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Abstract

MitoNEET, a primary target of type II diabetes drug pioglitazone, has an essential role in 

regulating energy metabolism, iron homeostasis, and production of reactive oxygen species in 

mitochondria. Structurally, mitoNEET is anchored to the mitochondrial outer membrane via its N-

terminal transmembrane α-helix. The C-terminal cytosolic domain of mitoNEET hosts a redox 

active [2Fe-2S] cluster via three cysteine and one histidine residues. Here we report that the 

reduced flavin nucleotides can rapidly reduce the mitoNEET [2Fe-2S] clusters under anaerobic or 

aerobic conditions. In the presence of NADH and flavin reductase, about 1 molecule of flavin 

nucleotide is sufficient to reduce 100 molecules of the mitoNEET [2Fe-2S] clusters in 4 minutes 

under aerobic conditions. The electron paramagnetic resonance (EPR) measurements show that 

flavin mononucleotide (FMN), but not flavin adenine dinucleotide (FAD), has a specific 

interaction with mitoNEET. Molecular docking models further reveal that flavin mononucleotide 

binds mitoNEET at the region between the N-terminal transmembrane α-helix and the [2Fe-2S] 

cluster binding domain. The closest distance between the [2Fe-2S] cluster and the bound flavin 

mononucleotide in mitoNEET is about 10 Å, which may facilitate rapid electron transfer from the 

reduced flavin nucleotide to the [2Fe-2S] cluster in mitoNEET. The results suggest that flavin 

nucleotides may act as electron shuttles to reduce the mitoNEET [2Fe-2S] clusters and regulate 

mitochondrial functions in human cells.
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INTRODUCTION

Human mitochondrial outer membrane protein mitoNEET was initially identified as a target 

of type II diabetes drug pioglitazone [1]. While deletion of mitoNEET in mice significantly 

decreases oxidative phosphorylation activity in mitochondria [2], increased expression of 

mitoNEET in adipocytes enhances lipid uptake and storage of the cells and inhibits 

mitochondrial iron transport into matrix [3]. In beta cells, increased expression of 

mitoNEET leads to hyperglycemia and glucose intolerance [4]. Misregulation of mitoNEET 

expression has also been attributed to the development of neurodegenerative disease [5, 6] 

and cardiovascular disease [7], breast cancer proliferation [8–10], browning of white adipose 

tissue [11], among other pathological conditions [12]. It has thus been proposed that 

mitoNEET is a key regulator for energy metabolism, iron homeostasis, and production of 

reactive oxygen species in mitochondria [13].

MitoNEET is a homodimer with each monomer containing an N-terminal transmembrane α-

helix (residues 14 to 32) anchored to the mitochondrial outer membrane [1]. The C-terminal 

cytosolic domain (residues 33–108) of mitoNEET hosts a redox active [2Fe-2S] cluster via a 

unique ligand arrangement of three cysteine and one histidine residues [14–16]. As 

mitochondria are the primary sites for iron-sulfur cluster biogenesis [17], several studies 

have suggested that mitoNEET may mediate transfer of iron-sulfur clusters assembled in 

mitochondria to target proteins in cytoplasm [18–21]. However, the cluster transfer occurs 

only when the mitoNEET [2Fe-2S] clusters are in oxidized state [18, 21], indicating the 

transfer process is controlled by the redox state of the [2Fe-2S] clusters [22, 23]. 

Alternatively, mitoNEET may directly regulate mitochondrial functions via the redox 

transition of the [2Fe-2S] clusters [4, 22–24], as mitoNEET forms complexes with multiple 

mitochondrial proteins including the Parkinson's disease associated protein Parkin [4, 25, 

26] and mitochondrial outer membrane import complex protein 1 (MTX1) [27].

Intracellular redox co-enzymes including nicotinamide adenine dinucleotide (NAD+), 

nicotinamide adenine dinucleotide phosphate (NADP+), flavin mononucleotide (FMN), and 

flavin adenine dinucleotide (FAD) are considered as natural biomarkers of metabolic 

activities and mitochondrial anomalies [28]. If mitoNEET is a key regulator of energy 

metabolism in mitochondria [13], it is expected that mitoNEET will have direct interactions 

with the redox co-enzymes in cells. Indeed, previous studies have shown that mitoNEET is 

able to bind NADP(H) (but not NAD(H)) [29], and that binding of NADPH in mitoNEET 

destabilizes the [2Fe-2S] clusters [29] and inhibits the [2Fe-2S] cluster transfer from 

mitoNEET to target proteins [30]. However, the interaction between mitoNEET and 

NADP(H) is fairly weak (with a dissociation constant of about 2.0 mM) [29]. Furthermore, 

both NADPH and NADH fail to reduce the mitoNEET [2Fe-2S] clusters under anaerobic or 

aerobic conditions [22, 23, 30]. Here, we report that the reduced flavin nucleotides can 

rapidly reduce the mitoNEET [2Fe-2S] clusters under anaerobic or aerobic conditions. The 

electron paramagnetic resonance (EPR) measurements show that flavin mononucleotide, but 

not flavin adenine dinucleotide, has a specific interaction with mitoNEET. Furthermore, 

molecular docking models reveal that flavin mononucleotide binds mitoNEET at the region 

between the N-terminal transmembrane α-helix and the [2Fe-2S] cluster binding domain. 

Such an arrangement may facilitate rapid electron transfer from the reduced flavin 
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nucleotide to the [2Fe-2S] clusters in mitoNEET. Our results suggest that mitoNEET may 

sense redox state of intracellular redox co-enzymes to modulate energy metabolism, iron 

homeostasis, and production of reactive oxygen species in mitochondria.

MATERIALS AND METHODS

1. Protein preparation

Escherichia coli flavin reductase (Fre) was prepared using an E. coli strain hosting an 

expression plasmid encoding Fre from the ASKA library [31]. Human mitochondrial outer 

membrane protein mitoNEET33–108 (containing residues 33–108) was purified as described 

in [23]. MitoNEET with deletion of the segment between Arg-33 and Ile-45 was prepared 

using the site-directed mutagenesis (Agilent co.), and confirmed by direct sequencing. The 

purity of purified proteins was greater than 95% as judged by electrophoresis analysis on a 

15% polyacrylamide gel containing SDS followed by staining with Coomassie Blue. The 

protein concentrations of mitoNEET and E. coli Fre were measured at 280 nm using an 

extinction coefficient of 8.6 and 26.4 mM−1cm−1, respectively. The UV-visible absorption 

spectra were measured in a Beckman DU640 UV-visible absorption spectrometer equipped 

with a temperature controller.

2. Iron and sulfide content analyses

The iron content of protein samples was determined using ferroZine [32] as described 

previously [33]. The sulfide contents of protein samples was determined according to the 

Siegel’s method [34]. Purified E. coli endonuclease III containing a stable [4Fe-4S] cluster 

[35] was used as a standard for the iron and sulfide content analyses in protein samples.

3. EPR measurements

The X-band Electron Paramagnetic Resonance (EPR) spectra were recorded using a Bruker 

model ESR-300 spectrometer equipped with an Oxford Instruments 910 continuous flow 

cryostat. Routine EPR conditions were: microwave frequency, 9.47 GHz; microwave power, 

10.0 mW; modulation frequency, 100 kHz; modulation amplitude, 1.2 mT; temperature, 30 

K; receiver gain, 2×105.

4. Chemicals

NADH, NADPH, Isopropyl-β-D-1-thiogalactopyranoside, kanamycin, and ampicillin were 

purchased from Research Product International co. FMN, FAD, and other chemicals were 

purchased from Sigma co. Extinction coefficients of 6.2 mM−1cm−1 at 340 nm, 12.5 

mM−1cm−1 at 445 nm, and 11.3 mM−1cm−1 at 450 nm were used for NADH/NADPH, FMN 

and FAD, respectively [28].

5. Molecular docking

The protocol for AutoDockVina-based molecular docking is a modification from Garret M. 

Morris’ (The Scripps Research Institute, La Jolla, CA) [36]. The validity of this protocol 

was established during other studies [37]. Partial conformational flexibility was allowed to 

the residues in direct contacts with targets. Docking is made based on binding energy 
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calculation using Lamarckian Genetic Algorithm implemented in AutoDock3 [36]. The 

detailed docking parameters per molecule are: the energy evaluations number = 1750000, 

the population size = 150, the trial number = 20, and the positional rms tolerance = 2.0 Å.

RESULTS

1. Reduced flavin nucleotides rapidly reduce the mitoNEET [2Fe-2S] clusters under aerobic 
conditions

Unlike NADPH or NADH, reduced flavin nucleotides (FMNH2 and FADH2) are not stable 

under aerobic conditions and not commercially available. To prepare FMNH2 or FADH2, we 

purified Escherichia coli flavin reductase (Fre) from an E. coli ASKA library strain [31]. 

Figure 1A shows that purified E. coli Fre does not have any prosthetic groups as reported in 

[38], and is fully active to reduce FMN/FAD to FMNH2/FADH2 using NADH as electron 

donor [39].

To monitor the redox state of the mitoNEET [2Fe-2S] clusters, we used the UV-visible 

absorption spectroscopy. Purified human mitoNEET has two major absorption peaks at 458 

nm and 540 nm, indicative of the oxidized [2Fe-2S] clusters in the protein [18, 22] (Figure 

1B, spectrum 1). When mitoNEET is incubated with a catalytic amount of purified E. coli 
Fre (Figure 1B, spectrum 2) or Fre and NADH (Figure 1B, spectrum 3) under aerobic 

conditions, the mitoNEET [2Fe-2S] clusters remain oxidized. However, when mitoNEET is 

incubated with E. coli Fre, NADH and FMN under aerobic conditions, the mitoNEET 

[2Fe-2S] clusters are fully reduced, as indicated by a new absorption peak at 420 nm (Figure 

1B, spectrum 4). Thus, while Fre or Fre/NADH fails to reduce the mitoNEET [2Fe-2S] 

clusters, FMN reduced by Fre and NADH can fully reduce the mitoNEET [2Fe-2S] clusters 

under aerobic conditions. Similar results are observed when FMN is replaced with FAD in 

the incubation solutions (data not shown).

In parallel experiments, we used the electron paramagnetic resonance (EPR) spectroscopy to 

evaluate the redox state of the mitoNEET [2Fe-2S] clusters in the above reaction solutions. 

While the oxidized mitoNEET [2Fe-2S] clusters are EPR silent, the reduced mitoNEET 

[2Fe-2S] clusters have a distinct EPR signal at g = 1.94 [23, 40]. Figure 1C shows that the 

mitoNEET [2Fe-2S] clusters are reduced only after mitoNEET is incubated with Fre, NADH 

and FMN or FAD (not shown). Thus, the mitoNEET [2Fe-2S] clusters can be efficiently 

reduced by the reduced flavin nucleotides under aerobic conditions.

2. Reversible reduction of the mitoNEET [2Fe-2S] clusters under aerobic conditions

Since the redox midpoint potential (Em7) of the mitoNEET [2Fe-2S] clusters is about 0 mV 

[24], the reduced [2Fe-2S] clusters in mitoNEET could be readily oxidized by oxygen under 

aerobic conditions. To test this idea, mitoNEET is pre-incubated with FMN and a limited 

amount of NADH under anaerobic conditions, followed by addition of a catalytic amount of 

flavin reductase (Fre). As shown in Figure 2A, addition of Fre leads to a rapid reduction of 

the mitoNEET [2Fe-2S] clusters under anaerobic conditions. When the reaction solution is 

exposed to air, the reduced mitoNEET [2Fe-2S] clusters are quickly oxidized (Figure 2B, 

spectrum 3). However, when additional NADH is added to the reaction solution, the 
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mitoNEET [2Fe-2S] clusters are re-reduced under aerobic conditions (Figure 2A). The 

results suggest that under aerobic conditions, a continuous supply of NADH is required for 

maintaining the reduced state of the mitoNEET [2Fe-2S] clusters in the presence of flavin 

reductase and flavin nucleotide. Thus, the redox state of the mitoNEET [2Fe-2S] clusters 

may be controlled by the reduced redox co-enzymes in cells under aerobic conditions.

3. Flavin nucleotides act as electron shuttles mediating reduction of the mitoNEET 
[2Fe-2S] clusters

Flavin reductase reduces flavin nucleotides using NADH as electron donor without tightly 

binding its substrates or products [39]. We assume that flavin nucleotides reduced by flavin 

reductase will diffuse from the enzyme to reduce the [2Fe-2S] clusters in mitoNEET. To 

explore this idea, mitoNEET (containing 10 µM [2Fe-2S] cluster) is pre-incubated with Fre 

(1 µM) and various concentrations of FMN under aerobic conditions. The reduction of the 

mitoNEET [2Fe-2S] clusters in solutions is initiated by adding NADH (100 µM). Figure 3A 

shows that without FMN, there is no reduction of the mitoNEET [2Fe-2S] clusters. As the 

concentration of FMN is increased from 0 to 0.2 µM in the incubation solution (Figure 3B–

F), the mitoNEET [2Fe-2S] clusters are quickly reduced under aerobic conditions.

The amounts of the reduced mitoNEET [2Fe-2S] clusters are measured after 4 min 

incubation with Fre, NADH and various concentrations of FMN or FAD, and plotted as a 

function of the flavin nucleotide concentrations. Figure 4A shows that about 0.1 µM FMN is 

sufficient to fully reduce 10 µM mitoNEET [2Fe-2S] clusters after 4 min incubation. Similar 

results are observed when FMN is replaced with FAD in the reaction solutions (Figure 4B). 

These results suggest that flavin nucleotides may act as electron shuttles to efficiently reduce 

the mitoNEET [2Fe-2S] clusters under aerobic conditions.

4. EPR evidence for flavin mononucleotide binding in mitoNEET

As a catalytic amount of flavin nucleotides is sufficient for reduction of the mitoNEET 

[2Fe-2S] clusters (Figure 4), we postulate that mitoNEET may have specific interactions 

with flavin nucleotides. In the experiments, mitoNEET is pre-incubated with 10-fold excess 

of NADP+, NAD+, FAD, or FMN in buffer containing 500 mM NaCl and 20 mM Tris (pH 

8.0) for 30 min under aerobic conditions. The samples are then reduced with freshly 

prepared sodium dithionite to fully reduce the redox co-enzyme and the mitoNEET [2Fe-2S] 

clusters for the EPR measurements, as only the reduced mitoNEET [2Fe-2S] clusters are 

paramagnetic and EPR visible [23, 40]. Any change of the EPR spectrum would reflect 

potential interactions between the reduced co-enzyme and the reduced [2Fe-2S] clusters in 

mitoNEET. Figure 5A shows that NADPH and NADH has very little or no effects on the 

EPR spectrum of the reduced mitoNEET [2Fe-2S] clusters (spectra 2–3), consistent with the 

idea that NADPH and NADH have a weak interaction with mitoNEET [29]. In contrast, 

incubation with FMNH2 produces a new EPR signal at g = 1.85 (spectrum 4), suggesting 

that FMNH2 may have a specific interaction with the reduced [2Fe-2S] clusters in 

mitoNEET. Interestingly, incubation with FADH2 does not have any significant effects on 

the EPR spectrum of the reduced mitoNEET [2Fe-2S] clusters (spectrum 5). Perhaps, the 

AMP moiety in FAD may obstruct the interaction between FADH2 and the [2Fe-2S] clusters 

in mitoNEET.
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MitoNEET is then incubated with increasing concentrations of FMN under aerobic 

conditions, followed by reduction with freshly prepared sodium dithionite. Figure 5B shows 

that as the concentration of FMNH2 increases from 0 to 200 µM, the amplitude of the EPR 

signal at g = 1.85 gradually increases with concomitant decrease of the EPR signal at g = 

1.94. Integration of the new EPR signal at g = 1.85 shows when 10 µM mitoNEET [2Fe-2S] 

clusters are incubated with 200 µM FMNH2, about 4 µM mitoNEET [2Fe-2S] clusters are 

converted to the ones with the EPR signal at g = 1.85. The relatively weak interaction could 

be due to the fact that both FMN and the [2Fe-2S] clusters in mitoNEET are in reduced 

state. However, attempts to isolate the mitoNEET-FMN complex from the incubation 

solutions were not successful. It appears that mitoNEET does not form a stable complex 

with FMN, similar as flavin reductase [38]. Nevertheless, the new EPR signal at g = 1.85 of 

the reduced mitoNEET [2Fe-2S] clusters at high concentrations of FMNH2 clearly suggests 

that mitoNEET has a specific interaction with FMN.

5. Molecular docking for the flavin mononucleotide binding in mitoNEET

To further explore the FMN binding in mitoNEET, we have used molecular docking 

approach. Our protocol for AutoDockVina-based Virtual Screening [37] is a modification 

from Garret M. Morris’ (The Scripps Research Institute, La Jolla, CA) [36]. The best 

docking models for the FMN binding in mitoNEET are shown in Figure 6A. For clarity, only 

one monomer in the mitoNEET dimer is shown with the bound FMN molecule. Each 

conformation of FMN in mitoNEET represents one docking model. In all docking models 

obtained, FMN always binds mitoNEET at the region between the transmembrane α-helix 

domain (not shown in Figure 6A) and the [2Fe-2S] cluster domain. The shortest distance 

between the [2Fe-2S] cluster and the bound FMN in mitoNEET is about 10 Å. A close 

examination of the FMN binding site in mitoNEET shows that His-39 and Lys-42 from 

chain 1 form electrostatic interactions with the phosphate group of FMN, while Ile-45 from 

chain 1 and Met-44 from chain 2 form hydrophobic interactions with the isoalloxazine group 

of FMN (Figure 6B).

To test potential role of the region between Arg-33 and Ile-45 of mitoNEET in binding 

FMN, we have constructed a mitoNEET mutant in which the residues between Arg-33 and 

Ile-45 are in-frame deleted. Deletion of the region between Arg-33 and Ile-45 has only a 

minor effect on the UV-visible absorption spectrum of the [2Fe-2S] clusters in the protein 

(Figure 7A). However, the deletion largely abolishes the specific interaction between 

FMNH2 and the reduced [2Fe-2S] clusters in mitoNEET (Figure 7B), suggesting that the 

region between Arg-33 and Ile-45 is at least partially responsible for the FMN binding in 

mitoNEET.

DISCUSSION

The [2Fe-2S] clusters in mitochondrial outer membrane protein mitoNEET are redox active 

with a redox midpoint potential (Em7) of 0 mV [21, 24]. However, cellular components 

responsible for reducing the mitoNEET [2Fe-2S] clusters are not fully understood. In 

previous studies, we reported that the mitoNEET [2Fe-2S] clusters can be reduced by 

biological thiols [22] or human glutathione reductase [23]. However, reduction of the 
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mitoNEET [2Fe-2S] clusters mediated by biological thiols [22] or human glutathione 

reductase [23] is slow, and must be carried out under anaerobic conditions [22, 23]. Here, we 

find that the reduced flavin nucleotides reduced by flavin reductase and NADH can rapidly 

reduce the mitoNEET [2Fe-2S] clusters under aerobic conditions (Figure 1). Flavins are 

ubiquitous redox co-enzymes in cells [41]. While flavin contents vary in different cell lines, 

riboflavin (3.1–5.7 amol/cell) and FAD (12–26 amol/cell) are found to be predominant 

flavins with a relatively lower content of FMN (2.7–3.4 atom/cell) in various cell lines [42]. 

Although riboflavin is considered the precursor of flavin nucleotides [41], we found that the 

reduced riboflavin, like the reduced FMN and FAD, can also rapidly reduce the mitoNEET 

[2Fe-2S] clusters under aerobic conditions (data not shown). In this context, we propose that 

flavin and flavin nucleotides may act as electron shuttles to mediate reduction of the 

mitoNEET [2Fe-2S] clusters, and that the redox state of the mitoNEET [2Fe-2S] clusters is 

directly controlled by the reduced flavin and flavin nucleotides.

Unlike the reduced flavin nucleotides, NADH or NADPH fails to reduce the mitoNEET 

[2Fe-2S] clusters under aerobic or anaerobic conditions [22, 23, 30]. However, we find that 

NADH can provide electrons to reduce flavin nucleotides via flavin reductase (Figure 1). 

When NADH is exhausted, the reduced mitoNEET [2Fe-2S] clusters are quickly oxidized by 

oxygen under aerobic conditions (Figure 2). Thus, the redox state of the mitoNEET [2Fe-2S] 

clusters may be ultimately controlled by intracellular NADH. In human cells, high glycolytic 

activity will lead to accumulation of NADH [28]. Excess NADH may be used by flavin 

reductase [43] to reduce flavin nucleotides which in turn reduce the mitoNEET [2Fe-2S] 

clusters on mitochondrial outer membrane. As the redox transition of the [2Fe-2S] clusters 

in mitoNEET is expected to modulate energy metabolism, iron homeostasis and production 

of reactive oxygen species in mitochondria [13], mitoNEET may act as a crucial link 

between the redox state of intracellular co-enzymes and mitochondrial functions.

The salient finding of this work is the specific interaction between FMN and mitoNEET. The 

observation that a catalytic amount of flavin nucleotides is sufficient to reduce the 

mitoNEET [2Fe-2S] clusters (Figure 4) led us to postulate that the reduced flavin 

nucleotides may have a specific interaction with mitoNEET in order to rapidly reduce the 

oxidized [2Fe-2S] clusters in mitoNEET. The EPR measurements show that incubation with 

the reduced FMN, but not the reduced FAD, indeed produces a new EPR signal at g = 1.85 

of the reduced mitoNEET [2Fe-2S] clusters (Figure 5). However, excess amounts of the 

reduced FMN are required to produce the EPR signal at g = 1.85 of the reduced mitoNEET 

[2Fe-2S] clusters, indicating that binding of the reduced FMN for mitoNEET is not very 

strong. It could be that both FMA and the [2Fe-2S] clusters in mitoNEET are reduced. 

However, attempts to isolate the mitoNEET-FMN complex under various redox states were 

not successful. Thus, FMN binding in mitoNEET could be transient, similar to that in flavin 

reductase [38]. We postulate that FMNH2 may rapidly reduce the oxidized [2Fe-2S] clusters 

in mitoNEET. Upon oxidation, FMN will have much lower binding affinity for mitoNEET 

and dissociate from mitoNEET. Nevertheless, at high concentrations of FMN, the new EPR 

signal at g = 1.85 (Figure 5) clearly suggests that mitoNEET has a specific interaction with 

FMN.
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Based on the molecular docking models (Figure 6), FMN most likely binds mitoNEET at the 

region between the transmembrane α-helix and the [2Fe-2S] cluster binding domain. The 

shortest distance between the isoalloxazine group of FMN and the [2Fe-2S] cluster in 

mitoNEET is about 10 Å (Figure 6A). Such an arrangement would allow rapid electron 

transfer from the reduced FMN to the oxidized [2Fe-2S] cluster in mitoNEET [44]. As 

reduction of the [2Fe-2S] cluster in mitoNEET is a single-electron event, reduced flavin 

nucleotide must form a semiquinone intermediate after delivering one electron to the 

[2Fe-2S] cluster in mitoNEET. However, we were unable to detect any semiquinone signals 

using EPR (data not shown). A simplest explanation could be that semiquinone 

intermediates may quickly reduce the other [2Fe-2S] cluster in the mitoNEET dimer (Figure 

6A). Evidently, additional experiments are required to illustrate the mechanism by which the 

mitoNEET [2Fe-2S] clusters are reduced by the reduced flavin nucleotides.

Using molecular docking approaches, Geldenhuys et al. previously identified two major 

binding sites in mitoNEET for type II diabetes drugs rosiglitazone and pioglitazone [45]. 

Site 1 consists of Lys-42 and Ala-43 from chain 1 and Met-44, Leu-47, Arg-76, His-90, and 

Thr-94 from chain 2, while site 2 consists of His-48, Ile-49, Trp-75, Arg-76, Ser-77, and 

Lys-78 from chain 1 [45]. The FMN binding site in mitoNEET shown in Figure 6A is 

distinct from site 1 and site 2 for type II diabetes drugs rosiglitazone and pioglitazone [45], 

but has some significant overlap with site 1. Because of the high insolubility of pioglitazone, 

the dissociation constant of the interaction between mitoNEET and pioglitazone was not 

determined (36). A more soluble pioglitazone analog, NL-1, has been shown to bind 

mitoNEET with a dissociation consistent of 7.4 µM (6). It is expected that pioglitazone or 

NL-1 will compete with flavin nucleotides for binding in mitoNEET. In previous studies, we 

reported that pioglitazone inhibits the reduction of the mitoNEET [2Fe-2S] clusters 

mediated by biological thiols [22] or by human glutathione reductase [23] under anaerobic 

conditions. Here, we have also found that pioglitazone and NL-1 can effectively inhibit the 

reduction of the mitoNEET [2Fe-2S] clusters mediated by the reduced flavin nucleotides 

under aerobic conditions (Wang & Ding, unpublished data). Further investigations on 

competition between pioglitazone or its analogs and flavin nucleotides for binding in 

mitoNEET may lead to discovery of new drugs that target mitoNEET to modulate energy 

metabolism in mitochondria.
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List of Abbreviations

Em7 redox midpoint potential at pH 7.0

EPR electron paramagnetic resonance

FMN flavin mononucleotide

FAD flavin adenine dinucleotide
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Fre E. coli flavin reductase

NADH nicotinamide adenine dinucleotide

NADPH nicotinamide adenine dinucleotide phosphate
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Highlights

• A mechanism for redox transition of the mitoNEET [2Fe-2S] clusters is 

proposed.

• Reduced flavin nucleotides can rapidly reduce the mitoNEET [2Fe-2S] 

clusters.

• Flavin mononucleotide appears to have a specific interaction with 

mitoNEET.
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Figure 1. Reduction of the mitoNEET [2Fe-2S] clusters by reduced flavin nucleotides
A), UV-visible absorption spectrum of purified E. coli flavin reductase (Fre). Purified Fre 

(30 µM) was dissolved in buffer containing 500 mM NaCl and 20 mM Tris (pH 8.0). Insert 

is a photograph of the SDS-PAGE gel of purified E. coli Fre. B), reduction of the mitoNEET 

[2Fe-2S] clusters by the reduced flavin nucleotides. MitoNEET (containing 10 µM [2Fe-2S] 

clusters) (spectrum 1) was incubated with E. coli Fre (1 µM) (spectrum 2), Fre and NADH 

(50 µM) (spectrum 3), Fre, NADH and FMN (1 µM) (spectrum 4) in buffer containing 500 

mM NaCl and 20 mM Tris (pH 8.0) at room temperature under aerobic conditions. For each 
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reaction, the UV-visible absorption spectrum was taken after incubation for 2 min. C), EPR 

spectra of the mitoNEET [2Fe-2S] clusters. The samples were the same as in A). The EPR 

signal at g = 1.94 indicates the reduced mitoNEET [2Fe-2S] clusters. Data are representative 

of three independent experiments.
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Figure 2. Redox transition of the mitoNEET [2Fe-2S] clusters mediated by flavin nucleotides
A), redox transition of the mitoNEET [2Fe-2S] clusters. MitoNEET (containing 10 µM 

[2Fe-2S] clusters) was incubated with FMN (1 µM) and NADH (40 µM) under anaerobic 

conditions. Addition of Fre (1 µM) rapidly reduced the mitoNEET [2Fe-2S] clusters. Upon 

exposure to air, the reduced mitoNEET [2Fe-2S] clusters were quickly re-oxidized. Addition 

of additional NADH (100 µM) to the incubation solution under aerobic conditions re-

reduced the mitoNEET [2Fe-2S] clusters. The absorption peak at 458 nm indicates the 

oxidized [2Fe-2S] clusters of mitoNEET. The peak at 420 nm indicates the reduced [2Fe-2S] 

clusters of mitoNEET. B), UV-visible absorption spectra of the reaction solution at different 

time points. Spectrum 1, mitoNEET was incubated with FMN (1 µM) and NADH (40 µM). 

Spectrum 2, at 15 seconds after addition of Fre (1 µM). Spectrum 3, at 4 min after exposure 

to air. Data are representative of three independent experiments.
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Figure 3. Reduction of the mitoNEET [2Fe-2S] clusters in the presence of different 
concentrations of FMN
MitoNEET (containing 10 µM [2Fe-2S] clusters) was pre-incubated with E. coli Fre (1 µM) 

and different concentrations of FMN under aerobic conditions. NADH (50 µM) was then 

added to initiate the reaction. UV-Visible absorption spectra were taken every 40 seconds for 

280 seconds after addition of Fre. FMN concentration in the reaction solution was: 0 µM 

(A), 0.0125 µM (B), 0.025 µM (C), 0.05 µM (D), 0.10 µM (E), and 0.20 µM (F). The 

absorption peak at 458 nm indicates the oxidized [2Fe-2S] clusters of mitoNEET. The peak 

at 420 nm indicates the reduced [2Fe-2S] clusters of mitoNEET. The results are the 

representative of three independent experiments.
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Figure 4. Titration of flavin nucleotides in reduction of the mitoNEET [2Fe-2S] clusters
A), titration of FMN. MitoNEET (containing 10 µM [2Fe-2S] clusters) was pre-incubated 

with E. coli Fre (1 µM) and different concentrations of FMN under aerobic conditions. 

NADH (50 µM) was then added to initiate the reaction. After 4 min incubation, amounts of 

the reduced mitoNEET [2Fe-2S] clusters were measured from the UV-visible absorption 

spectra and plotted as a function of FMN concentrations in the reaction solution. B), titration 

of FAD. Same as in A), except FMN is replaced with FAD in the reaction solutions. The 

data represent the averages with standard deviation from three independent experiments.
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Figure 5. MitoNEET has a specific interaction with FMN
A), effect of the reduced co-enzymes on the EPR spectrum of the reduced mitoNEET 

[2Fe-2S] clusters. MitoNEET (containing 10 µM [2Fe-2S] clusters) was pre-incubated with 

no addition (spectrum 1), NADP+ (spectrum 2), NAD+ (spectrum 3), FMN (spectrum 4), or 

FAD (spectrum 5) in buffer containing 500 mM NaCl and 20 mM Tris (pH 8.0) at room 

temperature for 30 min. The concentration of redox co-enzymes in each incubation solution 

was 100 µM. After incubation, the samples were reduced with freshly prepared sodium 

dithionite (4 mM) and immediately frozen in liquid nitrogen. The EPR signal at g = 1.94 

represents the reduced mitoNEET [2Fe-2S] clusters. Incubation with FMN produced a new 

EPR signal at g = 1.85 of the reduced mitoNEET [2Fe-2S] clusters. B), EPR spectra of the 

mitoNEET [2Fe-2S] clusters in the presence of different concentrations of the reduced 

FMN. MitoNEET (containing 10 µM [2Fe-2S] clusters) was pre-incubated with increasing 

concentrations of FMN at room temperature for 30 min. After pre-incubation, the samples 

were reduced with freshly prepared sodium dithionite (4 mM) and immediately frozen in 

liquid nitrogen for EPR measurements. Data are representative of three independent 

experiments.
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Figure 6. Molecular docking models of FMN binding in mitoNEET
A), docking models of FMN binding in mitoNEET (PDB: 2QH7, Paddock et al. 2007). For 

clarity, only one monomer in the mitoNEET dimer was shown with the bound FMN 

molecule. B), predicted FMN binding site in mitoNEET. The phosphate group of FMN has 

electrostatic interactions with Lys-42 and His-39, while the isoalloxazine group of FMN 

forms hydrophobic interactions with Met-44 and Ile-45. Dotted lines represent hydrogen 

bonds in the mitoNEET-FMN complex.
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Figure 7. Deletion of the residues between Arg-33 and Ile-45 diminishes the interaction between 
mitoNEET and the reduced FMN
MitoNEET with deletion of the region between Arg-33 and Ile-45 was prepared using the 

site-directed mutagenesis. A), UV-visible absorption spectra of mitoNEET and mitoNEET 

mutant with the deletion. Spectrum 1, mitoNEET. Spectrum 2, mitoNEET mutant with the 

deletion. Insert is a photograph of the SDS-PAGE gel of mitoNEET and mitoNEET mutant 

with the deletion. Lane 1, mitoNEET. Lane 2, mitoNEET mutant with the deletion. B), EPR 

spectra of mitoNEET and mitoNEET mutant with the deletion after incubation with or 

without FMNH2. Purified proteins (containing 10 µM [2Fe-2S] clusters) were incubated 

with FMN (100 µM) for 30 min under aerobic conditions, followed by reduction with 

freshly prepared sodium dithionite (4 mM). The samples were then subjected to the EPR 

measurements. Spectrum 1, mitoNEET. Spectrum 2, mitoNEET after incubation with 

FMNH2. Spectrum 3, mitoNEET mutant. Spectrum 4, mitoNEET mutant with deletion after 

incubation with FMNH2. Data are representative of three independent experiments.
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