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Abstract

Uncovering the molecular context of dysregulated metabolites is crucial to understand pathogenic 

pathways. However, their system-level analysis has been limited owing to challenges in global 

metabolite identification. Most metabolite features detected by untargeted metabolomics carried 

out by liquid-chromatography-mass spectrometry cannot be uniquely identified without additional, 

time-consuming experiments. We report a network-based approach, prize-collecting Steiner forest 

algorithm13 for integrative analysis of untargeted metabolomics (PIUMet), that infers molecular 

pathways and components via integrative analysis of metabolite features, without requiring their 

identification. We demonstrated PIUMet by analyzing changes in metabolism of sphingolipids, 

fatty acids and steroids in a Huntington’s disease model. Additionally, PIUMet enabled us to 

elucidate putative identities of altered metabolite features in diseased cells, and infer 

experimentally undetected, disease-associated metabolites and dysregulated proteins. Finally, we 

established PIUMet’s ability for integrative analysis of untargeted metabolomics data with 
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proteomics data, demonstrating that this approach elicits disease-associated metabolites and 

proteins that cannot be inferred by individual analysis of these data.

The development of effective therapeutic approaches requires a system-level understanding 

of the molecules altered in a disease, as well as complex interactions among them. 

Metabolites are of particular interest1, as global metabolite measurements reflect disease-

associated cellular biochemical activities that are not detected by transcriptional analysis or 

other ‘omic’ experiments2. Therefore, the integrative analysis of metabolomics with other 

omic data is a crucial step to identifying disease etiology.

Systems-level analysis of metabolomic data has been limited, however. Global 

measurements of metabolites (untargeted metabolomics) are performed using liquid 

chromatography-mass spectrometry (LC-MS)3, which detects thousands of metabolite 

‘peaks’ or ‘features’, defined by a unique combination of a mass-to-charge ratio (m/z) and 

retention time. Despite the high mass accuracy of modern instruments, several metabolites 

can match a peak. Therefore, unambiguous identification of features is a bottleneck in 

metabolomic studies4,5. Typically, relatively few of the features are characterized through 

tandem mass spectrometry (MS/MS) experiments that require additional time and incur 

additional cost6, and the majority of the features remain unknown. The sparsity of identified 

metabolites is an additional major obstacle to interpretation of metabolomic data7–9.

Current approaches for analyzing metabolomic data including network and pathway tools7–9 

rely on the metabolite features that had been further characterized via MS/MS. A first step 

toward analyzing uncharacterized metabolite features involved inferring potential identities 

of metabolite features using a Gaussian graphical model that leveraged genomics10, but that 

approach only applied for large sets of samples with genomic data. The Mummichog 

algorithm11 used metabolic networks to resolve some unknown metabolite features11 but did 

not link these data to other system-level molecular information. Because each type of 

molecular data is biased toward different molecular processes12, integrative analysis of 

untargeted metabolomics is essential for biological insight and consequently new therapeutic 

approaches.

To overcome challenges in integrative analysis of untargeted metabolomics, we developed a 

network-based algorithm named PIUMet (available at http://fraenkel-nsf.csbi.mit.edu/

PIUMet/). PIUMet infers pathways and experimentally undetected components from 

untargeted metabolite LC-MS peaks. PIUMet leverages an integrated network of over one 

million protein and metabolite interactions. Using advanced network optimization methods, 

PIUMet infers putative metabolites corresponding to features and molecular mechanisms 

underlying their dysregulation. Moreover, our approach provides statistical methods that 

account for uncertainty in the experimental data and the network. Additionally, PIUMet can 

be used to perform integrative analysis of untargeted metabolomics data with other large-

scale data sets such as proteomics data, permitting the identification of a more complete 

picture of disease-associated pathways. We demonstrated the application of the algorithm by 

analyzing untargeted lipidomics and phosphoproteomics from a cell-line model of 

Huntington’s disease (HD), a genetic neurodegenerative disorder.
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RESULTS

PIUMet overview

We developed the PIUMet algorithm to address challenges in system-level analysis of 

metabolomics. PIUMet adapts the prize-collecting Steiner forest algorithm13 for integrative 

analysis of untargeted metabolomics. Untargeted metabolomic experiments generate 

thousands of metabolite features (or peaks) characterized by an m/z value and a retention 

time. Typically, each feature matches several metabolites with masses in the right range6. 

The raw features that significantly differ between samples and controls using a user-selected 

statistical test are the input to PIUMet. PIUMet uses a machine-learning approach that 

leverages a database of protein-protein and protein-metabolite interactions (PPMI) to infer a 

network of dysregulated metabolic pathways (Fig. 1 and Supplementary Fig. 1). We 

demonstrated our approach in the context of uncovering pathways associated with disease, 

and we refer to altered metabolite peaks as ‘disease features’. In this context, PIUMet output 

consists of disease-associated proteins and metabolites (Fig. 1). We refer to components of 

this network whose identity was unknown before running PIUMet as ‘hidden’ components. 

Hidden metabolites directly connected to disease features represent their putative identities, 

and the remaining hidden metabolites and proteins identified by PIUMet are disease-

associated proteins and metabolites that had not been measured directly by experiments. 

PIUMet can perform multi-omic analysis to reveal links between metabolomic dysregulation 

and other molecules such as proteins (Fig. 1). Although here we focused on disease-related 

data, PIUMet is very general, and can be applied to many biological settings.

The PIUMet database (the PPMI network) contains over 42,000 nodes connected by over 

one million edges (Supplementary Table 1). We built this network by integrating knowledge 

of biochemical reactions with curated interactions among proteins taken from three 

established databases. The result was a weighted graph, in which the nodes represent either 

metabolites or proteins, and the edges show the interactions between proteins as well as 

enzymatic and transporter reactions (Fig. 1). Each edge has a weight reflecting confidence in 

the reliability of the interaction (Online Methods).

To decipher the context of disease features, PIUMet does not require their prior 

identification; instead, it embraces the ambiguous identity of features. PIUMet represents 

each disease feature as a node, connected to all metabolites with masses similar to the 

disease features. The connecting edges have an arbitrary and equal weight (w; Fig. 2a). 

Using network optimization techniques described below, PIUMet identifies the subset of 

these metabolites most likely to correspond to disease features. It further calculates a score 

(R) for each one of the resulting metabolites indicating the degree to which its identification 

is robust to network parameters (w and the PPMI edge weights; Online Methods).

PIUMet searches the PPMI interactome for a subnetwork connecting disease features using 

high-probability protein-protein and protein-metabolite interactions (Fig. 2b). PIUMet 

optimizes the network using the prize-collecting Steiner forest algorithm, assigning prizes to 

disease features and costs to edge weights13,14. Node prizes reflect the significance of 

feature dysregulation (as determined by the user), and edge costs are anticorrelated with the 

edge confidence scores. The optimum solution balances the desire to include as many 
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disease features as possible with a reluctance to use low-confidence edges. Specifically, we 

maximized the sum of the prizes from connected disease features, while minimizing the 

edge costs included in the final network.

PIUMet includes several features to improve its accuracy. First, it eliminates bias toward 

highly connected nodes in the PPMI interactome such as ATP or ubiquitin. As these high-

degree nodes can connect almost any nodes in the PPMI interactome, they provide little 

insight into altered pathways (Fig. 2c). PIUMet penalizes the inclusion of high-degree nodes 

by assigning a penalty correlated with the node’s degree. Second, PIUMet generates a 

family of networks to infer the complex interconnections between substrates, enzymes and 

products that cannot be represented in tree structures (Fig. 2d). It merges solutions from 

many runs that differ by quantities of random noise that are added to the PPMI edge weights 

to find multiple, high-probability interactions that connect disease features. PIUMet then 

calculates a robustness score (R) for resulting nodes and edges to account for uncertainty in 

molecular interactions (Online Methods). Third, PIUMet calculates a disease-specific score 

for each resulting node and a score for each network. These scores are determined by 

generating a family of networks from randomly selected disease features that mimic the 

experimental data. A disease-specific score for each node is calculated by the frequency of 

the node in these ‘mock’ networks. We observed that in these mock networks, only a 

minority of the mock features were connected, and the connections were typically long paths 

(Fig. 2e). Thus, in contrast with real data, metabolites corresponding to randomly selected 

disease features were distributed apparently at random in the PPMI network. Based on this 

observation, we defined a disease-specific score for each network (Online Methods).

Identifying dysregulated pathways in HD

To test PIUMet, we performed integrative analysis of the untargeted lipidomic data from a 

cellular model of HD. HD is a genetic, neurodegenerative disorder caused by a CAG repeat 

expansion in the gene encoding the huntingtin protein. We used conditionally immortalized 

striatal cell lines (STHdh) derived from either wild-type embryos (STHdh Q7) or knock-in 

embryos, expressing a 111 CAG-expanded huntingtin gene (STHdh Q111)15. Measuring 

global levels of lipids using LC-MS, we found 115 metabolite features that differed 

significantly between the lines (P ≤ 0.01, determined by two-tailed student’s t-test). Of 

these, 37 had masses that matched to 296 potential metabolites in the PPMI network 

(Supplementary Table 2). PIUMet identified a network connecting more than 51% of these 

features via hidden metabolites and proteins (Figs. 3 and 4). The resulting networks had 

significantly higher disease-specific scores than control networks (P = 1.2 × 10‒37; 

Supplementary Fig. 2), and the nodes were specific to disease (disease-specific score ≥ 90%; 

Supplementary Fig. 3).

Initially, the node for each disease feature is linked to all metabolites that potentially match 

based on mass. Metabolites remaining after PIUMet runs represent putative identities of the 

disease features, and their scores are associated with the probability of the predictions (Figs. 

3 and 4). To verify the dysregulation of inferred metabolites corresponding to disease 

features, we used a targeted metabolomic platform that can identify several hundred 

predefined metabolites using reference standards. With this platform, we detected only eight 
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of the 296 PPMI metabolites matching disease features (Supplementary Fig. 4), and all eight 

were identified by the targeted platform as dysregulated in diseased cells. PIUMet inferred 

six of these metabolites as putative identities of disease features (hypergeometric test P = 

6.00 × 10‒4; Supplementary Fig. 4).

As PIUMet analyzes the disease features in a network that contains proteins and metabolites, 

it also elicits disease-associated proteins (hidden proteins) from untargeted metabolomic 

data. Gene ontology enrichment analysis with relevant background correction (Online 

Methods) showed that these proteins were significantly enriched in sphingolipid (corrected P 
= 2.25 × 10‒17; Fig. 3), fatty acid (corrected P = 2.76 × 10‒10; Fig. 4) and steroid (corrected 

P = 2.10 × 10‒3; Fig. 4) metabolic processes, which we further investigated.

In Figure 3 we show the dysregulated sphingolipid subnetwork, including disease-associated 

sphingolipids and proteins in this pathway. Targeted experiments demonstrated that four 

sphingolipids directly connected to disease features were significantly altered in diseased 

cells (Supplementary Fig. 5). Additionally, PIUMet identified sphingosine 1-phosphate 

(S1P) as a hidden metabolite in this pathway, to which there was no corresponding 

metabolite peak from LC-MS experiments. S1P is a key signaling molecule that activates 

antiapoptotic pathways by binding to cell-surface receptors16. We experimentally confirmed 

that S1P levels were significantly downregulated in diseased cells (P ≤ 0.001; 

Supplementary Fig. 6a). We also found that treating diseased cells with a S1P analog 

(FTY720-P) had protective effects, significantly decreasing apoptosis (P = 7.98 × 10‒5; 

Supplementary Fig. 6b,c). Although S1P has been previously examined in the context of 

HD17, those investigations had been motivated by the effect of S1P in other 

neurodegenerative diseases18,19, and did not identify the molecular mechanisms. In contrast, 

our approach inferred the underlying network of sphingolipid dysregulation and the role of 

S1P in diseased cells without any prior assumptions.

PIUMet also discovered an altered steroid metabolism network in our HD model (Fig. 4), 

consistent with previous reports20. Specifically, progressive alterations have been shown in 

sterol precursors of cholesterol in the R6/1 mouse model of HD21. However, the molecular 

mechanisms underlying these changes are unknown. We noted that one of the high-scoring 

nodes in our model was DHCR7 (z-score R = 2.22), a terminal enzyme in cholesterol 

biosynthesis. Using western blots, we confirmed DHCR7 protein levels were significantly 

lower in diseased cells (P < 0.05; Supplementary Fig. 7). Thus, PIUMet identified DHCR7 

as one of the key regulatory molecules in this pathway, which can be further investigated for 

therapeutic purposes.

Furthermore, we examined the subnetwork associated with fatty acid metabolism (Fig. 4). 

Fatty acids are major components of neuronal membranes and the myelin sheath, and their 

balanced levels are essential in the brain22. Fatty acid dysregulation has been associated with 

HD23. The targeted metabolomic experiments verified significant changes in two fatty acids 

that are directly connected to disease features: eicosapentaenoic acid (EPA, P = 7.8 × 10‒6; 

Supplementary Fig. 8a) and dihomo-gamma-linolenic acid (DHGLA, P = 0.01; 

Supplementary Fig. 8b). Both EPA and DHGLA are essential fatty acids, and to our 

knowledge, there are no prior reports about their levels in HD neuronal tissues. Notably, 
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because EPA has been reported to have neuroprotective effects in many systems, it has been 

tested as a therapeutic for HD24,25 despite the absence of any previous molecular data about 

its levels in disease cells. Our unbiased analysis of untargeted metabolomic data suggested a 

molecular mechanism behind EPA’s therapeutic effects, and revealed an unknown aspect of 

altered fatty acid metabolism in HD associated with DHGLA.

We experimentally tested the capability of our network approach to correctly infer 

connections between metabolites and proteins. One of the highest scoring proteins in the 

network was FASN (z-score R = 3.08), which is involved in de novo fatty acid 

biosynthesis26. In the resulting network, FASN was connected to intermediate metabolites in 

fatty acid synthesis pathways. Western blot experiments revealed a significant increase in the 

FASN enzyme in diseased cells (P = 0.007; Supplementary Fig. 9). Collectively, our results 

provided insight about dysregulation of fatty acid metabolism in HD.

Integrating metabolomics with other omics

To test the ability of PIUMet to integrate untargeted lipidomics and global 

phosphoproteomic data, we measured global levels of phosphoproteins in STHdh Q7 and 

STHdh Q111 cells by affinity purification followed by mass spectrometry. Thirty-one 

proteins showed significant changes in phosphorylation levels between the lines (P ≤ 0.01, 

Supplementary Table 3). Our integrative analysis of disease features with 

phosphoproteomics provided a more comprehensive picture of disease-associated pathways 

and components. The networks obtained by analyzing lipidomics and proteomics separately 

had little overlap. By contrast, multi-omic analysis not only inferred the majority of hidden 

components obtained from the analysis of lipidomics and phosphoproteomics individually, 

but it also revealed new disease-associated molecules (Fig. 5). These results emphasize that 

each type of molecular data resulted in identification of limited and distinct biological 

processes.

We then analyzed high-scoring nodes from the networks. Including phosphoproteomic data 

increased the confidence (robustness score R) of many nodes, and the top-ranked ones were 

DHCR7 (z-score R = 3.96; Fig. 6a) and FASN (z-score R = 4.7; Fig. 6c), which we 

described above and verified experimentally. Similarly, the protein encoded by RASA1 
(RasGAP) had the highest robustness score among the proteins that were originally found 

with only phosphoproteomic data, and their score increased with joint analysis with 

lipidomics (z-score of R = 4.70; Fig. 6b). We experimentally determined a significant 

increase in the level of RasGAP (P = 0.008; Supplementary Fig. 10a), which interacts with 

the mutated huntingtin protein27, but has an unknown role in HD progression.

Of the proteins that only appeared in the integrative analysis, we examined ERCC6-encoded 

protein CSB (z-score of R = 2.74), and found a significant increase in its levels (P < 0.05; 

Fig. 6c and Supplementary Fig. 10b). CSB is a DNA-excision repair protein involved in 

neurogenesis and neuronal development28, which may have a role in HD because defects in 

DNA-repair mechanisms has been associated with the disease29.
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DISCUSSION

PIUMet is a network-based algorithm for integrative analysis of untargeted metabolomic 

data. Even with high-mass-accuracy instruments, most features detected in untargeted 

metabolomic experiments cannot be identified uniquely, and typically only a few are 

characterized unambiguously via additional time-consuming and costly MS/MS 

experiments. PIUMet leverages known metabolic reactions and protein-protein interactions 

to analyze the ambiguous assignment of metabolomics features. It can be used to identify 

dysregulated metabolic networks containing metabolites that are possible matches to the 

metabolomic features, and determine the robustness and disease-specificity of the results.

PIUMet is a general approach. Although we demonstrated its utility by analyzing data for 

HD, we did not tailor the algorithm to HD in any way. In fact, metabolomics changes in HD 

are studied relatively poorly compared to many other diseases such as diabetes, and even 

cancer. Therefore, we expect that PIUMet would be equally effective in identifying altered 

pathways using untargeted metabolomics from any disease, or any comparison of two 

biological states.

Untargeted metabolomics has an important role in understanding disease, because targeted 

metabolomic profiling captures few of the relevant metabolites. Only eight of 296 

metabolites assigned to disease features in our data were detected with a targeted 

metabolomic platform, reflecting the bias of targeted platforms toward well-studied 

metabolites. As a result, methods such as PIUMet for analyzing untargeted metabolomics 

have great potential to systematically discover new molecular mechanisms.

PIUMet does not replace MS/MS for identifying metabolite peaks, but it prioritizes 

metabolite features for experimental validation, and provides the protein and small molecule 

context of these features. Considering the costs and time associated with performing these 

experiments6, PIUMet could make a considerable impact in current metabolomic studies.

We believe that PIUMet fills an important need by translating untargeted metabolomic data 

into relevant biological knowledge and contextualizing metabolomics with other system-

level molecular data. We demonstrated that this integrative approach is crucial for 

understanding a complete picture of disease-associated processes. Although we established 

the integrative analysis of untargeted metabolomics with proteomics data, PIUMet can be 

also applied to analyze metabolomics in conjunction with genomic data, and further 

extended to include transcriptional data. Therefore, our multi-omic, integrative approach is 

likely to be of even greater use as more data are generated.

ONLINE METHODS

Rationale for PIUMet

PIUMet uses a graph-based approach to resolve the ambiguous identity of peaks identified 

by untargeted metabolomic experiments. These peaks (or features) are characterized by a 

unique m/z and a retention time (RT). PIUMet represents these peaks as nodes and connects 

each peak to the metabolites in the PPMI network with a mass matching the m/z value of the 
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feature, after considering the weight of ionic adducts. PIUMet then searches for subnetworks 

that are enriched in these metabolites by solving the prize-collecting Steiner forest problem. 

The networks are evaluated using randomization strategies to identify results that are robust 

to choices of parameters.

The PPMI network

The PPMI interactome is a network of protein-protein and protein-metabolite interactions, 

which we constructed by the integration of three different databases. Protein-protein 

interactions were obtained from iRefIndex version 13 (ref. 30), and metabolite information 

and biochemical reactions were from HMDB version 3 (ref. 31) and Recon 2 (ref. 32) 

databases.

iRefIndex is a unified database of nine known protein-protein interaction (PPI) databases, in 

which the redundant PPIs among underlying databases are removed30. The iRefIndex 

database was downloaded in the provided PSI-MITAB format. We did not filter any 

interactions based on the source of their inference; instead, we used MIscore algorithm33 to 

calculate a confidence score for each interaction. To calculate these scores, we used 

PSISCORE Java API33. MIscore algorithm considers the number of publications, the type of 

interaction, and the used experiments to calculate confidence scores for molecular 

interactions.

HMDB or the human metabolome database is the most comprehensive resource of human 

metabolites31. HMDB contains various information for over 40,000 detected and expected 

metabolites. It additionally includes the association of transporters and enzymes with 

metabolites, obtained from KEGG and SMPDB34 pathways. We downloaded the HMDB 

database in XML format. We then parsed information about metabolites such as super class, 

molecular weight, chemical composition, and associated proteins from these XML files 

using ElementTree Library of Python. Finally, we built a network representing the links 

between metabolites and their associated enzymes and/or transporters using Python 

NetwrokX library.

Recon2 is a comprehensive database of metabolic reactions. First, the database was 

downloaded in SBML (Systems Biology Markup Language) format35, which is a standard 

XML-based format for representing metabolic reactions. We then parsed the information 

about the database entities such as enzymes, metabolites and metabolic reactions using 

LibSBML python library36. Finally, we generated a network representation of metabolic 

reactions, in which the reaction substrates are connected via edges to the reaction enzymes. 

The edges then link these enzymes to the reaction products (Fig. 2a). For each reaction, 

Recon2 provides a confidence score of zero to four; a score of zero indicates no supporting 

data about the confidence, and four indicates the evidence of biochemical data32. The edges 

are then weighted based on the reaction confidence score.

Next, we built a network of protein-protein and protein-metabolite interactions (PPMI) by 

combining the interactions obtained from iRefIndex, HMDB and Recon databases. PPMI is 

composed of two sets of metabolite (M) and protein (P) nodes. The set of interactome edges 
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(E) shows interaction among proteins, as well as enzymes and transporters associated with 

metabolites. The PPMI interactome is defined as (P, M, E).

The associated confidence scores with the PPMI edges are obtained from the source 

databases. However, as the scale of scorings differs among databases, we scaled the edge 

weights to the PPI confidence score distribution. For this purpose, Recon 2 interactions with 

a confidence score of four were scaled to the maximum PPI score, and scores of 3, 2 and 1 

were scaled to the PPI third quartile, median and second quartile scores, respectively. As 

there was no confidence score associated with interactions obtained from HMDB, we 

arbitrary assigned the edge weight to be the median of the PPI confidence score. Below we 

will address the inference of robust results in spite of uncertainties in the PPMI edge 

weights.

The prize-collecting Steiner forest (PCSF) optimization—PIUMet adapts the PCSF 

optimization that has been established to infer networks linking the dysregulation of proteins 

to changes in transcription37. The PCSF optimization identifies an optimum forest (a set of 

trees) representing simultaneously dysregulated pathways in a disease13. This forest is a 

subnetwork of the PPMI interactome in which experimentally detected dysregulated 

molecules (terminal set) are linked via undetected molecules (Steiner set); these nodes are 

connected by known molecular interactions. The optimum subnetwork is inferred by first 

assigning a prize to each node in the terminal set and costs to the PPMI edges. In addition, to 

obtain independent simultaneous pathways, an artificial node is connected to the terminal 

nodes via edges with weight ω. The algorithm then infers a forest solution, F, with NF nodes 

and EF edges, by minimizing the following objective function using an established message 

passing approach38:

(1)

where p(n) shows the associated prize to each node n ∈ NF, c(e) shows the cost of each edge 

e ∈ EF in the resultant forest F, and k shows the number of trees in the forest F. Here the 

terminal nodes’ prizes, p(n), are equal to –log (P value) of the significance of their alteration 

in the disease, calculated by two-tailed student’s t-test. The costs associated to each edge, 

c(e), are one minus the PPMI edges weights. Additionally, β is a tuning parameter that 

controls the size of the resultant forest13, which here is considered equals to 4. ω is further a 

tuning parameter regulating the size of k or the number of trees in the forest solution13. We 

considered different values of ω in the range of 10 to 25, based on the input terminal sets. To 

choose a value of ω, we considered the size of the resulting networks and the number of 

connected terminals. We started by examining smaller values. Increasing ω results in a 

larger network that connects more terminals, and we chose the value of ω that maximized 

the number of connected terminals. In addition to these parameters, the variable w is the 

equal and arbitrary weight assigned to edges between disease features and potentially 

matching metabolites. Here, we considered w equals to 0.99, which is the same as the 

maximum PPMI edge weight, while sensitivity analysis on the value of w resulted in more 

than 88% robust results (data is not shown).
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Eliminating bias toward highly connected nodes—PIUMet algorithm infers 

resulting networks that are unbiased toward highly connected nodes. The presence of several 

nodes in the PPMI interactome with a high degree of connectivity leads to a network in 

which terminal nodes are always linked via a high degree node (Fig. 3c). To obtain results 

that are not biased toward highly connected nodes, PIUMet penalizes the results that have a 

high-degree node by introducing a negative prize to nonterminal nodes, which is a multiple 

of their degree. Since nodes’ degree distribution differ significantly between the metabolite 

and protein sets (t-test P = 8.16 × 10‒124), with an average of 35.18 in the metabolite set 

compared to 21.08 in the protein set, the negative prizes for protein and metabolite sets are 

defined as:

where p(n) is a prize of a none-terminal node n. P is the set of protein nodes in the PPMI 

interactome, and M represents the metabolite set. μ is a tuning parameter that controls the 

effect negative prizes; here we used μ = 0.015.

Obtaining robust results that capture complexity of metabolic networks—
PIUMet infers robust, disease-associated pathways that capture the complexity of metabolic 

networks. Since the solution to equation (1) is a tree, it cannot capture the complex topology 

of metabolic reactions including interconnection of substrates, enzymes and products (Fig. 

2d). To address this issue, we generated additional networks by adding small random noises 

to the PPMI edge weights. For this purpose, a random value in the range of [0, ε] is added to 

each PPMI edge weight. Here, ε is considered equal to 0.046, which is one half of the s.d. of 

the PPMI edge weight distribution. Therefore, the ε value will be the same for any other 

disease as long as the underlying interactome is unchanged. This process leads to inferring a 

family of networks including multiple possible paths that link terminals nodes. The union of 

these networks thus shows the complex interconnection of metabolic pathways. 

Furthermore, generating networks by adding random noise to the PPMI edge weights allows 

the distinction of the results that are robust in spite of the uncertainty in the interactome edge 

weights. Consequently, we calculated a robustness score for each node in the family of 

networks as below:

where for a family of R networks with N nodes,  shows the robustness score of node ni ε 
N, and Fj(n) shows nodes in network j.
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Calculating disease-specific score for resulting nodes and networks—To 

measure the specificity of the PIUMet results to the disease of interest, we generated 

networks by randomly selecting metabolite features with the same characteristics as disease 

features. We defined a detectable metabolite feature (DMF) set as a set of metabolite 

features mimicking the experimental data, as defined below: first, the DMF set included m/z 
values that are detectable with the mass spectrometer used in the experiments. Second, the 

DMF metabolite features must be matched to metabolites that belong to a superclass of 

metabolites that can be separated via the liquid chromatography step. To distinguish these 

metabolites, we obtained chemical taxonomy information, including superclass, from the 

HDMD database. Finally, these matched metabolites must belong to the PPMI network. The 

definition of the DMF set is:

The degree of each feature in the DMF set indicates the number of potential matched 

metabolites. Supplementary Figure 11 shows the degree distribution of the DMF set features 

compared with the terminal set features.

In the next step, for a terminal set with the size T, we randomly selected T features from the 

DMF set, in which the degree distribution of the selected features is similar to the terminal 

set. We repeated this process R times. Each of these R randomly chosen features is given as 

input to PIUMet, resulting in R networks. We compared these networks to the ones obtained 

from the experimental data to calculate disease-specific scores. This score indicates the 

frequency of a node in the networks obtained from randomly selected disease features and is 

defined as:

where ni is a node in the family of the networks obtained from disease features. For R 
random feature sets, RFj(n) is a network with n nodes that connects random features.

Additionally, we observed in the resulting networks from randomly selected disease 

features, the majority of the features remained unconnected (singletons), and a few were 

linked via a long path of protein-protein and protein-metabolite interactions (Fig. 3e). We 

quantified these properties by calculating the disease-specific score for each resulting 

network as the number of the connected metabolite features divided by the number of 

Steiner nodes. The disease-specific score was then calculated as:
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Using the student t-test, we then compared the disease-specific scores of resulting networks 

from disease features and those obtained from randomly selected features.

Identifying background nodes—PIUMet distinguishes a relevant set of background 

nodes essential for downstream significance analysis of resulting networks39 such as gene 

ontology enrichment. Here the background nodes are a subset of the PPMI nodes that can 

connect metabolite features mimicking the experimental data (the DMF set features). To 

identify background nodes, we calculated the weighted shortest path length between the 

PPMI nodes and metabolites corresponding to DMF set features. A background set was 

defined as:

where B shows background nodes, DMF(M) is a set of metabolites corresponding to DMF 

set features, and PPMI(N) is the set of the PPMI nodes. Here we considered ∊ equals to 0.4; 

sensitivity analysis on the value of ∊ resulted in the similar outcomes (data not shown).

Experimental data collection on the STHdh cell line model of HD—To test our 

developed methodology, we collected various omic data of STHdh cell line15 model of HD. 

STHdh cells are the conditionally immortalized homozygote wild-type (STHdh Q7, Coriell 

CH00097) and mutant (STHdh Q111, Coriell CH00095) striatal neuronal progenitor cell 

lines, which were cultured as described15. Cells were maintained in a humid incubator at 

33 °C and 5% CO2. Culture medium was changed every 2 d, and cells were subcultured 

when they reached 85% confluence. The passage number was kept below 14; to exclude 

mycoplasma contamination, cells were routinely tested with the PCR Mycoplasma Detection 

Kit (Applied Biological Materials Inc). The cell lines were genotyped by PCR as 

described15. Before each experiment, the temperature was raised at 39 °C for 48 h to halt 

proliferation and reduce cell-cycle differences between the two lines. Cells were 

subsequently washed twice with ice-cold phosphate-buffered saline, scraped on ice and 

pelleted by centrifugation at 450g for 5 min at 4 °C. Cell pellet were flash-frozen with liquid 

nitrogen and stored at −80 °C until use.

Global lipid profiling of STHdh cell lines—Lipids were extracted as described40. Cells 

were scraped from a 10-cm plate in 1 mL cold PBS and transferred to a glass vial which was 

vortexed with a cold mixture of 1 mL MeOH and 2 mL chloroform. The resulting mixture 

was centrifuged and the organic phase containing lipids was dried under a stream of N2 and 

stored at −80 °C before injection for LC-MS analysis.

Global lipidomics was performed with an Agilent 1200 Series HPLC online with an Agilent 

6220 ESI-TOF (Agilent Technologies). Data were acquired in positive and negative 

ionization modes. For the negative mode, a Gemini (Phenomenex) or Inspire (Dikma 

Pirhaji et al. Page 12

Nat Methods. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Technologies) C18 column (5 μm, 4.6 mm × 50 mm) was used with a guard column (C18, 2 

μm frit, 2 mm × 20 mm). Solvent A was 95:5 water:methanol with 0.1% ammonium 

hydroxide, and solvent B was 60:35:5 isopropanol:methanol:water with 0.1% ammonium 

hydroxide. For the positive mode, a Luna (Phenomenex) C5 or Bio-Bond (Dikma 

Technologies) C4 column (5 μm, 4.6 mm × 50 mm) was used with a guard column (C4, 2 

μm frit, 2 mm × 20 mm). Solvent A was 95:5 water:methanol with 0.1% formic acid and 5 

mM ammonium formate, and solvent B was 60:35:5 isopropanol:methanol:water with 0.1% 

formic acid and 5 mM ammonium formate. The identical gradient was used for both modes. 

The gradient was held at 0% B between 0 and 5 min, changed to 20% B at 5.1 min, 

increased linearly from 20% B to 100% B between 5.1 min and 45 min, held at 100% B 

between 45.1 min and 53 min, and returned to 0% B at 53.1 min and held at 0% B between 

53.1 min and 60 min to allow column re-equilibration. The flow rate was maintained at 0.1 

mL/min between 0 and 5 min to counter the increase in pressure due to chloroform injection. 

The flow rate was 0.4 mL/min between 5.1 min and 45 min, and 0.5 mL/min between 45.1 

min and 60 min. Injection volume was 10–30 μL. The capillary, fragmentor and skimmer 

voltages were 3.5 kV, 100 V and 60 V, respectively. The drying gas temperature was 350 °C, 

drying gas flow rate was 10 l min−1 and nebulizer pressure was 45 p.s.i.. Data were collected 

in both profile and centroid modes using a mass range of 100–1500 Da. For untargeted 

analysis, raw data were converted to .mzXML format and analyzed by XCMS, which 

considers nonlinear alignments of features from different samples41. XCMS output files 

were filtered by statistical significance (P ≤ 0.05), fold change (≥3) and reproducibility 

across four independent data sets, and the remaining ions further verified by manual 

integration in Qualitative Analysis software (Agilent Technologies). Statistical significance 

was determined by two-tailed student’s t-test.

Experimental verification of altered metabolites inferred by PIUMet—
Confirmation of altered metabolites inferred by PIUMet was done using two reverse-phase 

LC methods and MS data acquired in positive and negative ionization modes using two LC-

MS systems comprised of Nexera X2 U-HPLC systems (Shimadzu Scientific Instruments) 

and either a Q Exactive hybrid quadrupole orbitrap mass spectrometers (Thermo Fisher 

Scientific) or a Exactive Plus orbitrap MS (Thermo Fisher Scientific).

For the measurement of lipids, LC-MS samples were extracted from cell pellets (3 × 107 

cells) in isopropanol containing 1-dodecanoyl-2-tridecanoyl-sn-glycerol-3-phosphocholine 

as an internal standard (Avanti Polar Lipids). Extracted metabolites were injected into a 

Waters Aquity UPLC BEH C8 column (1.7 μm; Waters), eluted isocratically for 1 min at 

80% mobile phase A (95:5:0.1 vol/vol/vol 10 mM ammonium acetate/methanol/acetic acid), 

followed by a 2-min linear gradient to 80% mobile phase B (99.9:0.1 vol/vol methanol/

acetic acid) and a linear gradient to 100% mobile phase B over 7 min. MS analyses were 

carried out using electrospray ionization in the positive ion mode using full scan analysis 

with an ion spray voltage of 3.0 kV, capillary and probe heater temperature of 300 °C.

For the measurement of sphingosine-1-phosphate, metabolites were extracted from cell 

pellets (3 × 107 cells) in 80% methanol containing Prostaglandin E2-d4 (PGE2-d4) as an 

internal standard (Cayman Chemical Co.). Extracts were injected onto a 150 × 2 mm 

ACQUITY T3 column (Waters). The column was eluted isocratically at a flow rate of 450 
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μL/min with 25% mobile phase A (0.1% formic acid in water) for 1 min followed by a linear 

gradient to 100% mobile phase B (acetonitrile with 0.1% formic acid) over 11 min. MS 

analyses were carried out using electrospray ionization in the negative ion mode using full 

scan analysis is with an ion spray voltage of −3.5 kV, capillary temperature of 320 °C and 

probe heater temperature of 300 °C.

Raw data for both methods were processed using Progenesis CoMet and QI software 

(NonLinear Dynamics) for feature alignment, nontargeted signal detection, and signal 

integration. Targeted processing and manual inspection of features was conducted using 

TraceFinder software (Thermo Fisher Scientific).

Global phosphoprotein profiling of STHdh cell line model of HD

Mass spectrometry sample preparation: Samples were lysed with 8 M urea + 1 mM 

sodium orthovanadate (phosphatase inhibitor) and protein yield was quantified by BCA 

assay (Pierce). Samples were reduced with 10 μl of 10 mM DTT in 100 mM ammonium 

acetate pH 8.9 (1 h at 56 °C). Samples were alkylated with 75 μl of 55 mM iodoacetamide in 

100 mM ammonium acetate pH 8.9 (1 h at room temperature). 1 mL of 100 mM ammonium 

acetate and 10 μg of sequencing grade trypsin (Promega PN:V5111) and digestion 

proceeded for 16 h at room temperature. Samples were acidified with 125 μl of 

trifluoroacetic acid (TFA) and desalted with C18 spin columns (ProteaBio, SP-150). 

Samples were lyophilized and subsequently labeled with iTRAQ 8plex (AbSciex) per 

manufacturer’s directions.

Immunoprecipitation: 70 μl protein-G agarose beads (calbiochem IP08) were rinsed in 400 

μl IP buffer (100 mM Tris, 0.3% NP-40, pH 7.4) and charged for 8 h with three 

phosphotyrosine-specific antibodies (12 μg 4G10 (Millipore), 12 μg PT66 (Sigma), and 12 

μg PY100 (CST)) in 200 μl IP buffer. Beads were rinsed with 400 μl of IP buffer. Labeled 

samples were resuspended in 150 μl iTRAQ IP buffer (100 mM Tris, 1% NP-40, pH 7.4) 

+ 300 μl milliQ water and pH was adjusted to 7.4 (with 0.5M Tris HCl pH 8.5). Sample was 

added to charged beads for overnight incubation. Supernatant was removed and beads were 

rinsed three times with 400 μl rinse buffer (100 mM Tris HCl, pH 7.4). Peptides were eluted 

in 70 μl of elution buffer (100 mM glycine, pH 2) for 30 min at room temperature.

Immobilized metal affinity chromatography (IMAC) purification: A fused silica 

capillary (FSC) column (200 μm inner diameter × 10 cm length) was packed with POROS 

20MC beads (Applied Biosystems 1-5429-06). IMAC column was prepared by rinsing with 

solutions in the following order: 100 mM EDTA pH 8.9 (10 min), (10 min), 100 mM FeCl3 

(20 min), 0.1% acetic acid (10 min). IP elution was loaded for 30 at a flow rate of 2 μl/min. 

The column was rinse with 25% MeCN, 1% HOAc, and 100 mM NaCl (10 min) and 0.1% 

acetic acid (10 min). Peptides were eluted with 50 μl 250 mM NaH2PO4 at 2 μl/min and 

collected on a 10 cm hand-made precolumn (fused silica: Polymicro Technologies cat.no. 

TSP100375, beads: YMC gel, ODS-A, 12 nm, S-10 μm, AA12S11). Precolumn was rinsed 

with 0.1% acetic acid before analysis.
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Liquid chromatography mass spectrometry: Peptides were analyzed on a 240-min 

gradient (Agilent 1100 HPLC) from 100% A (0.1% formic acid) to 100% B (0.1% formic 

acid, 80% acetonitrile) spraying through a hand-made 10 cm analytical column (fused silica: 

Polymicro Technologies cat.no. TSP050375, beads: YMC gel, ODS-AQ, 12 nm, S-5 μm, 

AQ12S05, bead plug: YMC gel, ODS-A, 12 nm, S-10 μm, AA12S11) with integrated 

electrospray ionization tip, connected inline with the precolumn.

Data analysis: Thermo .RAW files were searched with MASCOT v2.4 using Proteome 

Discoverer (v1.2). Peptides that appeared in all replicates were included if their MASCOT 

scores exceeded 15 and they were designated as medium or high confidence by Proteome 

Discoverer. The P value obtained using a two-tailed t-test is reported between STHdh Q7 

and STHdh Q111 biological replicates. We identified 35 peptides that were matched to 31 

corresponding phosphoproteins using BLAST program blastp (Supplementary Table 3). If 

multiple peptides matched to one protein, the assigned P value to the protein was considered 

as the minimum P value of the corresponding peptides. Additionally, as the PPMI network 

was constructed from human data, we identified the human homologs of these 

phosphoproteins using NCBI HomoloGene42 database.

Inferring a network underlying changes in phosphoproteins—When proteomic 

data were used, the input to PIUMet consisted of phosphoproteins with significantly 

different levels of phosphorylation between STHdh Q7 and STHdh Q111 cells (P ≤ 0.01; 

Supplementary Table 3). PIUMet identified a subnetwork of the PPMI that connects these 

phosphoproteins, while calculating a robustness score for each resulting nodes. We also 

generated a family of random networks by randomly selecting phosphoproteins that mimic 

experimental data. For this purpose, we first identified a list of phosphoproteins from the 

Phosida database43. Of these phosphoproteins, 3,858 (>82%) were present in the PPMI 

network. Then, for an input size T, we randomly selected T of these phosphoproteins, in 

which the degree distribution of the selected phosphoproteins was similar to the real data. 

We repeated this process 100 times, and obtained the resulting networks. We then calculated 

disease-specific scores for the resulting nodes and networks. These scores showed that the 

resulting nodes from real data were specific to the disease (disease-specific score ≥ 93%), 

and the resulting networks from real data had significantly higher disease-specific scores 

compared to those from randomly selected disease features (P = 1.58 × 10‒78).

Inferring a network connecting untargeted lipidomic to phosphoproteomic 
data—We also ran PIUMet with both metabolomics disease features and significantly 

altered phosphoproteins (identified using a two-tailed student’s t-test) as inputs. PIUMet 

then identified a subnetwork of the PPMI linking changes in the global level of lipids to 

changes in phosphoproteins, and calculated robustness scores for the results. In addition, we 

calculated disease-specific scores for resulting nodes and networks, and found that the nodes 

were specific to the disease (disease-specific score ≥ 82%), and networks had significantly 

higher disease-specific scores compared to those obtained from randomly selected disease 

features and phosphoproteins (P = 1.30 × 10‒116).
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Multiparameter high-content imaging for the analysis of cell apoptosis—
STHdh Q7 and STHdh Q111 striatal cells were trypsinized, harvested in prewarmed growth 

medium and quantified using an automated cell counter (Countess II, Life Technologies). 

6,000 cells per well were seeded in sterile, black, 96-well microplates with flat, clear 

bottoms. After 24 h, the complete medium was removed and replaced with phenol-red-free 

and serum-free medium containing either FTY720 phosphate (Sigma-Aldrich) or vehicle 

(DMSO, Sigma-Aldrich) and cells were incubated for 24 h at 33 °C. A multiple staining 

solution containing 1 μg/ml calcein-AM, 2 μg/ml propidium iodide and 1.5 μg/ml Hoechst 

333442 (all from Life Technologies) was added to detect and quantify live, dead and total 

cells, respectively. After 20 min incubation, the Cellomics Arrayscan Platform (Thermo 

Scientific) was used for imaging acquisition. Seven fields per well were imaged at 10× 

magnification. Analysis was carried out using the Cellomics algorithm for cell viability. Cell 

loss was expressed as the percentage of propidium-iodide-positive cells. Two independent 

experiments were performed with 20 replicates each.

Protein extraction and western blot analysis—For total protein extraction, cells were 

lysed in RIPA buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1% NP-40, 0.1% SDS, 12 

mM sodium deoxycholate) supplemented with protease and phosphatase inhibitor cocktail 

(Thermo Scientific). Nuclear extracts were prepared as described44. Total and nuclear 

protein extracts were quantified using the Bradford assay with bovine serum albumin as 

standard. Western blot experiments were carried out using the Odyssey infrared imaging 

system (Li-Cor Biosciences) as described45. The following primary antibodies were used: 

anti-CSB (Santa Cruz Biotechnology, sc-25370; dilution 1:200), anti-DHCR7 (Abcam, 

ab103296; dilution 1:500), anti-RASA1 (Abcam, ab40807; dilution 1:1,000), anti-FASN 

(Santa Cruz Biotechnology, sc-55580; dilution 1:500). An antibody against actin protein 

(Millipore, MAB1501; dilution 1:10,000) was used for normalization.

Code availability—The beta-version of PIUMet software is available for nonprofit 

academic use only at http://fraenkel-nsf.csbi.mit.edu/PIUMet/

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank A. Soltis and S. Dalin. This work was supported by grants from US National Institute of Health R01-
GM089903, U54-NS091046 and U01-CA184898 (E.F.), and National Cancer Institute U54 CA112967 (E.F. and 
F.M.W.) and P30 CA014051 (F.M.W.) as well as Searle Scholars Program (A.S.).

References

1. DeBerardinis RJ, Thompson CB. Cellular metabolism and disease: what do metabolic outliers teach 
us? Cell. 2012; 148:1132–1144. [PubMed: 22424225] 

2. Patti GJ, Yanes O, Siuzdak G. Innovation: Metabolomics: the apogee of the omics trilogy. Nat Rev 
Mol Cell Biol. 2012; 13:263–269. [PubMed: 22436749] 

3. Baker M. Metabolomics: from small molecules to big ideas. Nat Methods. 2011; 8:117–121.

Pirhaji et al. Page 16

Nat Methods. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://fraenkel-nsf.csbi.mit.edu/PIUMet/


4. Dunn WB, et al. Mass appeal: metabolite identification in mass spectrometry-focused untargeted 
metabolomics. Metabolomics. 2013; 9:44–66.

5. Johnson CH, Ivanisevic J, Benton HP, Siuzdak G. Bioinformatics: the next frontier of metabolomics. 
Anal Chem. 2015; 87:147–156. [PubMed: 25389922] 

6. Cho K, Mahieu NG, Johnson SL, Patti GJ. After the feature presentation: technologies bridging 
untargeted metabolomics and biology. Curr Opin Biotechnol. 2014; 28:143–148. [PubMed: 
24816495] 

7. Grapov D, Wanichthanarak K, Fiehn O. MetaMapR: pathway independent metabolomic network 
analysis incorporating unknowns. Bioinformatics. 2015; 31:2757–2760. [PubMed: 25847005] 

8. Kuo TC, Tian TF, Tseng YJ. 3Omics: a web-based systems biology tool for analysis, integration and 
visualization of human transcriptomic, proteomic and metabolomic data. BMC Syst Biol. 2013; 
7:64. [PubMed: 23875761] 

9. Karnovsky A, et al. Metscape 2 bioinformatics tool for the analysis and visualization of 
metabolomics and gene expression data. Bioinformatics. 2012; 28:373–380. [PubMed: 22135418] 

10. Krumsiek J, et al. Mining the unknown: a systems approach to metabolite identification combining 
genetic and metabolic information. PLoS Genet. 2012; 8:e1003005. [PubMed: 23093944] 

11. Li S, et al. Predicting network activity from high throughput metabolomics. PLOS Comput Biol. 
2013; 9:e1003123. [PubMed: 23861661] 

12. Yeger-Lotem E, et al. Bridging high-throughput genetic and transcriptional data reveals cellular 
responses to alpha-synuclein toxicity. Nat Genet. 2009; 41:316–323. [PubMed: 19234470] 

13. Tuncbag N, et al. Simultaneous reconstruction of multiple signaling pathways via the prize-
collecting steiner forest problem. J Comput Biol. 2013; 20:124–136. [PubMed: 23383998] 

14. Huang SSC, Fraenkel E. Integrating proteomic, transcriptional, and interactome data reveals 
hidden components of signaling and regulatory networks. Sci Signal. 2009; 2:ra40. [PubMed: 
19638617] 

15. Trettel F, et al. Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. 
Hum Mol Genet. 2000; 9:2799–2809. [PubMed: 11092756] 

16. Maceyka M, Harikumar KB, Milstien S, Spiegel S. Sphingosine-1-phosphate signaling and its role 
in disease. Trends Cell Biol. 2012; 22:50–60. [PubMed: 22001186] 

17. Di Pardo A, et al. FTY720 (fingolimod) is a neuroprotective and disease-modifying agent in 
cellular and mouse models of Huntington disease. Hum Mol Genet. 2014; 23:2251–2265. 
[PubMed: 24301680] 

18. Di Menna L, et al. Fingolimod protects cultured cortical neurons against excitotoxic death. 
Pharmacol Res. 2013; 67:1–9. [PubMed: 23073075] 

19. Deogracias R, et al. Fingolimod, a sphingosine-1 phosphate receptor modulator, increases BDNF 
levels and improves symptoms of a mouse model of Rett syndrome. Proc Natl Acad Sci USA. 
2012; 109:14230–14235. [PubMed: 22891354] 

20. Valenza M, Cattaneo E. Emerging roles for cholesterol in Huntington’s disease. Trends Neurosci. 
2011; 34:474–486. [PubMed: 21774998] 

21. Kreilaus F, Spiro AS, Hannan AJ, Garner B, Jenner AM. Brain cholesterol synthesis and 
metabolism is progressively disturbed in the R6/1 mouse model of Huntington’s disease: a targeted 
GC-MS/MS sterol analysis. J Huntingtons Dis. 2015; 4:305–318. [PubMed: 26639223] 

22. Yehuda S, Rabinovitz S, Mostofsky DI. Essential fatty acids and the brain: from infancy to aging. 
Neurobiol Aging. 2005; 26(Suppl 1):98–102. [PubMed: 16226347] 

23. Block RC, Dorsey ER, Beck CA, Brenna JT, Shoulson I. Altered cholesterol and fatty acid 
metabolism in Huntington disease. J Clin Lipidol. 2010; 4:17–23. [PubMed: 20802793] 

24. Puri BK, et al. Ethyl-EPA in Huntington disease: a double-blind, randomized, placebo-controlled 
trial. Neurology. 2005; 65:286–292. [PubMed: 16043801] 

25. Puri BK, et al. Reduction in cerebral atrophy associated with ethyl-eicosapentaenoic acid treatment 
in patients with Huntington’s disease. J Int Med Res. 2008; 36:896–905. [PubMed: 18831882] 

26. López M, Vidal-Puig A. Brain lipogenesis and regulation of energy metabolism. Curr Opin Clin 
Nutr Metab Care. 2008; 11:483–490. [PubMed: 18542011] 

Pirhaji et al. Page 17

Nat Methods. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



27. Li SH, Li XJ. Huntingtin-protein interactions and the pathogenesis of Huntington’s disease. Trends 
Genet. 2004; 20:146–154. [PubMed: 15036808] 

28. Stevnsner T, Muftuoglu M, Aamann MD, Bohr VA. The role of Cockayne Syndrome group B 
(CSB) protein in base excision repair and aging. Mech Ageing Dev. 2008; 129:441–448. [PubMed: 
18541289] 

29. Subba Rao K. Mechanisms of disease: DNA repair defects and neurological disease. Nat Clin Pract 
Neurol. 2007; 3:162–172. [PubMed: 17342192] 

30. Razick S, Magklaras G, Donaldson IM. iRefIndex: a consolidated protein interaction database with 
provenance. BMC Bioinformatics. 2008; 9:405. [PubMed: 18823568] 

31. Wishart DS, et al. HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res. 
2013; 41:D801–D807. [PubMed: 23161693] 

32. Thiele I, et al. A community-driven global reconstruction of human metabolism. Nat Biotechnol. 
2013; 31:419–425. [PubMed: 23455439] 

33. Aranda B, et al. PSICQUIC and PSISCORE: accessing and scoring molecular interactions. Nat 
Methods. 2011; 8:528–529. [PubMed: 21716279] 

34. Frolkis A, et al. SMPDB: The Small Molecule Pathway Database. Nucleic Acids Res. 2010; 
38:D480–D487. [PubMed: 19948758] 

35. Hucka M, et al. SBML Forum. The systems biology markup language (SBML): a medium for 
representation and exchange of biochemical network models. Bioinformatics. 2003; 19:524–531. 
[PubMed: 12611808] 

36. Bornstein BJ, Keating SM, Jouraku A, Hucka M. LibSBML: an API library for SBML. 
Bioinformatics. 2008; 24:880–881. [PubMed: 18252737] 

37. Huang SS, et al. Linking proteomic and transcriptional data through the interactome and 
epigenome reveals a map of oncogene-induced signaling. PLOS Comput Biol. 2013; 9:e1002887. 
[PubMed: 23408876] 

38. Bailly-Bechet M, Braunstein A, Pagnani A, Weigt M, Zecchina R. Inference of sparse 
combinatorial-control networks from gene-expression data: a message passing approach. BMC 
Bioinformatics. 2010; 11:355. [PubMed: 20587029] 

39. Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using 
DAVID bioinformatics resources. Nat Protoc. 2009; 4:44–57. [PubMed: 19131956] 

40. Saghatelian A, et al. Assignment of endogenous substrates to enzymes by global metabolite 
profiling. Biochemistry. 2004; 43:14332–14339. [PubMed: 15533037] 

41. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G. XCMS Online: a web-based platform to process 
untargeted metabolomic data. Anal Chem. 2012; 84:5035–5039. [PubMed: 22533540] 

42. NCBI Resource Coordinators. Database resources of the National Center for Biotechnology 
Information. Nucleic Acids Res. 2013; 41:D8–D20. [PubMed: 23193264] 

43. Gnad F, Gunawardena J, Mann M. PHOSIDA 2011: the posttranslational modification database. 
Nucleic Acids Res. 2011; 39:D253–D260. [PubMed: 21081558] 

44. Schreiber E, Matthias P, Müller MM, Schaffner W. Rapid detection of octamer binding proteins 
with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Res. 1989; 17:6419. 
[PubMed: 2771659] 

45. Ng CW, et al. Extensive changes in DNA methylation are associated with expression of mutant 
huntingtin. Proc Natl Acad Sci USA. 2013; 110:2354–2359. [PubMed: 23341638] 

Pirhaji et al. Page 18

Nat Methods. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
PIUMet identifies disease-associated pathways and hidden components from untargeted 

metabolomic data. The input to PIUMet are metabolomic peaks that differ between disease 

and control samples (peaks 2, 3 and 5 in the shown example). PIUMet then searches an 

underlying database. The PPMI nodes are proteins (circle nodes) or metabolites (square 

nodes). These nodes are connected via edges representing physical interactions among 

proteins, as well as substrate-enzyme and product-enzyme associations of metabolic 

reactions. PIUMet output is an optimum subnetwork of PPMI that connects disease features. 

This network represents dysregulated metabolic pathways in diseased cells, and its 

components display hidden proteins and metabolites that had not been detected in 

experiments. Hidden metabolites directly connected to disease features represent the putative 

identity of these features. Additionally, the resulting nodes and edges are scored based on 

their robustness to uncertainty in the underlying database. PIUMet also accept other omic 

data such as proteomics as an optional input.
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Figure 2. 
PIUMet. (a) PIUMet embraces the ambiguous identity of disease features. It first identifies 

putative metabolites matching a feature based on mass. It then represents each feature as a 

node (m/z), which is connected to the matched metabolites (M1–5). PIUMet reduces the 

ambiguity in the assignment and scores each of these metabolites. (b) In an optimum 

subnetwork of PPMI that links disease features, blue squares connected to triangles 

represent the inferred metabolites corresponding to the features. These metabolites are 

connected by high-confidence protein-protein and protein-metabolites interactions. (c) An 
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example of an undesirable result that is biased toward highly connected nodes. (d) A 

comparison of a subnetwork in a tree structure with a subnetwork that captures the complex 

topology of metabolic reactions. (e) An example of a network generated from randomly 

chosen mock data sets, in which the majority of input nodes remain separated, and a few are 

connected via a long path of protein-protein and protein-metabolite interactions.
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Figure 3. 
The PIUMet subnetwork showing altered sphingolipid metabolism in the STHdh cell line 

model of HD. PIUMet connects disease features via high-probability protein-protein and 

protein-metabolite interactions. Metabolites connected to disease features represent their 

putative identities. These metabolites along with the rest of the nodes are ranked based on 

the robustness scores, and are shown by different sizes. We experimentally verified the 

dysregulation of sphingolipids (upregulated and downregulated) using a targeted 

metabolomic platform. Also shown are hidden proteins that play a role in dysregulation of 

sphingolipids in diseased cells.
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Figure 4. 
Altered fatty acid and steroid metabolic processes identified by PIUMet. Shown is a part of 

resulting network associated with these processes. Disease features are directly connected to 

metabolites representing their putative identities. The remaining nodes display hidden or 

experimentally undetected metabolites and hidden proteins of these pathways, with their 

sizes associated with robustness scores. We experimentally verified that the proteins and 

metabolites highlighted by red and orange boxes were altered in diseased cells.
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Figure 5. 
Comparison of disease-associated components identified in separate analyses of lipidomics 

and phosphoproteomics, and in an integrative analysis of those data.
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Figure 6. 
Regions of the resulting network obtained from integrative analysis of lipidomics and 

phosphoproteomics, displaying the dysregulation of high-scoring, hidden components. (a–c) 

High-scoring proteins belonging to three subsets of nodes. The first subset contains nodes 

that increase in robustness when lipidomics and phosphoproteomics are considered together 

compared to lipidomics alone. DHCR7 (a) and FASN (c) are high-scoring members of this 

subset, which are significantly (two-tailed Student’s t-test) altered in diseased cells. The 

second subset includes nodes that increase in robustness when lipidomics and 

phosphoproteomics are considered together compared to phosphoproteomics alone. RASA1 

(b) is the highest-scoring node in this network, whose encoded protein is significantly 

upregulated in diseased cells. Finally, the third subset contains proteins that are only 

identified by multi-omic analysis of lipidomics and phosphoproteomics. We confirmed that 

ERCC6-encoded protein (c), a high-scoring node in this subset, is significantly upregulated 

in diseased cells.
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