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Abstract

In sequential multiple assignment randomized trials, longitudinal outcomes may be the most 

important outcomes of interest since this type of trials are usually conducted in areas of chronic 

diseases or conditions. We propose to use a weighted generalized estimating equation (GEE) 

approach to analyzing data from such type of trials for comparing two adaptive treatment 

strategies based on generalized linear models. Although the randomization probabilities are 

known, we consider estimated weights in which the randomization probabilities are replaced by 

their empirical estimates, and prove that the resulting weighted GEE estimator is more efficient 

than the estimators with true weights. The variance of the weighted GEE estimator is estimated by 

an empirical sandwich estimator. The time variable in the model can be linear, piece-wise linear, 

or more complicated forms. This provides more flexibility which is important because in the 

adaptive treatment setting the treatment changes over time and hence a single linear trend over the 

whole period of study may not be practical. Simulation results show that the weighted GEE 

estimators of regression coefficients are consistent regardless of the specification of the correlation 

structure of the longitudinal outcomes. The weighted GEE method is then applied in analyzing 

data from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE).
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1 Introduction

The sequential multiple assignment randomized trial (SMART) [1-2] has been developed to 

obtain data to make inference about adaptive treatment strategies. An adaptive treatment 

strategy [2-4], also called a treatment strategy or simply a strategy, is a sequence of decision 

rules that specifies the treatment a patient receives at each stage based on patient baseline 

characteristics and performance on previous treatments. It arises often in treating chronic 

diseases or conditions since in these situations the treatment is an ongoing process involving 

multiple decisions over time. These decisions may include, but are not restricted to, change 

of treatment type or dosage, according to patient response to previous treatments in terms of 

efficacy, tolerance, burden and so on. For example, in treating attention deficit hyperactivity 

disorder (ADHD) in children, one possible adaptive treatment strategy is to start with low 
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dose medication, and if the child responds well then stay on low dose medication, but if 

there is inadequate response then the treatment is switched to low dose behavioral therapy. 

In a SMART, subjects may be randomized multiple times during the trial. One example of 

SMART is a trial conducted to assess different treatment options for ADHD [5]. In this trial, 

children with ADHD were initially randomly assigned to low dose behavioral therapy or 

medication. The response was monitored after the initiation of the treatments. If at some 

time during the study, which lasted 36 weeks, the predefined nonresponse criterion was met, 

then the child was rerandomized to either an intensification of the current treatment or the 

combination of the two types of treatment. In this trial, 4 embedded adaptive treatment 

strategies can be studied, one of which is the example adaptive treatment strategy described 

above. There are at most two decision points in this trial and thus two ramdomizations. A 

graphical illustration of the randomization scheme is provided, for example, in Li and 

Murphy [6]. Trials with more than two randomizations, an example of which is the STAR*D 

trial for treatment of depression [7], exist but are uncommon. In this article, we focus on 

trials with at most two randomizations, which are also called two-stage randomized trials. 

Generalization to trials with more than two stages is straightforward in principle.

Almost all of the previous work on the design and analysis of two-stage randomized trials 

has been focused on cases in which the primary outcome is either a single continuous 

outcome or a survival type outcome. For example, the work on analysis include [2] and 

[8-15]. The work focusing on the design of such trials include [2], [6], and [16-18]. Orellana 

et al. [19] proposed an estimating equation that can be used to estimate the mean outcomes 

under different DTRs using observational data for the single outcome case. Recently, 

Ertefaie et. al. [20] adopted the methodology in [19] to estimate the best embedded 

treatment strategy using SMART data. In [21], Moodie et al. focus on inference about 

adaptive treatment strategies with discrete outcomes but under the Q-learning setting. Earlier 

work before the name SMART appeared exists, examples of which include [22-23]. 

However, in the area of chronic diseases or conditions in which the focus is mainly on 

symptoms rather than survival, longitudinal outcomes arise very often and may be more 

important than survival outcomes or single continuous outcomes. For example, in the ADHD 

trial mentioned above, a behavioral score is measured on each child weekly for 36 weeks 

after the initial treatment. It is an indicator of the severity of the disorder and is the basis on 

which the efficacy of a treatment is assessed. Another example is the Clinical Antipsychotic 

Trials in Intervention Effectiveness (CATIE) [24], which also involved two randomizations. 

In this trial, a first-generation antiphychotic, perhenazine, was compared to several atypical 

antipsychotics. The patients were initially randomized to perhenazine or one of four atypical 

antipsychotics. The initial drug may be switched due to either low efficacy or bad tolerance. 

Those who decided to switch treatment were further randomized to one of several 

antipsychotics different from the initial drug. The positive and negative syndrome scale 

(PANSS), a primary assessment instrument for psychopathology, was measured at month 0 

(baseline), 1, and 3, and then every three months afterwards. Change of the PANSS scores 

signifies the change in severity of the symptoms. The drug is deemed efficacious if the 

PANSS scores drop significantly after taking the drug; otherwise there is no reason to 

believe the drug is efficacious. Hence, the change in PANSS scores after taking the drug is a 

direct way of measuring the efficacy of the drug. Lieberman et al. [24] used the time to all 
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cause discontinuation as the outcome when they compared the drugs. However, longer time 

to discontinuation may only be due to better tolerance which does not necessarily imply 

higher efficacy. If the focus is more on efficacy, the trend of change in longitudinal PANSS 

scores would be more relevant. Analysis of longitudinal data in SMART trials has not been 

well studied in the literature, except that authors in [25-26] proposed methods for estimating 

mean responses of treatment strategies based on longitudinal data in observational studies.

In this paper we focus on the analysis of two-stage randomized trials for comparing two 

adaptive treatment strategies when the outcome is longitudinal. We propose to use a 

weighted generalized estimating equation (GEE) approach for the inference of unknown 

parameters in generalized linear models for the counterfactual outcomes under the two 

strategies. The weights are used to take into account the fact that different subjects may be 

consistent with a strategy with different probabilities and the same subject may be consistent 

with more than one strategy (see, e.g., [6] and [8]). As the standard GEE, the weighted GEE 

can handle both continuous and discrete longitudinal data. Also, the weighted GEE yields 

consistent estimators of unknown parameters regardless of whether the correlation structure 

among the longitudinal outcomes is correctly specified or not. The asymptotic variance of 

the weighted GEE estimator is consistently estimated by an empirical sandwich estimator. 

Although the randomization probabilities are known in SMART trials, we consider 

estimated weights in which the randomization probabilities are estimated by observed 

proportions, resulting in more efficient estimators. The inverse probability weighting method 

has been used in most of the literature in SMART trials, while estimation with estimated 

weights has never been considered before. Moreover, in our model, the time variable can 

appear as linear, piece-wise linear, or more complicated forms such as polynomial. This 

provides more flexibility which is important because in the adaptive treatment setting the 

treatment changes over time and hence the rate of change of mean outcomes may also 

change over time. Consequently a linear model over the whole period of study may not be 

adequate to describe the trend of change over time. This work is novel in several aspects. At 

first, it is the first to consider the generalized estimating equation approach for analyzing 

longitudinal data in SMART studies, an area where existing work is very scarce. Second, in 

order to adapt the methodology to our special setting, we propose both linear models and 

piece-wise linear models for the longitudinal trajectories, and propose different methods for 

comparing treatment strategies, e.g., comparing rates of change and more importantly, the 

areas under curve for the two strategies compared.

The following content is arranged as follows. Section 2 describes the weighted GEE method 

for comparing two treatment strategies using generalized linear models. Section 3 presents 

results of a simulation study and in Section 4 we apply the proposed method in analyzing 

data from the CATIE. We conclude with a discussion in Section 5. A sketch of the proof of 

asymptotic results is put in the Appendix.

2 The weighted generalized estimating equation

2.1 The general method

In the typical two-stage randomized trials we consider, subjects are initially randomized to 

one of two treatments, denoted by A1 = 1 and A1 = 2. After the initial treatment, some 
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subjects are rerandomized to one of two second-stage treatments and some subjects are not 

rerandomized. Suppose the subjects who are rerandomized are randomly assigned one of 

two second-stage treatments, denoted by A2 = 1 and A2 = 2. Denote p1 = P(A1 = 1), p21 = 

P(A2 = 1|A1 = 1) and p22 = P (A2 = 1|A1 = 2). Here the rerandomization criterion can be 

different in different situations. For example, in the ADHD trial mentioned above, 

nonresponders to the initial treatments are rerandomized to either intensification of the initial 

treatment or the addition of another type of treatment. In some cases, responders to the 

initial treatment are further randomized to one of several maintenance treatments, which is 

common in cancer trials. Moreover, those who are not rerandomized may stay on the initial 

treatment or are assigned a different treatment. For example, in some cancer trials, 

nonresponders to the induction therapy are not rerandomized and are all put on salvage 

treatment. For definiteness, we assume that only nonresponders to the initial treatment are 

rerandomized, and denote R to be the rerandomization indicator, i.e., R = 1 if the subject is 

rerandomized and R = 0 otherwise. In this type of trials, there are four embedded adaptive 

treatment strategies, denoted by strategy “11”, “12”, “21” and “22”, respectively. Here 

strategy “jk” means a subject starts with A1 = j, and if the subject does not respond well then 

he or she switches to A2 = k as the second-stage treatment, for j, k = 1, 2.

The goal of two-stage randomized trials is to assess different treatment strategies. 

Specifically, we assume the purpose is to compare two strategies “st” and “s′t′”, where s, t, 
s′, t′ can take values 1 or 2. Suppose we observe i.i.d. data for n subjects, and the 

longitudinal outcome of the ith subject is observed at Mi time points. Denote yi = (yi1, · · · , 

yiMi)T as the vector of longitudinal outcomes for subject i, for 1 ≤ i ≤ n. As usual, we adopt 

the counterfactual outcome framework [27]. Denote  as the vector of 

counterfactual longitudinal outcomes for subject i if the subject, possibly contrary to the 

fact, followed strategy “st”, for 1 ≤ i ≤ n and s, t = 1, 2. We make the consistency assumption 

[3] that, if subject i actually followed strategy “st”, then . Denote . 

Denote xi to be a vector of covariates and tim to be the mth measurement time, both for 

subject i, for 1 ≤ m ≤ Mi and 1 ≤ i ≤ n. Let  and  be d-dimensional design vectors 

which may include xi and tim as components. In order to compare the two strategies, we 

assume a generalized linear model

(1)

for 1 ≤ m ≤ Mi, where h(·) is a known link function. Here different choices for  and 

correspond to different models and different tests for the equivalence of the two strategies. 

Specific choices are discussed below.

Use of weights to adjust for the unique design of two-stage randomized trials is standard 

(see, e.g., [6], [8] and [10]). As in [6], we define weight
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for strategy “jk”, where j, k = 1, 2. These weights are essentially the inverse of the 

proportions of subjects being consistent with the strategies. Analogous to the usual GEE 

[29], we use the following estimating equation to estimate the parameter β in model (1) 

based on the observed data:

(2)

where . In the above estimating equation, the “working” covariance 

matrix  is defined as

where Rjk(αjk) is a “working” correlation matrix for , and the lth diagonal 

element of the diagonal matrix  equals the variance of  which is a 

function of  and ϕ. If Rjk(αjk) is the true correlation matrix for , then 

. In the above estimating equation, the parameter αjk in 

the matrix  is estimated first with  for fixed β, where  is an 

estimator for ϕ for fixed β. As in the standard GEE, different “working” correlation 

structures can be used. In more general situations, the consistency of the resulting GEE 

estimator depends on the specification of the correlation matrix (see, e.g., [28] and 

references cited therein). However, in our case it is true that the above estimator for β does 

not depend on the specification of the correlation matrix, and the estimator is the most 

efficient when the correlation structure is correctly specified. The equation given above is in 

its most general form. In many cases, it may be reasonable to assume that 

. For computation, the iterative algorithm of [29] which 

iterates between β and the nuisance parameters can be used to find the solution to (2). 

Finally, it is worth mentioning that in the above estimating equation, the two treatment 

strategies “st” and “s′t′” can be any two strategies embedded in the trial, including strategies 

with different initial treatments such as “11” and “22” and strategies with the same initial 

treatment such as “11” and “12”.
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Although the randomization probabilities are known, using estimated weights in which p1, 

p21 and p22 are replaced by their estimates, can improve the efficiency of the weighted GEE 

estimator, if the estimator for p = (p1, p21, p22)T is efficient (see, e.g., [30]). Let p̂1 be the 

proportion of subjects randomized to A1 = 1 and let p̂2j be the proportion of subjects 

rerandomized to A2 = 1 among all subjects who receive A1 = j and who are rerandomized, 

for j = 1, 2. Denote p̂ = (p̂1, p̂21, p̂22)T. Replace p in the definition of Wst by p̂, and denote 

the resulting weight as Wst(p̂), for s, t = 1, 2. The weighted GEE with estimated weights is

(3)

Denote the solutions to (2) and (3) as  and , respectively. Let 

. Let . In addition, denote prj = P (R = 1|A1 = j), which 

is the probability of being rerandomized given that the initial treatment is A1 = j, for j = 1, 2. 

The following theorem states the asymptotic properties of the estimators  and  and shows 

that the latter is more efficient. The necessary regularity conditions are stated in the 

Appendix.

Proposition 1—Under some regularity conditions, we have

and

as n → ∞, where
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and P = diag(p1(1 – p1), p21 (1 – p21)/p1pr1, p22(1 – p22)/(1 – p1)pr2).

Denote , , , and , where 

 and  are calculated by model (1) with the unknown parameters replaced by 

 and , respectively. Denote  and  to be 

with β replaced by  and , respectively. The asymptotic covariance matrix for  can be 

consistently estimated by the empirical sandwich estimator , where

and

where  for a matrix A. To estimate the asymptotic covariance matrix for , we 

estimate U and Σ similarly as above but with  replaced by . We denote 

the estimators by  and , respectively. Then estimate B by

Denote the number of subjects who receive A1 = j and who are further rerandomized to be 

nrj, for j = 1, 2. The asymptotic variance of  is consistently estimated by 

, where P̂ = diag(p1(1 – p1), p21(1 – p21)/(nr1/n), p22(1 – 

p22)/(nr2/n)).

2.2 Specific models

The model we consider is linear or generalized linear model. Here “linear” means the 

transformed mean outcome is a linear function in the unknown parameters. Under this 

framework, however, the trajectory of the longitudinal outcomes over time can be modeled 

as either a linear or a nonlinear function, as described in detail below. Without loss of 
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generality, we assume that the two strategies compared are either “11” and “22” or “11” and 

“12”.

2.2.1 Linear model—At first, the simplest model for the trajectory is a linear model. This 

is a plausible model for comparing two strategies with different initial treatments. To be 

specific, assume that the interest is in comparing strategies “11” and “22”. This corresponds 

to

(4)

for g = 1, 2, and  in the general formulation . 

Although in randomized studies the effect of baseline covariate xi is not of primary interest, 

there is the possibility and advantage to estimate it in these studies [31]. In this model, since 

β4 is the interaction between the group indicator and time, i.e., the difference in the rates of 

change of the longitudinal outcomes over time under the two strategies, the comparison of 

the two strategies reduces to the test of the hypothesis of H0 : β4 = 0. Denote the (4,4)th 

elements of  and  by  and , respectively. In 

order to test for H0 : β4 = 0, we use the test statistics

for the test with true weights and estimated weights, respectively. By Theorem 1 and the 

consistency of  and , Tn and  both have a standard normal asymptotic distribution 

under H0. Hence, we reject H0 when |Tn| > z1–α/2 (or when  if estimated weights 

are used) at a two-sided significance level α, where zq denotes the upper 100q% percentile 

of the standard normal distribution.

2.2.2 Piece-wise linear model—In adaptive treatment strategies, the treatment may 

change over time, and the change of treatment is usually triggered by patient response to 

previous treatments. It may be expected that the rates of change of longitudinal outcomes 

may be different when the patient is on different treatments. This motivates a piece-wise 

linear model for the trajectory of the longitudinal outcomes. Specifically, suppose that for all 

subjects who are rerandomized to a second-stage treatment, the second-stage treatment starts 

at the same time, which is denoted by t*. Suppose that the mean longitudinal outcome 

changes linearly before time t* at a rate r1 for those who start with A1 = j and who are 

rerandomized to A2 = k, and after time t*, the rate of change becomes r2. Also, suppose that 

for those who start with A1 = j but are not rerandomized, the rate of change is r3 over the 

whole study period. Under these assumptions, the mean counterfactual outcome for strategy 

“jk” is still a piece-wise linear function of time with a change point t*. For comparing 

strategies “11” and “22”, this piece-wise linear model corresponds to
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(5)

In (1) where a(t) = t*I(t ≥ t*)+tI(t < t*), b(t) = (t – t*)I(t ≥ t*), and . 

Here β2 is the difference in intercepts, β4 is the difference in slopes before time t*, and β6 is 

the difference in slopes after time t*, between the two strategies compared.

The above model is of particular interest in comparing two strategies with the same initial 

treatment, specifically, strategies “11” and “12”, when the start time for the second-stage 

treatments is the same for all subjects, since in that case, the linear model is impossible if 

there is any difference between the two strategies, while the piece-wise linear model remains 

a plausible model. In this case, we have to set

(6)

in (1), where . Here β2 is the difference in intercepts at time 0, and β5 

is the difference in slopes after time t*, which is the parameter of interest. Note that in this 

model there is no interaction term (g – 1)a(tim) because the slopes must be the same before 

time t* when the treatments before time t* coincide for the two treatment strategies “11” and 

“12”.

For comparison of the two strategies under model (5), one possibility is to compare the mean 

outcomes at a fixed time point, e.g., at the end of study. Another possibility is to compare the 

areas under the curve (from time 0 to, say, the end of study) for the two trajectories of the 

mean longitudinal outcomes. First, suppose we want to test for the difference in the mean 

outcomes at time T which is usually the end of study period. By simple algebra, the 

difference in the means of the counterfactual outcomes at T between the two strategies is β2 

+ t* β4 + (T – t*)β6. Ignoring β2, the difference resulting from difference at baseline, we test 

for the hypothesis , where λ1 = (0,0,0, t*, 0, T – t*)T. This amounts to 

comparing the differences in mean outcomes from time 0 to time T between the two 

strategies. We use the test statistic

for the test with true weights and estimated weights, respectively, and reject  when |T1n| 

> z1–α/2 (or when  if estimated weights are used) at a two-sided significance 

level α. Second, suppose we want to test for the difference in the areas under curve from 
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time 0 to T between the two strategies. The difference in the areas under curve can be 

calculated as

We also ignore the difference resulting from the difference at baseline and test for the 

hypothesis , where λ2 = (0, 0, 0, t* (2T – t*), 0, (T – t*2)T. We use the test 

statistic

for the tests with true weights and estimated weights, respectively, and reject  when |T2n| 

> z1–α/2 (or when  if estimated weights are used) at a two-sided significance 

level α.

Since in model (6), the only parameter of interest is β5, to compare strategies “11” and “12” 

under this model, we test for the hypothesis H0 : β5 = 0. This is similar to testing for H0 : β4 

= 0 in the linear model (4) thus the details are omitted.

2.2.3 Polynomial model—Another alternative model that can be considered is the 

polynomial model. As a starting point, the quadratic polynomial can be applied, and if 

higher flexibility is necessary, a cubic model may be considered. As an example, for 

comparing strategies “11” and “22”, to formulate a quadratic model, we let

where . This type of models is of particular interest in cases where the 

start time of the second-stage treatment is random, which makes the piece-wise linear model 

less applicable because there is no logically meaningful change point. To compare two 

strategies under this type of models, we can compare the mean outcomes at a fixed time 

point (T) or compare the areas under the curve in the interval (0, T), with the corresponding 

null hypothesis being  and , respectively, where λ1 = (0, 0, 0, T, 0, T2, 

0)T and λ2 = (0, 0, 0, T2/2, T3/3, 0)T. The test statistics and the rejection regions are 

constructed in the same way as those in Section 2.2.2 and thus the details are omitted.

3 Simulation

We conduct a simulation study to assess the performance of the weighted GEE method for 

data analysis. The simulation is performed to compare strategies “11” and “22”. At first, we 

generate data from model (1), where s = t = 1 and s′ = t′ = 2. The link function h(·) is 

Li Page 10

Stat Med. Author manuscript; available in PMC 2018 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chosen to be the identity function and the measurement error is assumed to be normally 

distributed. The choice for  is (4) in one simulation and (5) in another simulation, 

corresponding to a linear model and a piece-wise linear model, respectively. Suppose the 

outcome of interest is measured at 6 time points tim = m, for 0 ≤ m ≤ 5. The change point in 

the piece-wise linear model is supposed to be t* = 2. First, A1 is generated from a Bernoulli 

distribution with probability 0.5. In the piece-wise linear model, we first generate the 

longitudinal outcomes up to time 2 using a linear trajectory model with a positive slope. If 

the measurement at t = 2 is greater than twice of the measurement at time t = 0, then R is set 

to be 0 and the measurements after time t = 2 are still generated using the same linear model 

as for t ≤ 2. Otherwise, R is set to be 1 and we generate A2 from a Bernoulli distribution 

with probability 0.5, and the measurements after t = 2 are generated using a linear model 

with a slope that is different from the slope before time t = 2, where the intercepts of the 

linear models are chosen to make the trajectories continuous at time t = 2. The one-

dimensional covariate X in the model is generated from a standard normal distribution, 

independently from the other variables. The parameters are chosen such that the resulting β 
is β = (2.5, −0.25, 2, 1. 5, 1)T for the linear model and β = (2, 0, 0.5, 0.2, 0.47, 0.2, 0.5)T for 

the piece-wise linear model. The vector of measurement errors εi is generated from a 

multivariate normal distribution where the correlation coefficient between  and  follows 

an AR(1) correlation structure: 0.6|til–tim|, where til and tim are the lth and mth measurement 

times for subject i, respectively, for 0 ≤ l, m ≤ 5 and 1 ≤ i ≤ n. The common variance of the 

components of  is set to be 5. For the working correlation structure in the weighed GEE, 

we try both the “independence” correlation structure and the “true” correlation structure. 

Here the “independence” and “true” correlation structure mean that we replace Rgg(αg) in 

the expression for  with the identity matrix and the AR(1) correlation structure, 

respectively. They are not really the “independence” and the “true” correlation structures 

because here the true correlation structure refers to that of  instead of . 

The correct specification of the correlation of  is difficult because in 

simulation we generate the yis using a specific correlation structure but the correlation 

structure of  is different and complicated. We run the simulation for sample 

sizes 50, 100 and 300, and in each simulation scenario, 1000 replications are run.

Tables 1 and 2 below present the results of this simulation. We list the biases, mean 

estimated variances, empirical variances, and the empirical coverage rates of the 95% 

confidence intervals of selected parameters of the most interest. These results show that the 

weighted GEE method works well, yielding low biases and consistent estimates of variances 

and confidence intervals with expected coverage rates. The consistency of the estimators is 

achieved under both of the correlation structures. Moreover, the estimators based on 

estimated weights are slightly more efficient than those with true weights in this simulation.

4 An Application

In this section we apply the weighted GEE method in analyzing data from the CATIE. The 

CATIE was conducted to determine the long-term effects and usefulness of antipsychotic 

medications in persons with schizophrenia [24]. In this trial, 1500 schizophrenia patients 
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were initially randomized to receive one of 5 antipsychotic drugs including olanzapine, 

perphenazine, quetiapine, risperidone, and ziprasidone. Patients may discontinue or switch 

treatment at some time after the initial treatment. Patients who chose to switch treatment can 

choose one of two further randomization pathways. In one of the pathways, patients were 

randomized to receive either clozapine or one of olanzapine, quetiapine or risperidone; and 

in the other pathway patients were randomized to receive either ziprasidone or one of 

olanzapine, questiapine, and risperidone. In both pathways no one is assigned to the same 

drug as the initial drug. It was pointed out by [24] that, usually those who chose to switch 

treatment due to low efficacy were likely to choose the first randomization pathway and 

those who switched due to bad tolerance were likely to choose the second randomization 

pathway.

Results of data analysis [24] showed that olanzapine is the best treatment with respect to 

patient adherence among the 5 drugs. A natural further question to ask is that which 

treatment should a patient switch to if he or she starts with olanzapine and chooses to switch 

treatment. This is a problem of assessing adaptive treatment strategies. For this purpose we 

consider only patients who started with olanzapine. Denote the two randomization pathways 

as “E” and “T” (corresponding to efficacy and tolerance, respectively). For those who chose 

the “E” randomization pathway, denote the two options they were randomized to as A1 = 1 

and A1 = 2, where A1 = 1 means clozapine and A1 = 2 means choosing one from olanzapine, 

quetiapine or risperidone. For those who chose the “T” randomization pathway, denote the 

two options as A2 = 1 and A2 = 2, where A2 = 1 means ziprasidone and A2 = 2 is the same 

as A1 = 2. For our purpose we assume that the outcome of interest is the longitudinal PANSS 

scores, which were measured at months 0, 1, and 3, and then every three months afterwards 

up to month 18. This trial can be analyzed similarly as the typical two-stage randomization 

trials in the previous section. However, the weights will be different because of the 

difference in the trial design. Denote strategy “jk” to be the strategy in which a subject starts 

with olanzapine, and then switches to A1 = j if he or she chooses to switch treatment because 

of “E” and switches to A2 = k if it is because of “T”, for j, k = 1, 2. In the CATIE trial, 333 

patients started with olanzapine, among whom 214 patients did not switch treatment during 

the following 18 month period and thus are consistent with all 4 treatment strategies. The 

remaining 119 patients switched treatment in that time period and each of them is consistent 

with two of the 4 treatment strategies. Denote p1 = P (A1 = 1|E = 1) and p2 = P (A2 = 1|T = 

1) to be the randomization probabilities. Denote R to be the indicator for switching treatment 

in the study period. Let E to be the indicator for switching treatment due to “E” and T to be 

the indicator for switching treatment due to “T”. Then the weight function for strategy “jk” 

is:

Figure 1 shows the trajectories of the mean PANSS score for a number of randomly selected 

patients in CATIE. There seems to be little difference in the rates of change among patients. 

The same is expected for different treatment strategies but formal statistical analyses need to 

be carried out to confirm this. Since the start time of the second-stage treatment can be 
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different for different patients in this trial, we use the quadratic polynomial model instead of 

the linear or piece-wise linear model. Based on the data from all the subjects who started 

with olanzapine, and using the method in Section 2.2.3, we compare the mean outcomes at 

month 18 as well as the areas under the curve from time 0 to month 18 for each pair of the 4 

adaptive treatment strategies. The results of this analysis show that the differences between 

strategies are very small, with the absolute values of the estimated coefficients in the 

quadratic model being close to 0.01 and the p values ranging from 0.29 to 0.75 when the true 

weights or estimated weights are used. Obviously these differences are too small to be 

interesting.

5 Discussion

In the above, we mainly focused on a typical two-stage randomized trials in which only 

responders or nonresponders to the first-stage treatments are rerandomized to second-stage 

treatments. The proposed method generalizes easily to more general SMART trials, for 

example, trials with more than two stages, trials in which only responders to one of the two 

initial treatments are rerandomized, trials in which both responders and nonresponders to the 

initial treatments are rerandomized, and so on. The only difference is the formulae for the 

weights. Specific weights for some examples are illustrated in [6].

When the second-stage treatment initiates at different (random) times for different subjects, 

the comparison of two treatment strategies is more challenging than the other cases. In this 

case, the linear model is still a possible approximation of the trajectories but it is likely to 

fail. The piece-wise linear model may be used, but the change point is not known priori and 

can be different for different strategies. Hence, the piece-wise linear assumption as well as 

the change point (if the assumption is supported by preliminary data) need to be ascertained 

by preliminary data.

Although it is not the focus of this article, the proposed method can be used to estimate the 

best treatment strategy among all embedded strategies, for which the method in [21] can be 

applied as well. To use our method, we first impose an appropriate model for the 

longitudinal outcomes under each strategy. Then use the proposed methods and the models 

to estimate a summary quantity for each strategy, and the estimate of the best strategy is 

based on this quantity. For example, this summary quantity can be the mean outcome at a 

specific time point or the area under the curve, as described in Section 2.2.2.

Finally, missing data may be a problem in longitudinal studies, and for any GEE approach to 

yield unbiased results the missing mechanism need to be missing completely at random [32]. 

Some modifications (e.g., [32]), have been proposed to guarantee unbiasedness estimation 

under the more general missing at random mechanism. Extension of our proposed method 

for this purpose is a potential topic for future research.
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Appendix: proofs of asymptotic results

For simplicity, assume α1 = α2 = and R1(α) = R2(α) = R(α). The following are the 

assumptions that are used in the proof:

A1 The parameter space for β, , is a compact set in Rp where p is the 

dimension of β.

A2 The parameter space for α, , is a compact set in Rq where q is the 

dimension for α.

A4  is uniformly consistent for α.

A5 The derivative of the components of R−1(α) is continuous in , and the 

first and second derivative of μig with respect to β is continuous in .

A6 For any β1, β2 ∈ , Eμig (,dig, β1) = Eμig(dig, β2) if and only if β1 = β2.

At first, we assume that the true weights are used. Denote , and

Then  is the solution to . Taylor expansion and rearranging terms 

yield

where

Furthermore,

Li Page 14

Stat Med. Author manuscript; available in PMC 2018 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where we used the facts that  by the law of large numbers and 

that  [29]. It follows that

which yields the desired result when true weights are used.

When p is estimated in the weights, Taylor expansion with arguments similar as above yields 

that

Denote the number of subjects who are randomized to A1 = j and who are further 

rerandomized to be n2j, for j = 1, 2. Straightforwardly, we have

Since p̂ is an efficient estimator for p, the three conditions in [33] are satisfied and the 

conclusion follows from (1.3) therein.
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Figure 1. 
Plot of longitudinal mean PANSS scores for a number of randomly selected patients in the 

CATIE.
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Table 1

Simulation results for selected parameters in the linear trajectory model.

true weights estimated weights

bias V1 V2 coverage bias V1 V2 coverage

“independence” working correlation structure

n = 50

β 2 −0.02 0.92 0.99 0.93 −0.01 0.93 0.94 0.93

β 4 0.01 0.14 0.15 0.92 0.01 0.12 0.13 0.92

β 5 0.01 0.20 0.23 0.91 0.00 0.22 0.24 0.91

n = 100

β 2 −0.03 0.47 0.47 0.95 −0.03 0.48 0.48 0.95

β 4 0.01 0.08 0.08 0.95 0.01 0.06 0.06 0.95

β 5 0.02 0.11 0.12 0.92 0.02 0.12 0.12 0.92

n = 300

β 2 −0.02 0.16 0.16 0.95 −0.02 0.16 0.16 0.95

β 4 0.00 0.023 0.023 0.95 −0.00 0.018 0.019 0.95

β 5 0.01 0.04 0.04 0.94 0.01 0.03 0.03 0.94

“true” working correlation structure

n = 50

β 2 −0.01 0.89 0.94 0.93 −0.01 0.88 0.92 0.92

β 4 0.00 0.13 0.15 0.92 0.01 0.12 0.14 0.93

β 5 0.00 0.20 0.22 0.91 0.00 0.20 0.21 0.93

n = 100

β 2 −0.03 0.45 0.45 0.95 −0.03 0.43 0.43 0.94

β 4 0.01 0.07 0.07 0.95 0.01 0.07 0.07 0.95

β 5 0.02 0.11 0.12 0.92 0.02 0.11 0.11 0.93

n = 300

β 2 −0.02 0.15 0.15 0.95 −0.02 0.14 0.14 0.95

β 4 −0.00 0.022 0.023 0.95 −0.00 0.016 0.017 0.94

β 5 0.01 0.04 0.04 0.94 0.01 0.04 0.04 0.94

V1: mean estimated variance; V2: empirical variance; coverage: empirical coverage rate for the 95% confidence interval.
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Table 2

Simulation results for selected parameters in the piece-wise linear trajectory model.

true weights estimated weights

bias V1 V2 coverage bias V1 V2 coverage

“independence” working correlation structure

n = 50

β 2 0.01 0.89 0.90 0.93 −0.01 0.89 0.87 0.97

β 4 0.00 0.13 0.14 0.93 0.01 0.15 0.13 0.97

β 6 −0.01 0.15 0.16 0.94 −0.01 0.16 0.15 0.96

β 7 0.01 0.05 0.06 0.93 0.01 0.07 0.06 0.96

n = 100

β 2 −0.03 0.47 0.46 0.95 −0.03 0.46 0.44 0.96

β 4 0.01 0.071 0.073 0.94 0.01 0.072 0.069 0.97

β 6 0.01 0.078 0.080 0.93 0.01 0.077 0.075 0.96

β 7 0.02 0.027 0.030 0.92 0.02 0.029 0.028 0.95

n = 300

β 2 −0.02 0.16 0.16 0.95 −0.02 0.16 0.15 0.96

β 4 0.00 0.024 0.024 0.95 −0.00 0.023 0.022 0.96

β 6 0.01 0.026 0.025 0.95 0.01 0.024 0.023 0.96

β 7 0.01 0.01 0.01 0.94 0.01 0.01 0.01 0.94

“true” working correlation structure

n = 50

β 2 −0.01 0.86 0.88 0.93 −0.01 0.87 0.84 0.97

β 4 0.00 0.12 0.13 0.92 0.01 0.13 0.12 0.96

β 6 0.01 0.14 0.15 0.92 0.01 0.15 0.14 0.97

β 7 0.00 0.05 0.06 0.91 0.00 0.06 0.06 0.93

n = 100

β 2 −0.03 0.45 0.45 0.95 −0.03 0.43 0.43 0.96

β 4 0.01 0.072 0.071 0.95 0.01 0.069 0.067 0.96

β 6 0.01 0.075 0.077 0.92 0.01 0.076 0.074 0.96

β 7 0.02 0.027 0.028 0.93 0.02 0.029 0.028 0.95

n = 300

β 2 −0.02 0.15 0.15 0.95 −0.02 0.14 0.14 0.96

β 4 −0.00 0.023 0.024 0.94 −0.00 0.024 0.023 0.96

β 6 0.01 0.025 0.026 0.93 0.01 0.025 0.024 0.96

β 7 0.01 0.01 0.01 0.94 0.01 0.01 0.01 0.94

V1: mean estimated variance; V2: empirical variance; coverage: empirical coverage rate for the 95% confidence interval.
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