and homozygous deletion is higher for the TSG with yeast 

orthologs included in this study relative to a random set of genes (Inset). P-value was 

calculated via 1000 random samples; error bars indicate +/− 1 SD. C Deletions of yeast TSG 

orthologs cause defects in cellular functions and phenotypes associated with human cancer. 
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Significance was assessed using a Fisher’s exact test. DDC, DNA Damage Checkpoint, 

taken from Gene Ontology (Ashburner et al., 2000). GCR Supp, Gross Chromosomal 

Rearrangement Suppression, lists (1) and (2) both taken from (Putnam et al., 2012). Mutator 

supp, Mutator suppression, taken from (Huang et al., 2003). Short lived, taken from 

(Fabrizio et al., 2010). D For each TSG (x-axis), the plot shows the fraction of druggable 

genes screened for synthetic lethal interactions in prior studies in yeast (Ryan et al., 2012) 

(y-axis). For approximately 50% of TSG, fewer than half of relevant interactions had been 

tested prior to this study (dotted lines). E Number of synthetic lethal (SL) hits per gene for 

both DT and TSG. See also Figure S1; Tables S1 and S2
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Figure 2. Chemo-genetic interaction mapping in a human cancer cell line
A Design of human screen based on the yeast network. B Representative dose response 

curve for the drug vorinostat. Such a curve was created for each drug to establish IC20 and 

IC40 doses for screening. Error bars represent +/− SD. C Heat map of chemical-gene 

interactions, blue represents synthetic-sick/lethal (negative) interaction, yellow represents 

epistatic (positive) interaction. Interactions highlighted in red are discussed in greater detail 

in the text. D Cumulative number of interactions identified as a function of the interaction 

score threshold, highlighting numbers of interactions at 3 and 5 standard deviations (z) 

below the mean. Recovery of gold-standard interactions of olaparib with BRCA1 and 

BRCA2 is also shown. See also Figure S2 and S4; Tables S3 and S4.

Srivas et al. Page 19

Mol Cell. Author manuscript; available in PMC 2017 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Conservation between human and yeast
A Evidence of synthetic lethality in yeast, as well as context stability, increases the 

likelihood of observing a human synthetic-sick/lethal interaction. Gene pairs are ranked (x-

axis) by each type of evidence (colored curves); Likelihood score (y-axis) is computed using 

synthetic-lethal gene pairs identified in the human chemo-genetic screen as a gold standard. 

B Venn diagram showing number of interactions in CoCaNet (at two stringencies) relative to 

the number of interactions tested in both species. C Network diagram of top 10% strongest 

synthetic-sick/lethal interactions (CoCaNet10); square nodes on outside ring represent DT, 

circular nodes represent TSG. S. cerevisiae gene names are below human gene names in 

parentheses. Red edges represent interactions previously reported in literature, grey edges 

are first reported in this study. D Network diagram of top 2% strongest synthetic-sick/lethal 

interactions (CoCaNet2) organized by gene function. Thickness of edge represents strength 

of interaction conservation score; arrows indicate direction of edge (DT to TSG). E 
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Likelihood score (for top 10% of yeast gene pairs) is shown for various lines of evidence. 

See also Table S5.
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Figure 4. Validation of cross-species interaction networks for RAD17 and XRCC3
A Network map of all conserved synthetic-sick/lethal interactions in CoCaNet10 for the 

TSG RAD17. Square nodes represent druggable genes; oval nodes represent drugs used to 

inhibit these genes. Green edges indicate validation by clonogenic assay. B Sample plate 

images from clonogenic assay. C Clonogenic assay with TOP1 inhibitor irinotecan in HeLa 

cells with either stable knockdown of RAD17 or non-targeting (SCR) control. Error bars 

represent +/− SD, * denotes t-test p < 0.05 at that dose. D Similar clonogenic assay with 

TOP2 inhibitor etoposide in HeLa cells. E Network map of all conserved synthetic-sick/

lethal interactions in CoCaNet10 for the TSG XRCC3 with annotations as in A. F 
Clonogenic assay with HDAC inhibitor entinostat in LN428 cells, with either stable 

knockdown of XRCC3 or non-targeting (SCR) control. G Similar clonogenic assay with 
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HDAC inhibitor vorinostat in LN428 cells. H Synthetic genetic array in S. cerevisiae for 

rpd3Δ, rad57Δ and rpd3Δrad57Δ, p-values as indicated. See also Figure S3.
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Figure 5. Clinical potential of deeply conserved interactions
A Kaplan-Meier plot of overall survival, selecting the highest 10% (ISL) or lowest 10% 

(Non-ISL) of patients in METABRIC ranked by CoCaNet score. B Upper quartile survival 

for METABRIC cohort stratified by the indicated genetic interaction networks. C Histogram 

of CoCaNet interactions, binned by the number of patients the ISL group in A whose tumors 

under-express both of the genes involved in the interaction. D For those TSG interacting 

with the target of an FDA-approved drug, the number of mutations or deletions seen per 

patient in TCGA cohort is shown. See also Table S6
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