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Abstract Agent-based models (ABMs) have become an increasingly important mode
of inquiry for the life sciences. They are particularly valuable for systems that are
not understood well enough to build an equation-based model. These advantages,
however, are counterbalanced by the difficulty of analyzing and using ABMs, due
to the lack of the type of mathematical tools available for more traditional models,
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which leaves simulation as the primary approach. As models become large, simulation
becomes challenging. This paper proposes a novel approach to two mathematical
aspects of ABMs, optimization and control, and it presents a few first steps outlining
how one might carry out this approach. Rather than viewing the ABM as a model,
it is to be viewed as a surrogate for the actual system. For a given optimization or
control problem (which may change over time), the surrogate system is modeled
instead, using data from the ABM and a modeling framework for which ready-made
mathematical tools exist, such as differential equations, or for which control strategies
can explored more easily. Once the optimization problem is solved for the model of
the surrogate, it is then lifted to the surrogate and tested. The final step is to lift the
optimization solution from the surrogate system to the actual system. This program is
illustrated with published work, using two relatively simple ABMs as a demonstration,
Sugarscape and a consumer-resource ABM. Specific techniques discussed include
dimension reduction and approximation of an ABM by difference equations as well
systems of PDEs, related to certain specific control objectives. This demonstration
illustrates the very challenging mathematical problems that need to be solved before
this approach can be realistically applied to complex and large ABMs, current and
future. The paper outlines a research program to address them.

Keywords Agent-based modeling - Systems theory - Optimization - Optimal control

1 Introduction

Technological advances in data generation and in computer hardware and software
have transformed the life sciences from being data-poor to being data-rich. Computa-
tion is now an essential component of much research in biology, and it is also becoming
ubiquitous across biomedicine and healthcare. As in engineering and science gener-
ally, a great deal of recent progress in the life sciences now relies on computation,
which has come to be recognized as a “third pillar of science,” together with the-
ory and experimentation (Smarr 1992; President’s Information Technology Advisory
Committee 2005). At a fundamental level, such computational models are constructed
for two distinct but often entangled purposes: (1) models to increase understanding
of the system being modeled, and (2) models to inform decisions to be made about
the system being modeled. While clearly these goals overlap and can be thought of as
generally existing on a continuum from understanding to decision support, and there
are varying and domain-specific criteria for the trustworthiness of that transition, in
applied sciences, such as biomedicine, there is a desire to develop investigatory path-
ways to move toward using modeling and simulation as a means of engineering control
strategies. This process involves the translation of methods and concepts that have been
demonstrated to be useful in other domains. For instance, many problems in the life
sciences can be viewed from the point of view of optimal control and optimization, an
area to which the mathematical sciences have made substantial contributions through
mathematical modeling and algorithms. Yet, mathematical approaches to analysis have
not been directly applicable to a type of model that has gained in popularity across the
life sciences in recent years: agent-based models (ABMs). ABMs are characterized by
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their ease of construction by domain experts, ability to capture spatial heterogeneity,
and faithful representation of local characteristics that generate global dynamics. The
principal method of analysis for ABMs remains extensive simulation. As these models
grow larger and more complex, even simulation quickly reaches computational limits.
The purpose of this article is to discuss how mathematical approximations of ABMs
could be developed, in particular for optimization and control purposes, in order to
overcome these limitations. We offer the following rationale for our approach:

(1) We consider ABMs “middle-ware” investigatory objects: selectively abstracted
representations of the real-world system that are yet too complex for traditional
formal mathematical analysis. To a great degree this complexity arises out of
system properties that resist traditional modeling methods, such as variable
component-component interactions, spatial heterogeneity and insufficiency of
mean-field approximations, and this makes ABMs “sufficiently complex” prox-
ies for the real-world system.

(2) The fact that ABMs are computational constructs vastly increases the range of
“experimental” conditions able to be applied versus their real-world referent (or
real-world physical proxy models); this includes testing putative control strate-
gies.

(3) However, comprehensive search of model-response space using brute force
embarrassingly parallel simulation is computationally expensive, and may not
be necessary. Therefore, identifying methodological bridges between ABMs and
more formally tractable SLMs would be beneficial and serve two purposes:

(3a) To reduce the search space for putative controls, which can then be tested
via more tractable embarrassingly parallel simulation experiments; and

(3b) To facilitate iterative refinement/expansion/reduction of an existing ABM
in reference to its intended use with respect to its referent (in this case, the
search for practically implementable control strategies).

(4) By virtue of being “sufficiently complex” proxy systems, information and knowl-
edge obtained by examining ABMs subject to control may provide insight into
how to effectively control the real-world referent. At the very least, this process
can provide a first approximation of the set of putative controls.

This rationale leads us to the following:

Main hypothesis If an ABM is treated not as a model of a system of interest but
as the system itself, then simpler mathematical models can be derived that capture
key features of the ABM for a particular control or optimization objective and, by
extension, the biological system of interest.

One might argue that if there is an equation-based model that can be used to solve
optimization problems related to the biological system, then one should have con-
structed such a model in the first place, rather than build an ABM as an intermediary
step. This might well be the right approach, if feasible, but there are several reasons
why one might nevertheless want to build an ABM first. Firstly, of all model types,
an ABM requires arguably the fewest simplifying assumptions to be made, and it can
be validated in the most direct way, through, e.g., observation of characteristic pat-
terns rather than surrogate summary statistics. If the biological system is not very well
understood, this can be an important reason for an ABM as a first modeling step. Once
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an ABM is built and validated, it can be used to understand the system better, e.g.,
the importance of different variables or spatial features. Once a control objective is
specified, this understanding can then lead to a possibly much simpler equation-based
model that is faithful for the specific control objective, but possibly few or none of the
other features. Secondly, the need for optimization and control might be an ongoing
process, e.g., for models that are used for policy decisions, and the control and opti-
mization objectives might change over time. In this case, the model is likely intended
to capture all possible information about the system and incorporate new information
as it becomes available. It is not efficient in this case to build a series of one-off de
novo models for each. Thirdly, the model might be built by domain experts with little
expertise in mathematical modeling, who can build an ABM with much greater ease
than they can an equation-based model. Thus, the proposed indirect approach to opti-
mization and control of systems is not intended to replace a direct modeling approach
in all cases, but is intended to be used in cases where a direct approach is either not
feasible or not desirable.

2 Agent-Based Models

The life sciences frequently examine systems with interacting components at mul-
tiple levels of hierarchy and structure, from cells to connections between cells that
lead to tissue-level properties, to the whole-organism level, and on to individuals in
ecosystems. The reduction of biological systems to physical or chemical phenom-
ena has yielded interesting insights at a fundamental level, but these approaches,
to a great degree, fail to sufficiently represent the range and complexity of bio-
logical behavior that is often of interest at a level relevant for optimization and
control approaches. Biological systems are distinguished by an organizational struc-
ture that generates multi-scale phenomena arising from the complex interactions
between their physical components. They support adaptive behavior of individuals
and exhibit great individual variability, whether at the scale of molecules or humans.
The non-linearities associated with the functional transitions between organizational
scales challenge the application of many traditional mathematical methods, particu-
larly those oriented toward engineering means of controlling those systems. However,
ABMs, which typically simulate interactions between individual components oper-
ating in heterogeneous spatial environments to generate population-level behaviors,
often span two or even more organizational scales (e.g., molecular rules <=> individ-
ual cell behavior <=> cell population/tissue behavior <=> multi-tissue/organism
<=> multi-organism/population). They have become an important technology for
the life sciences because of their capacity to account for heterogeneity among com-
ponents. Additionally, they are able to readily integrate knowledge with data because,
in many cases, reductionist experimental data offer better observability of individu-
als than aggregates. Often, scientists find ABMs simpler to explain to stakeholders
such as policy makers, in terms of components for which they have some intuition. It
has now become relatively easy for a domain expert to construct an ABM, thanks to
easy-to-use software interfaces for model construction, simulation, and visualization.
For these and other reasons, ABMs have been increasingly adopted in the evolving
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area of computational simulation science. The notion that computation has come to
complement experiment and theory as a third pillar of science arises from the use of
complex computational simulations not only as a means of integrating and comparing
theory and experiment but, more importantly, as tools to aid in theory construction,
to illuminate crucial components and uncertainties, to generate and examine new
hypotheses, to suggest new experiments and data collection efforts, and to strengthen
policy development and decision-making.

The basic structure of an ABM consists of individuals/agents with attributes and
rules of behavior, rules that govern agent actions and interactions with other agents,
as well as the interaction of agents with a potentially complex heterogeneous envi-
ronment. ABMs often allow for individual variation among agents, challenging the
compartmentalization typically used in dynamical systems models. Moreover, agents
may have adaptive behavioral rules that lead to unforeseeable interactions and emer-
gence. The time scales of different behavioral rules and environmental pressures can
also be quite variable. These features make ABMs difficult to encode in terms of tra-
ditional difference or differential equations models. The behaviors and rules of ABMs
are typically encoded in software as simple logical rules, coupled with random number
generation to model uncertain events and outcomes. As such, ABM construction is
more accessible than mathematically involved approaches such as, e.g., systems of
differential equations. This simplicity of implementation allows researchers to trans-
late hypotheses into a computational form, so that the ABM plays the role of a digital
“sand box,” aiding in the investigation and visualization, advancing theory through
conceptual model falsification.

An important and primary feature of ABMs is the population-level aggregated
behavior that emerges from the rule-based individual interactions, such as the pat-
terns of segregation in the model of (Schelling 1971) or synchronization of breeding
in birds (Railsback and Grimm 2012). While differential equations models like the
Belousov-Zhabotinsky reaction model (see, e.g., Murray 2011) can exhibit similar
complex pattern evolution, the diversity of pattern and structure formation in ABMs
is remarkable (Epstein and Axtell 1996; Gilbert 2008; Railsback and Grimm 2012).

Scientific inquiry into the control points of a system and the key drivers of sys-
tem behaviors, however, can be difficult with ABMs. For this purpose, computational
objects such as cellular automata or modeling methods such as discrete event simu-
lation can be thought of as special cases of ABMs, but to date, there is not currently
a rigorous formal description of what constitutes an ABM. A major benefit of using
ABMs is their ability to generate, through simulation, non-linear transitions between
multiple scales of organization. However, determining parameter settings that lead
to different patterns can be extremely difficult. In contrast, this is relatively straight-
forward for systems of differential equations, for example. Exhaustive simulation to
investigate bifurcations and stability, though cheaper and faster than real-world experi-
mentation, can be prohibitively expensive in terms of compute cycles and the resources
needed to execute them. Very complex differential equations models may be similarly
expensive to evaluate computationally, but the formal mathematical structure of sys-
tems of differential equation often permits analyses in a way that the interaction-based
structure of an ABM does not. This difference accounts for the significant appeal
of more traditional mathematical models. Reducing the complexity of a differential

@ Springer



68 G. Anetal.

equations model for design and optimization studies can be challenging, but generally
the route is clearer than it is with ABMs, features of which may frustrate attempts at
reduction by formal inspection and model reduction methods.

A problem of practical interest is that of policy guidance. In distinction with basic
scientific inquiry, ecological management, public health, and medical domains need
tools for rational, evidence-based decision-making in treatments, interventions, and
resource management problems. Models have been used successfully to support such
efforts. Social and ecological applications often involve problems for which direct
experimentation is, at best, difficult. For example, controlling non-native species such
as the wild hog Sus Scrofa in the Great Smoky Mountains National Park (Peine and
Farmer 1990) has created a number of political difficulties, and mathematical models
are beginning to suggest management strategies (Salinas et al. 2015; Levy et al. 2016).
As another example, college drinking is a major public health problem. Calls for a
reduction in the minimum legal drinking age suggest the undertaking of a complex,
large scale social and political experiment with potentially major consequences. Com-
putational decision aids can support policy investigation when experimentation and
testing must necessarily be limited (McCardell 2008; Fitzpatrick et al. 2012, 2016a).
Again, exhaustive simulation of control strategies may not be a desirable or even viable
option, and developing mathematically tractable tools for winnowing the vast array
of control strategies or policies into a manageable set for simulation can enhance this
type of model tremendously.

To illustrate just how widely applicable ABMs are, we point to several additional
representative examples. At the population level, EpiSims (Eubank 2005; Stroud et al.
2007) is a very large population-level ABM that explicitly represents millions of
individuals and their daily movements in a faithfully represented urban environment.
This movement model is then overlaid with an epidemiological model that can be used
to simulate the spread of a pathogen through the population. EpiSims has been used
as a policy decision-making tool in several contexts. In Wang et al. (2014), an ABM
is used to study the impact of social norms on obesity and eating behaviors among
US school children. At the tissue scale in the human body, a wide variety of problems
have been approached through ABMs. In Ziraldo and Solovyev (2015), an ABM is
used for a computational study of treatment options for pressure ulcers in patients
with spinal cord injuries. In Gong et al. (2015), an ABM of granuloma formation in
tuberculosis is used as a platform for the in silico design of combination therapies with
different antibiotics. The ABM is combined with a PDE model to accurately represent
diffusion of different molecules through tissue. Many other examples can be found in
the literature.

3 Toward a Mathematical Approach to ABMs

There is a nearly irresistible pull, when developing an ABM, toward increasing lev-
els of detail and complexity. The enormous flexibility of ABMs allows a modeler to
create agents with many attributes operating in an environment that is heterogeneous
in multiple dimensions and to build interaction rules that account for rich, complex
behaviors and relationships. As the complexity grows, the dimensionality of the para-
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meter space does as well, and the ability to conduct systematic inquiry becomes more
challenging. The ABM structure that invites researchers with its developmental sim-
plicity becomes a significant drawback: as noted above, the computational simulation
based on logical rules and individual attributes can be quite resistant to formal mathe-
matical analysis or even to experimental insights, if the model rules are too complex.
One strategy for approaching these trade-offs is “pattern-oriented modeling (Grimm
and Railsback 2005; Grimm et al. 2005), in which one balances model complexity
against the ability of the model’s output patterns to match those observed in the real
world (see also Thorngate and Edmonds 2013, for pattern analysis in ABMs). We
suggest that analysis at a system level can benefit greatly from transformation of the
ABM into mathematical formalisms that are more accessible to system-level analysis.

As stated in our main hypothesis, we assert that ABMs can be used as proxy systems,
rather than as the model to be analyzed directly, in an investigatory pathway that can
lead to the development of control strategies for highly complex real-world systems.
The complexity of aggregate behaviors observed in ABMs, which is seen by many
ABM modelers as unapproachable with system-level compartmental or aggregated
models, offers new and exciting challenges to the systems theory community, calling
for the creation of new approaches.

There are several examples in the literature that can be seen as first steps toward a
research program of the kind we are advocating. In Roeder et al. (2006), an ABM is used
to study the effects of treating chronic myeloid leukemia with the drug imatinib, known
as Gleevec, a tyrosine kinase inhibitor that interrupts key signaling pathways in cancer
cells, thereby inhibiting cell proliferation. While being very successful in achieving a
substantial reduction in the number of malignant cells, this treatment rarely eliminates
all such cells, leading to cancer recurrence. In Roeder et al. (2006), the model is used
to provide evidence for a new hypothesis explaining lack of complete success, which
implicates different effects of imatinib on malignant stem cells, leaving a residual pool
that replenishes the repertoire of cancer cells after treatment ends. The model supports
this hypothesis, which is also corroborated by patient data. The agents in the ABM
are cells of different types. There is no explicit spatial environment; rather, cells are
divided into two different environments, representing cell growth and quiescence. Cells
can move between these environments, depending on different signals they receive.
Imatinib treatment affects several different parameters in the model.

At each ABM time step, the model evaluates a collection of probabilistic rules that
affects the state of each cell and its location in one or the other of the compartments.
Due to the large number of rules to be evaluated, leading to significant computational
cost, it is only possible to use a small fraction of the actual number of cells involved.
Still, one simulation run of this large stochastic model requires on the order of 6h,
with hundreds of thousands of rules to be evaluated at each time step. In Kim et al.
(2008), the authors developed a deterministic difference equations model, consisting of
approximately 6000 equations, that faithfully reproduces the behavior of this ABM and
can be simulated in a matter of seconds. Cells are clustered depending on their state, and
there is no limit on the size of the clusters, so that the model can represent any number
of cells. This clustering approach also allows the model to be deterministic rather than
stochastic. Then, in Kim et al. (2008), a (deterministic) PDE model was presented that
accomplished the same task, agreeing with both the ABM and the difference equations
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model in almost all aspects. The main difference is that continuous time causes some
aspects of the model to behave differently from either of the discrete time models. We
view this progression of models as a case study of how one can move from a complex
and hard to execute ABM to a more easily manageable equation-based mathematical
model that allows analysis.

4 Optimization and Control

A well-known family of ABMs known as Sugarscape (Wilensky 2009; Epstein and
Axtell 1996) has been used for the study of a variety of control processes in the life sci-
ences, social science, and economics. The stochastic Sugarscape ABMs include agent
heterogeneity, environmental heterogeneity, and accumulation of agent resources (i.e.,
sugar) over time, thus incorporating the main complexities frequently found in ABMs.
Agents negotiate a spatial environment in search of a resource called sugar, with higher
sugar concentrations represented as elevations in the landscape. Different agents have
differing abilities to perceive sugar gradients, leading to different levels of agent fit-
ness. Complete lack of sugar leads to agent death. Control is included as taxation of
agents’ sugar resources, with the goal of maximizing a weighted combination of total
taxes less a measure of the impact of taxation on the population. Recently, Christley
etal. (2015) approximated a Sugarscape model using a system of parabolic PDEs. The
goal was to explore optimal control scenarios for Sugarscape, applying mathematical
optimization approaches to the PDE model. This approach performed well in scenar-
ios in which the control was assumed to be constant. Optimal controls generated by
applying optimal control theory to the PDE system provided time-varying tax rates
specific to an agent’s location and current wealth. When implemented in the ABM, the
optimal controls performed reasonably well even though some error was introduced
between the PDE and ABM systems.

Several different approaches to Sugarscape control are described in Oremland
and Laubenbacher (2014a,b), approaches which illustrate the philosophy advocated
herein. One approach focuses on dimension reduction of the ABM (by reducing the
number of spatial locations, agents, and other aspects), while preserving those model
features relevant for a given control objective. This is done by applying a randomly
chosen collection of controls to both the original and the reduced ABM and computing
the similarity of the relative rankings of the controls for the two models. The user can
then choose a level of similarity that is acceptable for a particular control objective,
thereby deciding how closely the reduced model needs to fit the original one for the
control purpose. Controls are then computed for the reduced model and lifted to the
original one. Note that the reduced model might be dramatically different from the
original one in other aspects. The advantage of the reduced model might be ease of
computation, although care must be taken that this is indeed the case. The optimiza-
tion method chosen is Pareto optimization. This multiobjective optimization method
has the advantage that it computes a collection of controls, each of which has the
property that optimality in one objective cannot be improved without losing optimal-
ity in another. Thus, it computes optimal control inputs for various weightings of the
individual objectives. The user can then decide which to choose. Another approach
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that can be taken using either the original model, or, possibly more easily, the reduced
model, is to approximate the ABM by an equation-based model that can be used for
control. Again, the equation model might be adequate for a control objective with-
out preserving many other important features of the ABM, e.g., spatial heterogeneity.
In Oremland and Laubenbacher (2014b), for instance, the rabbits-and-grass model is
approximated almost perfectly, for the purpose of rabbit control, by a pair of fairly
simple difference equations. But these have phenomenological parameters and contain
no information about the spatial aspects of the model. This is also illustrated with a
Sugarscape example.

Another approach to approximation of ABMs and corresponding optimal control
has been developed by Lenhart et al. (2015, 2016), using a system of stochastic partial
differential equations with non-local terms as an approximation, with corresponding
novel optimal control results. The control of this system is motivated by a model for
optimal harvesting of a population on a spatial grassland habitat, which is described
below.

We interpret these examples as evidence that it is possible to approximate large,
complex, stochastic ABMs with mathematical models that are easier to execute and
can be analyzed with mathematical methods. We will elaborate on this approach below,
using a much simpler ABM as an illustrative proof of concept and further validation
of our main hypothesis.

5 A Case Study: Ecological Pest Control

To focus the discussion on mathematical issues, we consider a comparatively simple
application problem in which an ABM is a natural and easily implemented model,
and for which control policies are of interest. We consider a two-species consumer-
resource structure in a two-dimensional spatial domain. The spatial domain is divided
into discrete patches, and time progresses in discrete steps. The resource, which we
call grass, is produced with a commercial goal in mind. The species, called rabbits,
consumes the grass and hence degrades the commercial viability of the grass crop. The
simple model we examine involves rabbits and grass distributed across a rectangular
domain. This model is implemented in the NetLogo framework (Wilensky 1999, 2001)
as “Rabbits—Grass—Weeds.” In this simple example, each rabbit’s state is characterized
by four quantities: its lat-long position in space, the angle it faces, and its energy
content. Energy content is measured by the amount of grass the rabbit consumes,
and when the rabbit crosses an energy threshold, it produces one rabbit as offspring.
Movement is governed by an angular random walk: the rabbit chooses two uniformly
distributed angles (left, right), differences them, adds that to its current facing angle,
and moves one unit in that direction. The grass state in each position patch is O or
1, denoting presence or absence. Grass grows from 0 to 1 at a random rate. Energy
content of a rabbit corresponds to the number of grass patches consumed. If a rabbit’s
energy level falls below a al threshold, the rabbit dies. There are a small number of
parameters in the model: the grass growth probability, the rabbit’s angular field of
vision (affecting its movement), as well as birth and death thresholds.
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While we focus on this simple version of the model in this paper, the problem
is easily made more complex in the presence of a few natural generalizations. First,
the grass growth probability may be spatially heterogeneous, dependent on local soil
and water conditions. Second, rabbits may be drawn to areas within the region of
interest with the highest grass content, bringing about a directed random walk that is
chemotactic in nature. Third, the birth and death probabilities of the rabbits may not
be identical, potentially leading to “winners” and “losers” within the rabbit commu-
nity. Even with these potential complexifiers, this model does lack some interesting
and important properties that make ABM behavior so rich, such as agent adaptability.
Nonetheless, this model does include stochastic variation among agents and model-
ing features (e.g., the nature of the agent movement and of the conversion of grass
to rabbits) that are not easily treated by traditional SLM approaches. Furthermore,
because the current goal of this paper is to demonstrate the mapping between ABMs
and equation-based system-level models in order to apply optimal control methods,
we have chosen the simplified version of the rabbit—grass ABM as the initial starting
point for the investigation of creating the cross-platform mapping process. By using
simplified models, we emphasize the mapping and connection between two differ-
ent perspectives of representing knowledge about the system, i.e. individual-based
knowledge versus aggregated system-level knowledge. Our stepwise approach will
then attempt to perform this mapping with increasingly sophisticated ABMs and tar-
get system-level modeling methods (see below).

The available control is that of harvesting, implemented as a probability of being
harvested. In each patch and at each time step, the harvesting probability is specified.
A random number is generated, and, if that number is less than the harvest rate, any
rabbits in the patch are harvested. In its simplest instantiation, this probability may
be uniform across the region of interest, but one may also implement harvesting with
greater effort in some areas than in others.

It is at this point that we see some difficulty in the agent-based formulation. One
may attempt to “wrap an optimization loop around” the ABM in order to devise
an optimal harvesting plan. However, the stochastic nature of many ABMs requires
careful consideration of optimization algorithms: even with many simulation runs,
some variability in output limits the effectiveness of gradient-based search methods.
Stochastic approximation techniques may help, and more heuristic global optimization
schemes offer potential as well. The issues of obtaining reliable data from repeated
simulation and the effect of spatial scale on resulting dynamics were investigated in
Oremland and Laubenbacher (2014a). While that paper presents several techniques
for control of ABMs directly via simulation, it would seem more appealing in general
to apply the well-developed systems-theoretic tools of optimal control.

6 Control Techniques
The systems-theoretic view is often characterized by input—output relationships, as
illustrated in Fig. 1.

The system may constitute a medical patient receiving treatment, with outputs being
physiological measures of health. Another example is a spatially distributed ecosystem
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Fig. 1 Basic block diagram of a input

observed output
system —'l System |

of pest predators and their prey, with inputs being trapping strategies implemented over
time and distributed spatially, and outputs being observations of total pest population.
The system may be a society of agents with different incomes and wealth levels, with
a control being taxation, as in Sugarscape.

The inputs can be static, like parameters, or dynamic. Dynamic inputs can include
control signals designed to influence the system and disturbances, stochastic or deter-
ministic. The observed output signal represents those things we can measure.

A functional relationship between an input control signal # and an observed output
signal y is often referred to as a transfer function:

y(@) =Gt u(e)(1).

Here, the transfer function G is assumed at a minimum to be causal, meaning that the
output at any time instant can only depend on the control signal at times up to and
including the current time. Other modeling assumptions may include linearity or time
invariance.

In many control applications, one builds a model of the system in order to design
control signals that will lead to desirable outputs. The model involves two closely
related but distinct ingredients: a model that approximates the system’s input/output
behavior, and a control algorithm that uses model information to determine appropriate
control inputs. Such a circumstance is illustrated in Fig. 2, as we augment the real
system of interest with the model and controller:

The possible objectives of control are either to keep a system’s output within some
desired operating range of interest, or to move a system from its current state to a more
desirable one. Designing controls to meet these objectives is generally approached
by choosing an optimization criterion or objective functional to be maximized or
minimized.

Often the system is characterized by a dynamic state variable whose value represents
the complete state of the system at any given time. To fix ideas, we focus on an optimal
control approach, in which we consider the following mathematical formulation:

observed output

4 —>| “Real” System I— —>

mput .
approximated
Approximate System or output R
: > Model
~ Control ¢
) Algorithm )

Fig. 2 Model-based control block diagram
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x(@) = f(t, x(1), u(),0)
y(1) = h(t, x(1), u(t),0)
Iy
J(u) = /L(t,x(t), u(t))dr + P (x(1y))

fo

in which x denotes the state of the system, u denotes an exogenous input we refer to as
the control, and 6 denotes system parameters such as rate constants, susceptibilities,
etc., with the state variable’s rate of change being modeled by the function f, which
we call simply the dynamics. The second augmenting equation denotes the system’s
outputs, quantities we can measure, which we refer to as y, with the function £ mod-
eling the relationship between the state, control, parameter, and output. Finally, the
functional J, depending on the control signal #, models our objective for choosing an
optimal control.

Among the challenges of modeling, particularly model-based decision and control,
is the identification of the state variables needed to capture the dynamics of a complex
system with many scales and interacting components. The dynamical system may need
to account for spatial heterogeneity (leading often to partial differential equations
like diffusions). Other sorts of heterogeneity (e.g., different levels of susceptibility
to disease, different levels of metabolism) also make for challenges in state variable
modeling approaches. As an example, the effect of simple and straightforward changes
in agent movement on the ability to formulate a system-level model (SLM) is presented
in Oremland and Laubenbacher (2015). To what extent aggregation can be tolerated
in an SLM of a complex heterogeneous system and its associated agent-based model
is an important topic, the investigation of which offers exciting mathematical research
opportunities.

7 Systems Analysis and Control for Agent-Based Models

System-level modeling of an ABM might reasonably be viewed as the same activity
as developing a model of the real system represented by the ABM. Indeed, one fruitful
view of ABMs is that of experimental surrogate. ABM development often centers very
directly on translating the process details of a physical, chemical, biological, or social
system into behavioral rules that can be instantiated in code. There are, however, a
number of fundamental differences.

First and foremost, the ABM may involve a number of control inputs and parametric
settings that are not practically realizable in experimentation. This situation is partic-
ularly relevant in biological and social systems, for which experiments may involve
difficult ethical questions. Second, the ABM may allow one to monitor processes for
which current measurement technologies do not exist. Additional measurements in
the computational model can provide important insights into control algorithm per-
formance and stimulate innovation in science and engineering of sensor and other
measurement technologies. Third, we note that the simulation can be exercised in a
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Fig. 3 (Color Figure Online) Two levels of modeling in a decision and control loop

wider variety of configurations and spatial and temporal sampling rates than can most
physical, biological or social systems.

Inserting an ABM into the decision and control loop of real systems leads to a slight
modification of the control diagram in Fig. 2. The red arrows in Fig. 3 denote the fact
that the real system’s output and the ABM’s output may be used to tune the SLM.
The manner in which this is done depends on many details of the experiments and the
models. Among the more interesting and challenging issues is that inputs and outputs
for the real system, the ABM, and the SLM, may be very different data structures.

Consider the first example problem of ecological pest control. The traditional
Lotka—Volterra consumer-resource model (like predator-prey) is a pair of ordinary
differential equations given by

g(1) = ag(r) — Bg()r(r)
F(t) = —yr(t) +8g(1)r(t) —u(t)r(r)

in which g and r denote the total amounts of grass and rabbits as functions of time. The
parameters « and 8 denote growth rate and loss rate due to rabbit consumption of the
grass, and the parameters y and § denote the mortality rate of rabbits and conversion
rate of grass energy into newborn rabbits. The function u(#) gives the harvest rate of
the rabbits. While there are many choices of objective functions that will lead to pest
reduction, one relatively obvious choice is

T

J(u) = /r(t) + wu(t)dt
0

which we minimize with respect to u, subject to the Lotka—Volterra equation con-
straint. The number w represents a weight to balance two costs: in minimizing this
functional we attempt to minimizing a combination of the total rabbit population and
the harvesting expenses.

In order to project down from the ABM to this model, the total amounts of grass
and rabbits can be computed from ABM output. However, the reverse direction is not
well-defined: lifting up from the simple Lotka—Volterra model to the state of the ABM
is not unique. In particular, the harvesting rate must be distributed as a probability for
grass growth across the spatial domain.
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Table 1 A partial break-down of modeling, estimation, and control methods

Modeling approaches Parameter estimation methods Control design techniques

1. Discrete Output least squares 1,4,5 Pontryagin’s maximum principle 1,4,5
input—output

2. Markov chain Equation error 4,5 Dynamic programming 1-5

3. Polynomial Maximum likelihood 1-5 Large scale constrained optimization 1-5
dynamical systems

4. Difference Maximum a posteriori 1-5
equations

5. Differential
equations

This issue presents an important general consideration in developing an SLM for
system analysis of an ABM: mapping back and forth between the two state spaces of the
models. Generally speaking, the mapping from ABM states to SLM states, which we
call a projection, is straightforward. Often the SLM states can be viewed as summary
statistics of the ABM, be they total abundances, means, or fractions with specific
attributes or properties. Summing the number of agents with a certain property (e.g.,
all the rabbits or all the grass) produces the necessary projection in many situations.

The mapping from the SLM to the ABM, which we call a lifting, requires more
care. ABM states tend to involve much more detail than SLM states, but the summary
statistic view can help in lifting: ABM states can often be approximated as random
samples from a distribution that depends on a simple parameterization that can be
characterized using the SLM state. For example, with a known number of rabbits, we
can randomly distribute rabbits across the spatial domain. Lifting the state variable
itself is not the only consideration here: lifting the control input, which will be used
to influence the ABM dynamics, is also an issue.

We have sketched a very simple approach to one relatively low-complexity exam-
ple problem by proposing a well-known differential equations model as the surrogate
SLM. We note here that there are many approaches to designing the SLM, includ-
ing (but not limited to) time series models of transfer functions, difference equations
(Oremland and Laubenbacher 2014b), ordinary, partial, and stochastic differential
equations, polynomial dynamical systems (Hinkelmann et al. 2011), and Markov
chains. Within each of these rough categories, many approaches to developing a model
exist. One may specify a simple functional form and fit parameters to output. On the
other hand, one may create a more mechanistic model, for which the parameters have
direct conversions to and from the ABM parameters. In either case, one must still
perform a parameter estimation of some sort. With the fitted model in hand, one must
then compute the optimal control. Table 1 delineates potential modeling approaches,
parameter estimation methods, and control design techniques.

To illustrate some ways in which a system-level problem can be investigated using
an ABM, we return to our rabbits-and-grass model described above. A relatively
simple problem, the rabbits-and-grass simulation nonetheless exhibits many of the key
behaviors of ABMs. We consider here three distinct routes to system-level analysis.
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(1) Stochastic optimization applied directly to the ABM;
(2) Mechanistically derived SLM constructed as a surrogate for the ABM; and
(3) Empirically fit SLM constructed as a surrogate for the ABM.

7.1 Stochastic Optimization Applied Directly to the ABM

Here we view the ABM as an input—output system, much like an experiment with
settings and measurements. We consider the homogeneous rabbits-and-grass model,
and we apply a harvesting strategy defined as follows. For a full description, see
Oremland and Laubenbacher (2014a). At each ABM time step, harvesting may or may
not be applied. The harvesting has an effectiveness parameter, modeled as a probability.
The probability creates a stochastic mortality for each rabbit. The harvesting remains
in effect for a second time step, but its effectiveness is reduced by half. The control is
a binary time sequence of apply/do not apply, uniformly distributed across the region.

The objective in this example has two features: minimize a weighted combination
of the rabbit population and the level of harvesting. We consider a Pareto approach
that allows us to trade off these two objectives, implementing the optimization with
a genetic algorithm. In this approach, we construct a set of “seed” controls, which,
again, is a set of binary sequences representing the harvesting schedule. Each of these
is evaluated in the ABM, with the number of surviving rabbits as output. We estimate
the Pareto frontier by removing all controls whose objective pair (surviving rabbits,
days of harvesting) is dominated by any other control. Controls that persist are paired
to produce offspring by randomly choosing parent sequence components. The details
of the procedure can be found in Oremland and Laubenbacher (2014a).

It should be noted that generating the seed controls is a difficult problem in and of
itself. Even in this approach of applying a heuristic optimization scheme, we need an
approximating SLM to aid in control construction. A discrete dynamical system for
the rabbits and grass is used in conjunction with the genetic algorithm to develop seed
controls. The difference equation takes the form

r(t+1) = ar@) +br)g)
g+ =g)+y(—gh)— r(f)g(t)7

N

in which the parameters a, b, and y are estimated by least squares comparison with
ABM simulation output, and N denotes the number of grid cells in the ABM. In Fig. 4
we illustrate the matching of the SLM to the ABM in the case of no control applied.
The resulting Pareto frontier is also shown, yielding the number of rabbits remaining
at the final time as a function of the control effort, as modeled by the number of days
harvesting is applied.

This approach provides a suite of solutions, each of which may be optimal, depend-
ing on the preferences of the modeler. Hence, the optimal solution chosen can be
thought of as a ‘managerial’ decision. While this approach demonstrates a means by
which optimal control results can be obtained directly from ABM execution, it lacks
a level of mathematical rigor that may be necessary for conclusive statements.
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Grass and rabbit abundance with optimal SLM control
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7.2 Mechanistic SLM Derived for ABM Approximation

In this approach, we also view the ABM as an input—output experimental system. We
consider the basic processes captured in the ABM, with an eye toward developing
a model amenable to control approaches. We construct a simple consumer-resource
ODE system with control. For a full description, see Federico et al. (2013).

The model we use is of the form

g@) =ai(aa—g®) — f(g®)r)
7(t) = b1 f(g@)r) — bar(t) —u(®)r(t)

in which

aaszx

fx) =

1+ azasx’

and u(t) denotes the control, which is a harvesting rate between 0 and 1, representing
the fraction of rabbits harvested per unit time. Thus, the grass grows according to a
logistic model in the absence of rabbits. The rabbits convert grass to rabbit offspring
according to a type of Monod kinetics, and the rabbits have a simple linear mortality
rate. The (time dependent) control increases that mortality rate. Of the six parameters
in the model, a; and a; are directly computable from the ABM parameters, while the
other four, a3, a4, b1b, must be inferred from fitting the SLM to SBM output.
The control objective is specified as minimizing the functional

T

Ju) = /r(t) + cru(t) + cou*(1)dt

0

in which the parameters ¢ and ¢, are tunable in order to achieve desirable qualitative
behavior. Without c;, we can view the parameter c; as balancing the two objectives of
the Pareto specification in the previous control methodology. The parameter ¢, plays
a somewhat technical mathematical role (as is discussed in Federico et al. 2013) for
improving the performance of the numerical solution approach.

The solution approach of Federico et al. (2013) is closely related to Pontryagin’s
principle: a forward-in-time state equation is supplemented with a backward-in-time
co-state equation, the latter being a characterization of Lagrange multipliers in this
constrained optimization problem. The equations are solved iteratively, and the con-
verged pair produces the optimal control. This problem, solved by itself without the
context of the ABM, leads to a time schedule of harvesting rates.

To lift the resulting control to the ABM, just like the harvesting strategy of the “brute
force” optimization above, this rate is used as a random mortality, applied uniformly
across the domain. Each rabbit will be harvested with probability u(z).

The work in Federico et al. (2013) contains a number of explorations of this
approach, including a heterogeneous grass growth environment. In that heterogeneous
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environment case, the optimal controls coming from the aggregate differential equa-
tion system did not work well in the ABM. In Fig. 5, we illustrate the approach’s results
within a simple homogenous environment. The figure shows the time course resulting
from the application of the consumer-resource -based optimal control to the ABM. In
the upper panel, we see the model’s fit to the ABM data when no control is applied.
The lower panel shows the time course when the optimal control is applied, showing a
highly reduced number of rabbits. In distinction from the previous approach, the cost
functional in this situation contains a fixed (if implicit) balancing of the “tolerable”
levels of control effort and residual pest population. The Pareto frontier in the previ-
ous approach would amount in this case to a parametric plot of the control effort and
residual rabbit population as a function of the parameters c; and c».

7.3 Empirical SLM Derived for ABM Approximation

Here, we again view the ABM as an input—output experimental system. We select the
output statistics to control: namely the abundance of rabbits. Our goal, once again,
is to devise a harvesting strategy, uniformly applied across the domain, to reduce the
abundance of the pest rabbit population.

Rather than consider the mechanistic approach of modeling the rabbit/grass dynam-
ics as consumer-resource, we simply consider the most desirable state of the system,
which is every cell populated by grass with no rabbits present. To achieve this state
while controlling the level of harvesting effort is the objective. Toward that end, we
consider a rabbits-and-grass model with an initial state of (rg, go) = (0, N) and the
desired final state of (r ¢, g ), where N denotes the number of cells in the ABM. We
note that this desired final state is an equilibrium: if there are no rabbits to begin with,
the grass will eventually populate every cell. It is unstable; however, as soon as a single
rabbit is introduced, the population can and will increase according to the rules of the
ABM.

We model the system as a simple linear system, which we envision as being lin-
earized around the desired final state:

X = A(x —xy) + Bu,

in which x denotes the state pair x = (r, g)7, xp = (rf, gf)T =0O,NT, Aisa
2 x 2 matrix, and B is a 2 x 1 matrix, both of which must be inferred from the ABM.
Assuming that the harvesting does not directly lead to grass abundance change, one
may take B = (b, 0)7 with one unknown parameter. The model here is not necessarily
expected to fit the dynamics over the whole range of possible rabbit and grass states;
rather, it is meant as a means to the end of constructing a feedback control gain.

The fitting approach is as follows. The differential equation can be approximated
by an Euler step, for short time /4, as

x(h) —z = A(z — xr) + Bu,
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Fig. 5 (Color Figure Online) Time course of grass and rabbit abundance, comparing ABM and SLM.
Upper panel compares the models without any control applied, while the lower panel compares the two
with the SLM’s optimal control

@ Springer



82 G. Anetal.

in which z and v denote initial state and control values. By selecting a random sample
of initial states and control values, say (z;, u;),i = 1,2, ..., n, and by evaluating the
ABM for a short time at these values, we obtain an “experimental sample,” which we
denote by Y; (k). The values of A and b may then be obtained via linear regression.
It is important to note that this technique depends on very short time executions of
the ABM, as opposed to the parametric fits of the previous approach that rely on long
time simulations. The approach we describe here is closely related to Kevrekides’
so-called “equation free” analysis technique (Kevrekedis et al. 2004; Armaou 2004).
The application of this technique to the rabbits-and-grass ABM is described in detail
in Fitzpatrick (2016b).

Control strategies can be derived in a number of ways. In particular, one may apply
the forward-backward iteration of Federico et al. (2013) mentioned above. A different,
much simpler approach, is the linear quadratic regulator. We denote by w the state
perturbation from equilibrium: w(x — x 7, ) so that i = Aw + Bu, and we define the
cost functional

o0
J(u) = /wTQw +ul Rudt
0

in which Q is a2 x 2 nonnegative definite matrix, and R is a positive scalar. As with the
constants ¢1 and c¢; in the objective of the mechanistic SLM approach, these matrices
contain tuning parameters used to achieve desired results. For this problem, we choose

0= [(1) 8i| so that the objective becomes

J(u) = /rz(l) + Ru*(t)de
0

similar to the mechanistic SLM objective. The major advantage to this linear—quadratic
formulation is that the control is determined by the solution of an algebraic Riccati
equation:

u = —Kx, with
K = R™'B'P, where
0=A'P+PA+Q—PBR'B'P

So the solution of this final equation, a quadratic equation for a symmetric 2 x 2 positive
definite matrix, leads directly to a simple formula for the control as a constant gain
matrix K applied to the rabbit and grass state. Lifting the control is again accomplished
by harvesting with probability u(¢) across the region of interest. In analogy with Fig. 5
for the mechanistic nonlinear SLM, Fig. 6 shows the results of the ABM with no control
applied and with the optimal linear—quadratic SLM control applied.
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8 Discussion

ABMs offer an interesting investigative tool for science, engineering, public health,
and public policy. Replicating important features of real-world systems with relatively
simple rule-based computational models make ABMs attractive alternatives to tradi-
tional mathematical models. Using ABMs as decision tools to improve or optimize
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real-world systems, however, remain a significant challenge. In this “Perspectives”
article, we have examined a number of systems-level control approaches that might
be applied to ABMs, using the simple Rabbits—Grass—Weed ABM as a pest control
example.

In approaching an ABM from the point of view of control, a number of key prob-
lems arise, especially when SLM approximations are used. Most fundamental is the
mapping of inputs and outputs between ABM-scale and SLM-scale quantities, which
we have called “lifting” and “projection.” Next, one must consider the necessary com-
plexity of the SLM required to capture the ABM dynamics relevant to the control
inputs and objective.

While the simple example of the Rabbits—Grass—Weed pest control problem allows
us to illustrate some features of ABMs and suggest some approaches to their control,
many challenges remain for a more general toolset for the system-level analysis of
ABMs and their control. To develop mathematical approaches, we must pay careful
attention to a number of issues, including (but by no means limited to)

Methods for dimension reduction;

The extensive heterogeneity possible for individual agents;

Agent adaptation;

Multiple time scales that emerge in complex ABMs;

Taxonomy of ABMs with respect to different SLM paradigms and success of one

of the three approaches outlined in this paper (or others);

e Rigorous methods for projection and lifting in order to map between analytical
and simulation models;

e Efficient computational experimental design; and

e Uncertainty quantification in assessing SLM—ABM compatibility.

Ronald Fisher proposed a statistical framework (Fisher 1926) that defined quantita-
tive experimental design, and Wald’s seminal work (Wald 1939) energized research
in statistical decision theory. These and related works provide solid theoretical foun-
dations and practical techniques for designing experiments and optimizing outcomes
based on statistical assumptions about the underlying experimental processes. As sim-
ulation models have come to complement physical and biological experimentation,
statistical design and decision theory has been revisited (see e.g., Morris et al. 1993),
and progress has been made in leveraging some of the unique properties of ABM
models for comparison with experiment (Grimm and Railsback 2005; Grimm et al.
2005; Thorngate and Edmonds 2013). However, the structure of simulation models
often contains a great deal of information, much of which yields analytical leverage
for design and control. The opportunities are great for developing mathematical and
statistical techniques for a new experimental design and decision theory for complex
simulations such as ABMs. They bring a powerful modeling technology to scientists,
enabling investigations that had previously been prevented from using models because
of mathematical barriers-to-entry. For our purposes, we made the assumption that the
ABM is a faithful representation of the actual biological system of interest, so that
the goal is to develop control strategies for the ABM, with the implicit understanding
that their efficacy for the real system will depend on the quality of the ABM. The
main argument we present in this paper is that for the purpose of specific control and

@ Springer



Optimization and Control of Agent-Based Models. . . 85

optimization problems, a given ABM can beneficially be viewed as a surrogate for the
real system of interest that can be used for the construction of equation-based models
for which control approaches are available. These equation-based models need to be
faithful to the ABM and, by extension, the biological system of interest, ONLY to the
extent that they capture correctly those aspects of the ABM that pertain to the specific
control problem.

We have presented some possible ways to begin accomplishing this, even though
the work to date is ad hoc and does not address many of the obvious questions that
remain unanswered. Our investigations have mostly focused on two models, Sug-
arscape and Rabbits-and-Grass, in some variations. They were chosen because they
include features found in many ABMs in the literature, but they are arguably too sim-
ple to draw conclusions about the broader applicability of our methods. Furthermore,
the methods themselves are ad hoc and have not been analyzed rigorously. Are there
common principles in how an ABM is approximated by a difference equations model
or a PDE model? What are the limits of dimension reduction methods, and are there
other comparisons of models that should be used to judge the faithfulness of a reduced
model? Answers to these and many other questions await further research, and an
important motivation for this paper is the hope that it will engage others in work on
these problems. One important tool would be a suite of benchmark ABMs, represen-
tative of the different ABM types in use, that illustrate the applicability and limitations
of the various techniques. And, of course, other, complementary, techniques will need
to be developed.
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