
Measuring experimental cyclohexane-water distribution 
coefficients for the SAMPL5 challenge

Ariën S. Rustenburg1,2,*, Justin Dancer3,†, Baiwei Lin3,‡, Jianwen A. Feng4,§, Daniel F. 
Ortwine3,¶, David L. Mobley5,**, and John D. Chodera2,††

1Graduate Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Medical 
College, New York, NY 10065

††Corresponding author: john.chodera@choderalab.org.
*arr2011@med.cornell.edu
†Current address: Theravance Biopharma, South San Francisco, CA 94080, United States
‡lin.baiwei@gene.com
§feng@dnli.com
¶ortwine.daniel@gene.com
**dmobley@uci.edu
1Shimadzu cat. no. 228-45450-91
2DMSO stocks from Genentech compound library
3ACS grade ≥ 99%, Sigma-Aldrich cat. no 179191-2L, batch #00555ME
4136 mM NaCl, 2.6 mM KCl, 7.96 mM Na2HPO4, 1.46 mM KH2PO4, with pH adjusted to 7.4, prepared by the Genentech Media lab
5Thermo Fisher Scientific, Titer Plate Shaker, model: 4625, Waltham, MA, USA
6Agilent Technologies, Vial plate for holding 54 × 2 mL vials part no. G2255-68700
7Eppendorf, Centrifuge 5804, Hamburg, Germany
8384-well glass coat plate: Thermo Scientific, Microplate, 384-Well; Webseal Plate; Glass-coated Polypropylene; Square well shape; 
U-Shape well bottom; 384 wells; 90uL sample volume; catalog number: 3252187
9ACROS Organics, 1-octanol 99% pure, catalog number: AC150630010, Geel, Belgium
10Waters Xbridge C18 2.130mm with 2.5m particles
11Agilent cat no 24214-001
12All LC solvents were HPLC-grade and purchased from OmniSolv (Charlotte, NC, USA)
13This was done using a Shimadzu NexeraX2 consisting of an LC-30AD(pump), SIL-30AC (auto-injector), and SPD-20AC(UV/VIS 
detector) with Sciex API4000QTRP (MS)
14This was done using a Shimadzu NexeraX2 consisting of an LC-30AD(pump), SIL-30AC (auto-injector), and SPD-20AC(UV/VIS 
detector) with Sciex API4000 (MS)

15For the purpose of the D3R/SAMPL5 workshop, we originally erroneously reported the standard deviation  instead of the 

standard error . The factor of  corrects the sample standard deviation across all MRM measurements for the correlation 
between the 3 replicate measurements belonging to a single independent experimental repeat.

The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 
International license.

VIII. CONFLICT OF INTEREST STATEMENT
DLM and JDC are members of the Scientific Advisory Board for Schrödinger, LLC.

VI. SUPPLEMENTARY INFORMATION
Canonical isomeric smiles for each of the measured compound are available in Table S1. An sdf file containing all compounds, 
including the measured distribution coefficients is available as part of the Supplementary Information. Parent and daughter fragment 
ion information is available as part of the Supplementary Information. Integrated MRM data including excluded data points are 
available as part of the Supplementary Information. Bootstrap distributions from the parametric bootstrap samples for each compound 
are provided in the Supplementary Information. A correlation analysis between the parametric bootstrap uncertainty, and the chemical 
properties of the compounds in the dataset is available as an Excel spreadsheet in the Supplementary Information. We also include a 
csv file containing a full list of SAMPL5_XXX identifiers and canonical isomeric smiles, including unmeasured compounds. Source 
code of the bootstrap uncertainty analysis is available on Github at https://github.com/choderalab/sampl5-experimental-logd-data. A 
copy of this source code is also included in a zip file, as part of the supporting information.

HHS Public Access
Author manuscript
J Comput Aided Mol Des. Author manuscript; available in PMC 2017 November 01.

Published in final edited form as:
J Comput Aided Mol Des. 2016 November ; 30(11): 945–958. doi:10.1007/s10822-016-9971-7.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/choderalab/sampl5-experimental-logd-data


2Computational Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer 
Center, New York, NY 10065, United States

3Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States

4Denali Therapeutics, 201 Gateway Blvd, South San Francisco, CA 94080, United States

5Department of Pharmaceutical Sciences and Department of Chemistry, University of California, 
Irvine, Irvine, California 92697, United States

Abstract

Small molecule distribution coefficients between immiscible nonaqueuous and aqueous phases—

such as cyclohexane and water—measure the degree to which small molecules prefer one phase 

over another at a given pH. As distribution coefficients capture both thermodynamic effects (the 

free energy of transfer between phases) and chemical effects (protonation state and tautomer 

effects in aqueous solution), they provide an exacting test of the thermodynamic and chemical 

accuracy of physical models without the long correlation times inherent to the prediction of more 

complex properties of relevance to drug discovery, such as protein-ligand binding affinities. For 

the SAMPL5 challenge, we carried out a blind prediction exercise in which participants were 

tasked with the prediction of distribution coefficients to assess its potential as a new route for the 

evaluation and systematic improvement of predictive physical models. These measurements are 

typically performed for octanol-water, but we opted to utilize cyclohexane for the nonpolar phase. 

Cyclohexane was suggested to avoid issues with the high water content and persistent 

heterogeneous structure of water saturated octanol phases, since it has greatly reduced water 

content and a homogeneous liquid structure. Using a modified shake-flask LC-MS/MS protocol, 

we collected cyclohexane/water distribution coefficients for a set of 53 drug like compounds at pH 

7.4. These measurements were used as the basis for the SAMPL5 Distribution Coefficient 

Challenge, where 18 research groups predicted these measurements before the experimental values 

reported here were released. In this work, we describe the experimental protocol we utilized for 

measurement of cyclohexane-water distribution coefficients, report the measured data, propose a 

new bootstrap-based data analysis procedure to incorporate multiple sources of experimental error, 

and provide insights to help guide future iterations of this valuable exercise in predictive modeling.
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I. INTRODUCTION

Rigorous assessment of the predictive performance of physical models is critical in 

evaluating the current state of physical modeling for drug discovery, assessing the potential 

impact of current models in active drug discovery projects, and identifying limits of the 

domain of applicability that require new models or improved algorithms. Past iterations of 

the SAMPL (Statistical Assessment of the Modeling of Proteins and Ligands) experiment 

have demonstrated that blind predictive challenges can expose weaknesses in computational 

methods for predicting protein-ligand binding affinities and poses, hydration free energies, 
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and host-guest binding affinities [1–4]. In addition, these blind challenges have contributed 

new, high-quality datasets to the community that have enabled retrospective validation 

studies and data-based parameterization efforts to further advance the current state of 

physical modeling.

By focusing community effort on the prediction of hydration free energies in the first few 

iterations of this challenge, the SAMPL experiments have now brought physical modeling 

approaches to the point where they can reliably identify erroneous experimental data [5]. 

While hydration free energy exercises have shown their utility in improving the state of 

physical modeling, they are laborious, require specialized equipment no longer found in 

modern laboratories, are (at least using traditional protocols) limited in dynamic range, and 

are of questionable applicability in their ability to mimic protein-to-solvent transfer. As a 

result, no experimental laboratory has emerged to provide new hydration free energy 

measurements to sustain this aspect of the SAMPL challenge. We sought to replace this 

component of the SAMPL challenge portfolio with a new physical property that was easy to 

measure, accessible to multiple laboratories, had a wide dynamic range (in a free energy 

scale), and better mimicked physical and chemical effects relevant to protein-to-solvent 

transfer free energies, but was still free of the conformational sampling challenges protein-

ligand binding affinities present. As the measurement of partition and distribution 

coefficients is now widespread in pharma (due to its relevance in optimizing lipophilicity of 

small molecules), we posited that a blind challenge centered around the prediction of 

distribution coefficients—which face many of the same physical and chemical effects (such 

as protonation state [6, 7] and tautomer issues [8]) observed in protein-ligand binding—

might provide such a challenge.

While the measurement of octanol/water distribution coefficients is commonplace (a 2008 

benchmark of structure- and property-based log P prediction methods used 96,000 

experimental measurements [9]), a number of previously-reported complications in the 

physical simulation of 1-octanol suggested that this might be too complex for an initial 

distribution coefficient challenge [10–13], despite some recent reports of success [14]. In 

particular, water-saturated octanol is very wet, containing 47±1 mg water/g solution [15], 

and forms complex microclusters or inverse-micelles that create a heterogeneous 

environment that persist for long simulation times [10–13]. For the inaugural distribution 

coefficient challenge in SAMPL5, we therefore chose to measure cyclohexane/water 

distribution coefficients. The water content of water-saturated cyclohexane is much lower 

than water saturated octanol—0.12 mg water/g solution, approximately 400 times smaller 

[16–18], and possesses no long-lived heterogeneous structure [19].

The number of freely available sources of cyclohexane water partition is very limited, and 

for the purpose of the SAMPL5 distribution coefficient challenge[20], blind data was 

required. As part of an internship program at Genentech arranged by the coauthors, the lead 

author was dispatched to work out modifications of a high-throughput shake-flask protocol 

[21] currently in use for octanol/water distribution coefficient measurements. In particular, 

the low dielectric constant of cyclohexane (2.0243) compared to 1-octanol (10.30) [22] and 

cyclohexane’s surprising ability to dissolve laboratory consumables presented some 

unexpected challenges. In this report, we describe the modified protocol that resulted, and 
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provide suggestions on how it can further be refined for future iterations of the distribution 

coefficient challenge. Of 95 lead-like molecules with diverse functional groups selected for 

measurement, we report 53 logD measurements that passed quality controls that were used 

in the SAMPL5 challenge.

To ensure the reported experimental dataset is useful in assessing, falsifying, and improving 

computational physical models of physical properties, we require a robust approach to 

estimating the experimental error (uncertainty in experimental measurements). We explored 

several procedures for propagating known sources of error in the measurement process into 

the final reported log distribution coefficients, and report those efforts here. Our primary 

approach features a parametric bootstrap, which allows the use of a physical model of the 

data generating process to sample additional realizations of the data, using distributions 

specified in the model. These additional realizations are new data points, over which 

estimates can be calculated. We compared this to a nonparametric bootstrap, which can be 

useful if a physical model can not be constructed. This method generates new data points as 

well, but it constructs them from selection with replacement from the existing data. We also 

calculated the arithmetic mean and standard error of the measured data. We hope that future 

efforts to measure cyclohexane-water distribution coefficients can benefit from the model we 

have developed, so that this work will also be useful for future challenges.

All code used in the analysis, as well as raw and processed data, can be found at https://

github.com/choderalab/sampl5-experimental-logd-data.

Theory of distribution coefficients

The distribution coefficient, D, is a measure of preferential distribution of a given compound 

(solute) between two immiscible solvents at a specified pH, usually specified as logD in its 

base-10 logarithmic form,

(1)

Typically, one solvent is aqueous and buffered at the specified pH (e.g. Tris pH 7.4), while 

the other is a polar (e.g. 1-octanol). At the given pH, the solute may populate multiple 

protonation or tautomeric states, but the total concentration summed over all states is used in 

the calculation of concentrations in Equation (1). The total salt concentration of the aqueous 

phase can also play a role, in case salts can provide stabilization of an ionic state of the 

ligand in the aqueous phase [23]. Additionally, temperature can cause shifts in the 

equilibrium populations [23]. Because of this, care must be exercised when comparing 

distribution coefficients obtained under different experimental conditions.

For the SAMPL5 challenge, we concern ourselves with the cyclohexane-water distribution 

coefficient, where phosphate-buffered saline (PBS) at pH 7.4 is used for the aqueous phase, 

at a temperature of 25 °C:
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(2)

Another commonly reported value is the partition coefficient P, which quantifies the relative 

concentration of the neutral species in each phase, again usually specified in log10 form,

(3)

For ligands with a single titratable site and known pKa, one can readily convert between log 

P and logD for a given pH (see, e.g. [23]), but ligands with more complex protonation state 

effects or tautomeric state effects make accounting for the transfer free energies of all 

species significantly more challenging.

II. EXPERIMENTAL METHODS

In the following sections we describe how we measured cyclohexane/water distribution 

coefficients for the 53 compounds displayed in Figure 1. The compound selection procedure 

is described in Section II A.

Distribution coefficient measurements utilized a shake flask approach based on a liquid 

chromatography–tandem mass spectrometry (LC–MS/MS) technique previously developed 

for 1-octanol/water distribution coefficient measurements [21]. The approach is described in 

Section II B, and the procedure is schematically summarized in Figure 2.

The measured data was subjected to a quality control procedure that eliminated 

measurements thought to be too unreliable for use in the SAMPL5 challenge (Section II C). 

Remaining data were analyzed using a physical model of the experiment by means of a 

parametric bootstrap procedure. We compared this approach to a nonparametric bootstrap 

approach, and the arithmetic mean and standard error of the data without bootstrap analysis. 

In Section II D, we describe each approach. The results for each approach can be found in 

Table I.

A. Compound selection

Compounds were initially selected from a database of 9115 lead-like molecules available in 

eMolecules that were present in the Genentech chemical stores in quantities of over 2 mg, 

with molecular weights between 150–350 Da. The lower bound on molecular weight was 

chosen to increase the likelihood of detectability by mass spectrometry, and the upper bound 

to limit molecular complexity.

We initially chose approximately 88 compounds based on several criteria:
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• First, we selected 8 carboxylic acid compounds. These were of potential 

interest for the purpose of the challenge, since it was suspected these could 

potentially partition along into the cyclohexane phase together with water 

or cations [23].

• The software MoKa, version 2.5 was used to obtain calculated LogP, 

LogD, and pKa values [24, 25]. This version of MoKa was trained with 

Roche internal data to improve accuracy. We selected 20 compounds with 

predicted pKa values that would potentially be measurable with a Sirius 

T3 instrument (Sirius Analytical) so validation with an orthogonal 

technique (electrochemical titration) could be performed in the future. The 

pKa predictions for compounds in our final data set have been made 

available in the Supplementary Information.

• The remaining compounds were divided into 10 equalsize bins that 

spanned the predicted dynamic range of log P values (−3.0 to 6.6), and 6 

compounds were drawn from each bin, to a total of 60.

This set of 88 molecules was later reduced to 64 molecules due to the unavailability of some 

compounds or the inability to detect molecular fragments by mass spectrometry at the time 

of measurement. This selection was expanded to include 31 compounds used as internal 

standards for the previously developed octanol/water assay protocol [21], bringing the total 

number of compounds for which measurements were performed to 95. These compounds 

were randomly assigned numerical SAMPL_XXX designations for the SAMPL5 blind 

challenge. After the quality control filtering phase (Section II C), the resulting data set 

contained 53 compounds, which are displayed in Figure 1. Canonical isomeric SMILES 

representations for the compounds can also be found in Table S1. These were generated 

using Open Eye Toolkits v2015. June by converting 3D SDF files, after manually verifying 

the correct stereochemistry.

B. Shake-flask measurement protocol for cyclohexane/water distribution coefficients

We adapted a shake-flask assay method from an original octanol/water LC-MS/MS protocol 

[21] to accommodate the use of cyclohexane for the nonaqueous phase. Our modified 

protocol is described here, and the procedure is explained schematically in Figure 2.

The logD is estimated by quantifying the concentration of a solute directly from two 

immiscible layers, present as an emulsion in a single vial. Capped glass 1.5 mL auto-injector 

vials with PTFE-coated silicone septa1 were used for partitioning, as cyclohexane was found 

to dissolve polystyrene 96-well plates used in the original protocol.

For each individual experiment, 10 μL of 10mM compound in dimethyl sulfoxide (DMSO)2 

and 5 μL of 200 μM propanolol in acetonitrile (an internal standard) were added to 500 μL 

cyclohexane3, followed by the addition of 500 μL of PBS solution4. The ionic components 

of the buffer were chosen to replicate the buffer conditions used in other in-vitro assays at 

Genentech. Unlike the original protocol, neither phase was presaturated prior to pipetting.
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The solute was allowed to partition between solvents while the mixture was shaken for 50 

minutes using a plate shaker5 at 800 RPM, while the vials were mounted in a vial holder and 

taped down to the sides of the vial holder6. The two solvents were then separated by 

centrifugation for 5 minutes at 3700 RPM in a plate centrifuge, using the plate rotor7, with 

the vials seated in the same vial holder.

Aliquots were extracted from each separated phase using a standard adjustable micropipette, 

and transferred into a 384-well glass-coated polypropylene plate for subsequent 

quantification8. Cylcohexane wells were first prepared with 45 μL of 1-octanol9 per well. 5 

μL of cyclohexane was extracted from the top phase by micropipette and mixed with 45 μL 

of octanol in the 384 well plate. 50 μL of aqueous solution was subsequently extracted from 

the bottom phase. The octanol dilution was performed mainly to prevent accumulation of 

cyclohexane on the C18 HPLC columns10 that were used. For the aqueous (bottom) phase, 

the aliquot of 50 μL was transferred directly into the 384-well plate, into wells that did not 

contain octanol. The 384-well plates were sealed with using glueless aluminum foil seals11, 

and fragment concentrations assayed using quantitative LC-MS/MS.

Measuring solute distribution into the two phases depends on two separate mass 

spectrometry measurements12 :

• The solute is analyzed to identify and select parent and daughter ions, and 

optimize ion fragment parameters13.

We used a flow rate of 0.2 mL/min, mobile phase of water/acetonitrile/

formic acid (50/50/0.1 v/v/v) and 1.5 min run time. All parameters were 

automatically stored for further multiple-reaction monitoring (MRM) 

analysis. For several compounds, the fragment identification LC-MS/MS 

procedure did not yield high intensity fragments, and these could therefore 

not be measured using the MRM approach. All identified parent and 

daughter ions are available as part of the Supplementary Information.

• A separate mass spectrometer is employed using MRM to select for parent 

ions and daughter ions of the solute identified in the previous step. The 

mass/charge (m/z) intensity (proportional to the absolute number of 

molecules) is quantified as a function of the retention time14. Information 

on the gradient can be found in Supplementary Table 1 of Lin and Pease 

2013 [21].

Highest m/z intensity fragments were selected using 5mM solutions consisting of 50% 

DMSO, 50% acetonitrile.

From each solvent phase in the partitioning experiment, one aliquot was prepared, and 

replicate MRM measurements were performed 3 times per aliquot. The logD can be 

calculated from the relative MRM-signals, obtained by integrating the single peak in the 

MRM-chromatogram, using Equation (4).
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(4)

The cyclohexane signal is normalized by the dilution factor of our cyclohexane aliquots, dchx 

= 0.1, and the injection volume vinj, chx. As the PBS aliquots were not diluted, this is only 

normalized by the injection volume vinj, PBS. Experiments were carried out independently at 

least in duplicate, repeated from the same DMSO stock solutions. Injection volumes of the 

MRM procedure were 1 μL for cyclohexane (diluted in octanol), and 2 μL for PBS samples. 

To optimize experimental parameters, we carried out two additional repeat experiments with 

2 μL injections for cyclohexane (diluted in octanol), and 1 μL for PBS. This set included 

SAMPL5_003, SAMPL5_005, SAMPL5_006, SAMPL5_011, SAMPL5_027, 

SAMPL5_049, SAMPL5_050, SAMPL5_055, SAMPL5_058, SAMPL5_060, and 

SAMPL5_061. The additional repeats were carried with higher cyclohexane injection 

volumes to increase the strength of signal in the cyclohexane phase, and lower PBS volumes 

to decrease the chances of over saturation of PBS phase signals.

C. Quality control

In order to eliminate measurements thought to be too unreliable for the SAMPL5 challenge, 

we utilized a simple quality control filter after MRM quantification. Compounds where the 

integrated MRM signal within either phase varied between replicates or repeats by more 

than a factor of 10 were excluded from further analysis. We additionally removed 

compounds that exceeded the dynamic range of the assay because they did not produce a 

detectable MRM signal in either the cyclohexane or buffer phases during the quantification.

D. Bootstrap analysis

Since our ultimate goal is to compare predicted distribution coefficients to experiment to 

evaluate the accuracy of current-generation physical modeling approaches, it is critical to 

have an accurate assessment of the uncertainty in the experimental measurement. Good 

approaches to uncertainty analysis propagate all known sources of experimental error into 

the final estimates of uncertainty. To accomplish this, we developed a parametric bootstrap 

model [26] of the experiment based on earlier work [27], with the goal of propagating 

pipetting volume and technical replicate errors through the complex analysis procedure to 

estimate their impact on the overall estimated logD measurements.

Bootstrap approaches provide new synthetic data sets, denoted as realizations, sampled 

using some function of the observed data that approximates the distribution that the observed 

data was drawn from. For each compound that was measured, suppose our data set provides 

N independent repeats (from the same stock solution, typically 2 or 4), and 3 technical 

replicates for each repeat (quantitation experiments from each repeat, typically 3). Each 

realization of the bootstrap process leads to a new synthetic data set, of the same size, from 

which a set of synthetic distribution coefficients can be computed for the realization. We 

applied two additional approaches for comparison to assess the performance of our 

parametric bootstrap method (Section II D 1). One features a nonparametric bootstrap 
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approach (Section II D 2), which does not include any physical details. The other is a 

calculation of the arithmetic mean and standard error that is limited to the observed data 

(Section II D 3).

1. Parametric bootstrap—We used a parametric bootstrap [28] method to introduce a 

random bias and variance into the data, based on known experimental sources. This 

procedure allows us to use a model to propagate known uncertainty throughout the 

procedure [28]. This allows us to better estimate the distribution that the observed data was 

drawn from, so that more accurate estimates of the means and sample variance can be 

obtained.

Uncertainties in pipetting operations were modeled based on manufacturer descriptions [29, 

30], following the work of Hanson, Ekins and Chodera [27]. Technical replicate variation 

was modeled by calculating the coefficient of variation (CV) between individual 

experimental replicates. We then took the mean CV of the entire data set, which was found 

to be ~0.3. As a control, we verified that the CV did not depend on the solvent phase that 

was measured. We included this in the parametric model by adding a signal imprecision, 

modeled by a normal distribution with zero mean, and a standard deviation of 0.3. We 

perform a total of 5 000 realizations of this process, and calculate statistics over all 

realizations, such as the mean (expectation) and standard deviation (estimate of standard 

error) for each measurement.

2. Nonparameteric bootstrap—A traditional nonparametric Monte Carlo procedure was 

applied to resample data points[26]. This approach can estimate the distribution that the 

observed data was drawn from by resampling from the observed data with replacement, to 

generate a new set of data points with size equal to the observed data set. Nonparametric 

bootstrap can be a useful approach if larger amounts of data are available, and a detailed 

physical model of the experiment is absent. We implemented the procedure in two stages:

1. A set of N repeats is drawn with replacement from the original set of 

measured repeats.

2. For each of the repeats, we similarly draw a set of 3 technical replicates 

from the original set of technical replicates.

This yields a sample data set with the same size as the originally observed data (N repeats, 

with 3 replicates each). We perform a total of 5 000 realizations of this process, and 

calculate statistics over all realizations, such as the mean (expectation) and standard 

deviation (estimate of standard error) for each measurement.

3. Arithmetic mean and sample variance—We calculated the arithmetic mean over all 

replicates and repeats, and estimated the standard error from the total of 6 or 12 data points, 

to compare to our bootstrap estimates.15

E. Kernel densities

As a visual guide, in Figure 3 data are plotted on top of an estimated density of points. This 

density was calculated using kernel density estimation [31], which is a nonparametric way to 
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estimate a distribution of points using kernel functions. Kernel functions assign density to 

individual points in a data set, so that the combined set of data points reflects a distribution 

of of the data. We used the implementation available in the python package seaborn, version 

0.7.0 [32]. We used a product of Gaussian kernels, with a bandwidth of 0.4 for logD and 0.3 

for the standard error. To prevent artifacts such as negative density estimates for the standard 

errors, they were first transformed by the natural logarithm ln, and the results were then 

converted back into standard errors by exponentiation.

III. DISTRIBUTION COEFFICIENTS

The logD values and their uncertainties for the 53 small molecules that passed quality 

controls are presented in Table I. In the following two sections, we describe the differences 

between the analysis results in more detail.

A. Mean and standard errors in logD

The results from the arithmetic mean and sample variance calculation ( Section II D 3) are 

plotted in Figure 3c.

Despite the compound selection effort, the distribution of data along the logD-axis is less 

dense in the region −1 to 0 log units. The data outside this region seems to be centered 

around −2 log units, or around 1 log unit. We could attribute this distribution of data to 

coincidence, though this may warrant future investigations into systematic errors. Using the 

arithmetic mean of the combined repeat and replicate measurements (Section II D 3) the 

distribution coefficients measured spanned from −3.9 to 2.5 log units.

The logD measurements distribution appears bimodal along the uncertainty axis. A subset of 

mostly negative logD values (Figure 3c) has a smaller estimated standard deviation, though 

this is not the case for the majority of negative logD values. The average standard error, 

rounded to 1 significant figure, is 0.2 log units for the arithmetic mean calculation.

B. Bootstrap results

Estimates of the logD span the range between −3.9 to 2.6 log units, using either of the two 

bootstrap approaches (Section II D 1 and Section II D 2). The log Destimates do not differ 

significantly from the arithmetic mean calculations. The difference between the results is 

seen when we compare the estimated standard errors. When applying our bootstrap 

procedures (Section II D 1 and Section II D 2), we see an upwards shift in the uncertainties, 

compared to the sample variance calculations. The nonparametric approach yields an 

average uncertainty of 0.3 log units. The parametric approach yields an average uncertainty 

of 0.4 log units. The parametric bootstrap suggests that by propagating errors such as the 

cyclohexane dilution, and the replicate variability into the model, some of the observed low 

uncertainties might be an artifact of the low number of measurements. This suggest that 

simply calculating the arithmetic mean, and standard error of all measured data might not 

reliably capture the error in the experiments. We also note that for certain compounds, 

bootstrap distributions exhibit multimodal character and as such, standard errors might not 

accurately capture the full extent of the experimental uncertainty. We provide the bootstrap 

sample distributions of the parametric model in the supplementary information.
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Using the parametric scheme, we see an average shift of uncertainties to larger values 

compared to the nonparametric bootstrap. The density estimate suggests we should expect a 

lower bound to the error that we have now incorporated into the analysis. Not every 

compound shows the same increase in uncertainty, though if we compare the two bootstrap 

approaches, results are similar above this empirically observed lower bound. The 

nonparametric approach returns higher uncertainties for some data on average, but estimates 

lower uncertainties for some as well. It can be concluded that the error would typically be 

underestimated without the use of a bootstrap approach. Without a physical model, a 

nonparametric approach might still underestimate errors due to the limited sample size for 

each measurement (either 2 or 4 fully independent repeats, and a total of 3 replicates per 

data point).

C. Correlation of uncertainty with physical properties

We investigated whether there was an obvious correlation between the uncertainty estimates 

obtained from our analysis and the properties of the molecules in our data set. A set of 

simple physical descriptors including molecular weight, predicted net charge, and the total 

number of amines and hydroxyl moieties were plotted against the bootstrap uncertainty. 

None of the descriptors tested had an absolute Pearson correlation coefficient R whose 95% 

confidence interval did not contain the correlation-free R = 0, according to methods 

described by Nicholls [33]. The analysis can be found in the Supplementary Information as 

an Excel spreadsheet.

IV. DISCUSSION

1. Solvent conditions

It is important to consider the influence of cosolvents on the measured values. The solutions 

contained approximately 1% DMSO, as well as approximately 0.5% acetonitrile. 

Furtherwork would benefit from a comparison with experiments starting from dry stocks, 

and thereby not adding extra solvents. This would eliminate DMSO and acetonitrile, by 

dispensing compound directly into either cyclohexane, or the mixture of cyclohexane and 

PBS. In this case, care must be taken that the compound is fully dissolved. If found to be 

necessary all experiments could be started from dry compound stocks, to entirely eliminate 

effects from cosolvents such as DMSO and acetonitrile. This would make experiments more 

laborious, and would therefore reduce the bandwidth of the method.

Differential evaporation rates of cyclohexane and water could be an additional source of 

error. Cyclohexane (vapor pressure 97.81 torr [34]) is more volatile than water (vapor 

pressure 23.8 torr [35]). Evaporation from the cyclohexane water phase-separated mixture or 

aliquots from individual phases could increase the concentration of the cyclohexane phase 

more rapidly than the water phase, leading to an overestimation of the logD. For future 

investigations, it would be prudent to verify that evaporation rates are sufficiently low to 

ensure no significant impact on the measured logD.
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2. Compound detection limits

Calculations using COSMO-RS software [36] suggested a systematic underestimation of 

logD values in the negative log unit range, in particularly past a logD of −2. Without further 

experimental investigation, we can not draw definite conclusions as to whether this is the 

case, or if so, where the source of the systematic error lies.

One possibility that may cause an artificial reduction of the dynamic range—especially at 

high log D values—is the potential for MS/MS detector saturation at high ligand 

concentrations. Previous work (Figure 2 from [21]) examined detector saturation effects, 

finding it possible to reach sufficiently high compound concentrations (generally ≥10 μM) 

that MRM is no longer linear in compound concentration for that phase. This work also 

found that different compounds reach detector saturation at different concentrations [21], in 

principle requiring an assessment of detector saturation to be performed for each compound. 

While we could not deduce obvious signs of detector saturation in our LC-MS/MS 

chromatograms, these effects could be mitigated by performing a dilution series of the 

aliquots sampled from each phase of the partitioning experiment to ensure detector response 

is linear in the range of dilutions measured. This may also reveal whether compound 

dimerization may be a complicating factor in quantitation.

3. Experimental design considerations

In order to adjust our experimental setup, we had to switch away from using polystyrene 96 

well plates, as these were dissolved by cyclohexane. We attempted the use of glass inserts, 

and glass tubes but these were too narrow and provided insufficient mixing when shaken. 

We switched to glass vials because their larger diameter provides improved mixing when 

shaken. For future work, we would recommend the use of glass coated plates, which have 

the automation advantages of the plates used in the original protocol [21].

Plate seals need to be selected carefully. We experimented with silicone sealing mats, but 

these absorbed significant quantities of cyclohexane. We also had to discontinue use of 

aluminum seals that contained glue, since the glue is soluble in cyclohexane and would 

contaminate LC-MS/MS measurements. In the end, we used aluminum Plate Loc heat seals 

and glass coated 384 well plates to circumvent these issues.

Sensitivity also suffered due to the need to dilute cyclohexane in octanol to prevent its 

accumulation on C18 columns used in the LC-MS/MS phase of the experiment. Trial 

injections on a separate system and chromatograms showed accumulation of unknown origin 

at the end of each UV chromatogram. Accumulation was reduced by injecting less 

cyclohexane. As a result, we diluted the cyclohexane with 1-octanol for the experiments 

described here, and ran blank injections containing ethanol between batches of 64 

measurements to ensure the column was clean.

Another change to the protocol that we would like to consider for future measurements is to 

optimize the time spent equilibrating the mixture. In this work, we separated phases via 

centrifugation and sampled aliquots for concentration measurement within minutes. The 

post-centrifugation time prior to sampling aliquots could be extended to 24 hours to allow 

for more equilibration for the solute between phases. This may have a downside, since we 
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would have to consider the effects that may follow if compounds prefer to be in the 

interface-region between cyclohexane and water, or water and air. These could cause high 

local concentrations, introducing a dependency of the results on exactly which part of the 

solution aliquots are taken from. We can get around this by only taking samples from the 

pure cyclohexane and aqueous regions, avoiding the interfaces. This way, we still get the 

right distribution coefficients for partitioning between bulk phases even if some compound is 

lost to the interfaces. It may be worthwhile to consider other effects of pipetting operations 

on the procedure. Some compounds could potentially stick to the surface of pipettes, or glass 

surfaces. This could adversely affect our measurements by changing local concentrations.

We also consider that assay results might be less variable if we presaturated water and 

cyclohexane before mixing them. While cyclohexane and water have much lower mutual 

solubility than octanol, it is still possible that this affects the measurement.

For future challenges, we would recommend that these assays are carried out at multiple 

final concentrations of the ligand in the assay. This could be achieved using different 

volumes of 10 mM ligand stocks. This would help detect dimerization issues, and may help 

account for issues with detector over saturation. Note that the absolute errors in these stock 

volumes will not be critical, since the measurements rely on the relative measurement 

between the two phases. We could build models that allow for extrapolation to the infinite 

dilution limit, which should then provide simpler test cases for challenge participants to 

reproduce. On the opposite end, it may be useful to even investigate ways to design an 

experimental set that represents these type of issues, such as compound dimerization, so that 

we can focus more on these.

4. Uncertainty analysis

We hope the experience from this challenges will lay the groundwork for improving the 

reliability of data sets regarding the physical properties that we as a modeling community 

rely on. Many computational studies are limited in the amount of high-quality experimental 

data that they have access to. Unfortunately, most data are taken straight from literature 

tables, without much thought being spent on the data collection process. By performing the 

experimental part of the SAMPL5 challenge we were in the position to provide new data to 

the modeling community, with an opportunity to decide on an analysis strategy that suits 

modeling applications. This not only allows for blind validation of physics-based models, 

but also a re-evaluation of the exact properties a data set should have to provide utility to the 

modeling community. An important fact that we feel needs reemphasizing is that 

experimental data are limited in utility by the method that was used to analyze it.

Among the lessons learned from this challenge, we would recommend that future challenges 

would also feature a rigorous statistical treatment of the experimental analysis procedure, 

ideally going beyond these initial efforts. One crucial part of the analysis procedure is 

obtaining not only accurate estimates of the observable, but also its uncertainty. As indicated 

in our data set, standard error estimates from small populations may underestimate the error. 

Several approaches can be taken to resolve part of this issue. Among the options are the use 

of statistical tests, such as the boots trapping methods we applied in this work. These can 

help us both propagate information on uncertainty into the model (such as a parametric 
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bootstrap) or extract uncertainty already available in the data (such as nonparametric 

bootstrap). The parametric approaches can be improved in terms of the physical models that 

are used to analyze the data. These models should ideally include all known sources of error, 

such as pipetting errors, evaporation of solvent, errors in integration software, fluctuations in 

temperature, pressure and likewise many other conditions that could affect the results.

Another approach would be to perform statistical inference on the data set, to provide 

uncertainty estimates from the data itself. The model structure can provide ways to 

incorporate data and propagate uncertainty from multiple experiments. Common parameters, 

such as variance in measurements between experiments could be inferred from combining 

the entire data set into one model. When prior knowledge on the experimental parameters is 

available, a Bayesian model can be used to effectively infer this type of uncertainty from the 

data, and use it to propagate the error into logD estimates. Distinctions could be made 

between an objective treatment of the problem, or an empirical Bayesian approach, where 

prior parameters are derived from the data. One could use a maximum a posteriori (MAP) 

probability approach to obtain an estimate of one of the modes of the parameter distribution. 

This has obvious downsides when posterior densities are multimodal, and in such a case, one 

may wish to estimate the shape of the entire posterior distribution instead. An approach like 

Markov chain Monte Carlo (MCMC) [37] could provide such estimates, and will allow for 

calculation of credible intervals. MCMC methods can be computationally intensive 

compared to MAP, though if the resulting posterior is complicated, a MAP estimate can give 

poor results. Unfortunately, we were unable to construct a Bayesian model of the 

experiments within our time constraints. We would encourage future challenges to make an 

attempt at creating a Bayesian model, since this would allow for robust inference of all 

experimental parameters.

5. Funding future challenges

The execution of this work would not have been possible without the resources provided by 

Genentech. Access to a rich library of compounds onsite allowed us to select a dataset that 

was both challenging and useful for the purposes of the SAMPL challenge. At the same 

time, the instrumentation provided us with the bandwidth to perform many measurements. 

Rapid redesign of experiments by trial and error, as a result of the difficulties with 

cyclohexane compatibility of laboratory consumables and equipment, would not have been 

possible without the expertise shared by Genentech scientists and the opportunities to do 

many measurements.

Future iterations of this challenge would benefit from continued collaboration between 

industry and academia. Academic groups can partner with industry groups to pair available 

skilled academic labor (graduate students and postdoctoral researchers) with specialized 

measurement equipment and compound libraries. The graduate student industry internship 

model proved to be a particularly successful approach, with measurements for a blind 

challenge providing a well-defined, limited-scope project with clear high value to the 

modeling community.
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V. CONCLUSION

The experimental data provided by this study was very useful for hosting the first small-

molecule distribution coefficient challenge in the context of SAMPL. It revealed that logD 

prediction, as well as measurement, is not always straightforward. We showed that it was 

possible to perform cyclohexane/water logD measurements in the same manner as the 

original octanol/water assays, though further optimizations are needed to reach the same 

level of throughput. Cyclohexane did pose several challenges for experimental design, such 

as the need for different container types, and the potential accumulation of substrate on 

reversed phase HPLC columns.

Many details, such as protonation states, tautomer states, and dimerization might need to be 

accounted for in order to reproduce experiments. This challenge taught us considerations 

that should be made on the experimental side. Cases where dimerization were pointed out as 

possible reason for discrepancy between experiment and model, could only be hypothesized 

from the modeling end and not tested experimentally. Issues with detector saturation could 

also be affecting the overall quality of the data set. Future experiments would benefit from 

more rigorous protocols, such as measurements at multiple concentrations, and models of all 

experimental components.

We recommend that future challenges, and experiments in general, use physical models of 

experiments in the analysis of experimental uncertainty. These should be part of the analysis 

procedure, but also in experimental design. These will reveal abnormalities in data more 

clearly.

We recommend that future challenges look into the use of bootstrap models such as those 

considered here. Additionally, the use of Bayesian inference methods, that allow the 

incorporation of prior information should lead to a more robust estimate of experimental 

uncertainty. They will allow for joint inference on multiple experiments, thereby increasing 

the information gain by using the model.

Lastly, the sponsoring of this internship by Genentech was fundamental to generating this 

data. Access to compound libraries, and the equipment to perform the experiments is crucial 

to the design and execution of a study. Close collaborations with Genentech scientists were 

important in solving many technical challenges. The collaboration between industry and 

academics was not only fruitful, but fundamental in establishing standardized challenges for 

the modeling field. The amount of data we were able to gather would have been hard to 

come by without industry resources. At the same time, the need and expertise in 

investigating these challenging physical chemical problems provided by the community, and 

the forum provided by the SAMPL challenge was essential in turning this challenge into a 

success. We welcome such future efforts and collaborations, as it is apparent that both 

experimental and computational approaches for obtaining logD estimates for small 

molecules, would benefit from further optimization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. Molecules and corresponding measured log distribution coefficients for measurements 
that passed quality controls
Log D measurements are reported as expectation ± standard errors, calculated using our 

parametric bootstrap method (Section II D).
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FIG. 2. 
Illustration of the shake-flask procedure used for cyclohexane-water distribution coefficient 

measurements.
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FIG. 3. Joint kernel density estimates of log distribution coefficient (log D) measurements and 
measurement error estimates
log D measurements are plotted with their corresponding estimated standard errors (circles) 

for the three analysis approaches described in Section II D. A kernel density estimate 

(contours, described in Section II E) is shown to highlight the differences in error estimates 

for the different methods.
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TABLE I
Log distribution coefficient measurements and standard errors

Estimates of log distribution functions and their associated standard errors are described for parametric 

bootstrap (Section II D 1), nonparametric bootstrap (Section II D 2), and arithmetic mean and corrected 

sample variance (Section II D 3).

Compound ID

Uncertainty analysis method

Bootstrap Arithmetic mean

Parametric Nonparametric Standard error

SAMPL5_002 1.5 ± 0.3 1.5 ± 0.2 1.4 ± 0.1

SAMPL5_003 1.9 ± 0.6 1.9 ± 0.5 1.94 ± 0.04

SAMPL5_004 2.2 ± 0.3 2.2 ± 0.1 2.2 ± 0.1

SAMPL5_005 −0.9 ± 0.7 −0.9 ± 0.7 −0.86 ± 0.03

SAMPL5_006 −1.0 ± 0.7 −1.0 ± 0.6 −1.02 ± 0.03

SAMPL5_007 1.4 ± 0.3 1.39 ± 0.08 1.38 ± 0.09

SAMPL5_010 −1.7 ± 0.6 −1.7 ± 0.5 −1.7 ± 0.1

SAMPL5_011 −3.0 ± 0.9 −3.0 ± 0.9 −2.96 ± 0.03

SAMPL5_013 −1.3 ± 0.6 −1.3 ± 0.5 −1.5 ± 0.1

SAMPL5_015 −2.3 ± 0.3 −2.3 ± 0.2 −2.25 ± 0.09

SAMPL5_017 2.6 ± 0.3 2.6 ± 0.2 2.5 ± 0.1

SAMPL5_019 1.4 ± 0.7 1.4 ± 0.7 1.2 ± 0.1

SAMPL5_020 1.7 ± 0.3 1.7 ± 0.1 1.6 ± 0.1

SAMPL5_021 1.2 ± 0.3 1.18 ± 0.07 1.2 ± 0.1

SAMPL5_024 1.0 ± 0.4 1.0 ± 0.4 1.0 ± 0.1

SAMPL5_026 −2.6 ± 0.3 −2.6 ± 0.1 −2.58 ± 0.04

SAMPL5_027 −1.9 ± 0.8 −1.9 ± 0.7 −1.87 ± 0.02

SAMPL5_033 1.8 ± 0.3 1.82 ± 0.07 1.80 ± 0.08

SAMPL5_037 −1.5 ± 0.3 −1.54 ± 0.07 −1.53 ± 0.03

SAMPL5_042 −1.1 ± 0.2 −1.13 ± 0.04 −1.1 ± 0.1

SAMPL5_044 1.1 ± 0.4 1.1 ± 0.3 1.0 ± 0.1

SAMPL5_045 −2.1 ± 0.3 −2.09 ± 0.04 −2.09 ± 0.08

SAMPL5_046 0.2 ± 0.3 0.19 ± 0.09 0.20 ± 0.09

SAMPL5_047 −0.4 ± 0.2 −0.37 ± 0.07 −0.37 ± 0.09

SAMPL5_048 1.0 ± 0.3 1.0 ± 0.2 0.9 ± 0.1

SAMPL5_049 1.3 ± 0.5 1.3 ± 0.5 1.28 ± 0.04

SAMPL5_050 −3.4 ± 0.5 −3.4 ± 0.5 −3.2 ± 0.2

SAMPL5_055 −1.5 ± 0.7 −1.5 ± 0.7 −1.48 ± 0.04

SAMPL5_056 −2.5 ± 0.3 −2.46 ± 0.05 −2.46 ± 0.05

SAMPL5_058 0.8 ± 0.6 0.8 ± 0.5 0.82 ± 0.03

SAMPL5_059 −1.3 ± 0.3 −1.34 ± 0.03 −1.33 ± 0.09

SAMPL5_060 −3.9 ± 0.4 −3.9 ± 0.3 −3.87 ± 0.08

SAMPL5_061 −1.5 ± 0.9 −1.5 ± 0.9 −1.45 ± 0.03
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Compound ID

Uncertainty analysis method

Bootstrap Arithmetic mean

Parametric Nonparametric Standard error

SAMPL5_063 −3.1 ± 0.4 −3.2 ± 0.4 −3.0 ± 0.1

SAMPL5_065 0.7 ± 0.3 0.7 ± 0.1 0.69 ± 0.07

SAMPL5_067 −1.3 ± 0.3 −1.3 ± 0.2 −1.3 ± 0.1

SAMPL5_068 1.4 ± 0.3 1.4 ± 0.2 1.41 ± 0.09

SAMPL5_069 −1.3 ± 0.4 −1.2 ± 0.3 −1.3 ± 0.1

SAMPL5_070 1.6 ± 0.3 1.6 ± 0.2 1.61 ± 0.09

SAMPL5_071 −0.0 ± 0.4 −0.0 ± 0.4 −0.1 ± 0.2

SAMPL5_072 0.6 ± 0.3 0.6 ± 0.2 0.6 ± 0.1

SAMPL5_074 −1.9 ± 0.3 −1.9 ± 0.2 −1.9 ± 0.1

SAMPL5_075 −2.8 ± 0.3 −2.8 ± 0.1 −2.77 ± 0.09

SAMPL5_080 −2.2 ± 0.3 −2.2 ± 0.1 −2.18 ± 0.07

SAMPL5_081 −2.2 ± 0.3 −2.2 ± 0.1 −2.19 ± 0.09

SAMPL5_082 2.5 ± 0.3 2.5 ± 0.2 2.5 ± 0.1

SAMPL5_083 −2.0 ± 0.3 −2.0 ± 0.2 −1.9 ± 0.1

SAMPL5_084 −0.0 ± 0.3 −0.02 ± 0.05 −0.02 ± 0.08

SAMPL5_085 −2.3 ± 0.3 −2.3 ± 0.2 −2.2 ± 0.1

SAMPL5_086 0.7 ± 0.3 0.7 ± 0.1 0.70 ± 0.06

SAMPL5_088 −1.9 ± 0.3 −1.9 ± 0.2 −1.9 ± 0.1

SAMPL5_090 0.7 ± 0.2 0.75 ± 0.06 0.76 ± 0.08

SAMPL5_092 −0.4 ± 0.3 −0.41 ± 0.09 −0.39 ± 0.09
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