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Abstract: Prostate cancer (PCa) is the second lethal disease for men in western countries. Although androgen recep-
tor (AR) signaling has been widely investigated, noncoding RNAs (ncRNAs), deficient of open reading frame, have 
also received considerable attention. Growing studies showed that the aberrant ncRNAs expression contributed to 
cell proliferation, metastasis and drug resistance in PCa. Therefore, therapeutically targeting ncRNAs may synergize 
androgen deprivation therapy (ADT) to have a better effect to fight against PCa, especially castration-resistant pros-
tate cancer (CRPC). This review would systematically summarize the multicellular events controlled by ncRNAs and 
give a snapshot of future scientific activities and clinical applications.
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Introduction

PCa, the second lethal disease among male in 
western countries [1], is responsible for approx-
imate 300,000 deaths annually worldwide [2]. 
ADT shows promising effect, castration resis-
tance invariably occurs due to multiple rea-
sons. Therefore, it is a need to find novel thera-
peutic targets for advanced PCa. 

NcRNAs, originally viewed as “junk RNAs”, bear 
no translational potential and account for 
approximate 90% RNAs in human [3]. Accumu- 
lating evidences suggest that ncRNAs should 
be implicated into numerous biological pro-
cesses: alternative RNA splicing, epigenetic 
modification, mRNA titration, regulation of  
protein stability and so on [4-7]. Of note, the 
spatial and temporal deregulation of ncRNA  
in different types of cancer strongly highlights 
its crucial role in cancer pathogenesis. Indeed, 
a variety of ncRNAs have been experimentally 
and clinically reported to participate into  
cancer progression including PCa. Overall, the 
importance of ncRNAs has been recognized 
even though they cannot be translated into  
protein. This mini review would summarize the 
roles of several well-known ncRNAs in the 
pathogenesis of PCa and also give some 

insights for further studies or clinical appli- 
cations.

Long non-coding RNAs in PCa

Long non-coding RNAs (lncRNAs) are RNA spe-
cies with a length of more than 200 nucleo-
tides. After being transcribed by Polymerase  
II, lncRNAs are 5’ capped and 3’ adenylated  
[8]. Generally speaking, lncRNA functions to 
regulate gene expression at the transcriptional 
level via recruiting chromatin modifying com-
plexes or other transcription factors (Figure 1). 
LncRNA can also stabilize protein via direct 
binding (Figure 1). Recent reports demonstrat-
ed that some lncRNAs act as sponge to titrate 
miRNAs, leading their targeting proteins to  
be post-transcriptionally altered (Figure 1). 
Additionally, lncRNAs have been well acknowl-
edged as prognostic factor in many cancers. 
Here, we would review some cellular conse-
quences triggered by the deregulation of  
several well-known lncRNAs in PCa.

PCAT-1

Prostate Cancer Associated Transcript 1 (PCAT-
1), located on chromosome 8, encodes  
an lncRNA that is PCa specific. Through high 
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throughout RNA-seq, Prensner found that 
about 112 lncRNAs were differentially expre- 
ssed in benign, localized and metastatic PCa 
[9]. PCAT-1 was further investigated because it 
was highly upregulated in subset of metastatic 
and high-grade localized PCa. Indeed, forced 
expression of PCAT-1 in normal prostate cell 
line RWPE triggered the cells to transform into 
cancerous cells. In parallel, knockdown of PCAT-
1 in LNCaP cells with independent small inter-
fering RNAs (siRNAs) could cause a decreased 
cell proliferation, supporting the clinical rele-
vance of PCAT-1 with PCa malignant status.

Unexpectedly, the expression of PCAT-1 is 
mutually exclusive to that of enhancer of zeste 
homolog 2 (EZH2), another oncogene that is 
also enriched in advanced PCa, indicating  
that PCAT-1 and EZH2 may define two different 
subsets of advanced PCa. In fact, inhibition  
of EZH2 by short hairpin RNA (shRNA) or  
pharmacologic inhibitor (3-deazaneplanocin)  
in VCaP cells induced PCAT-1 expression level 

dramatically with a release expression of its 
repressed genes (i.e. breast  cancer 1, BRCA1, 
centromere protein E, CENP E and centromere 
protein F, CENP F).

As EZH2 is a component of polycomb repres-
sive complex 2 (PRC2), there is a rational to 
hypothesize that PCAT-1 may act as one of the 
downstream genes repressed by PRC2. Indeed, 
ChIP assay with SUZ12 (another component of 
PRC2) antibody showed that PRC2 was recruit-
ed to the promoter of PCAT-1. Meanwhile, PCAT-
1 was also reported to impair double-stranded 
DNA repair (DSBs) via down-regulating the 
expression of breast cancer 2 (BRCA2) that 
was considered as a tumor suppressor by 
repairing damaged DNA [10, 11]. Importantly, 
loss of BRCA2 or BRCA2 mutation frequently 
occurs in a variety of cancers including  
PCa [12]. PCAT-1 mediated reduction of  
BRCA2 expectedly involved in PCa progression. 
Intriguingly, PCAT-1 suppressed BRCA2 expres-
sion via binding to the 3’UTR of its messenger 

Figure 1. Schematic map of the functions of lncRNAs. LncRNAs regulate gene expression via recruiting chromatin 
modifying complex, stabilize protein and mRNA via direct binding. LncRNAs still can titrate miRNAs levels.
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RNA, which extends our knowledge of lncRNAs 
and sets an example for future lncRNA 
exploration.

Given the expression profile of PCAT-1 and 
EZH2 in metastatic PCa, we thought that anti-
EHZ2 drug would ignore another subset of PCa 
patients who have higher expression levels  
of PCAT-1. Therefore, a combinational therapy 
with PCAT-1 and EZH2 would be highly recom-
mended for clinical trials in the future. 
Furthermore, the importance of PCAT-1 in 
advanced PCa prompts our expectation of  
the cross talk between PCAT-1 and androgen 
receptor signaling.

PCGEM1

As one of the earliest identified lncRNAs,  
prostate cancer gene expression marker 1 
(PCGEM1) located on chromosome 2q32, is 
over-expressed in 84% PCa patients by in situ 
hybridization. This might imply that PCGEM1 
should act as an onco-lncRNA which is involved 
in the progression of PCa [13, 14]. In a previous 
study, PCGEM1 was reported to show no pro-
tein coding capacity based on the in vitro trans-
lation assay and online analysis of TESTCODE 
program [13]. Further analysis of PCGEM1 level 
in various PCa cell lines found that such a 
lncRNA was undetectable in AR-null cell lines 
such as DU145 and PC3 [13, 15]. Accordantly, 
it could be substantially induced by 10nM syn-
thetic androgen R1881 [15]. All these datas 
suggest that PCGEM1 should be androgen/
androgen receptor dependent. The function of 
PCGEM1 has not been determined before 
Petrovics’s group shared their data in onco-
gene. According to their report [16], forced 
overexpression of PCGEM1 into LNCaP and 
NIH3T3 evidently enhanced cell proliferation 
and their colony-forming capacity. By detecting 
cell cycle related genes, they demonstrated 
that the biological function of PCGEM1 was 
resulted from its ability to stimulate Rb phos-
phorylation at serine 801 residue, which pre-
vented Rb from binding to E2F and allowed cell 
to enter into S phase. Nevertheless, the de- 
tailed mechanism by which PCGEM1 impairs 
the inhibitory effect of Rb on cell cycle progres-
sion still remains unknown.  It is possible that 
PCGEM1 functions as a scaffold lncRNA which 
might bring Rb together to let the phosphoryla-
tion reaction happen. 

Furthermore, Rosenfeld and colleagues in 
2013 found that both of PCGEM1 and pro- 
state cancer associated non-coding RNA 1 
(PRNCR1) (also named PCAT8) are responsible 
for AR activation [17]. The result from native 
RNA immunoprecipitation revealed that both 
PCGEM1 and PRNCR1 bind to AR, and such an 
interaction could be further enhanced by dihy-
drotestosterone propionate (DHT) treatment. 
Knockdown of PCGEM or PRNCR1 abolished 
DHT-induced gene expressions and inhibited 
cell proliferation in vitro. In xenograft model, 
silenced expression of PCGEM1 or PRNCR1 by 
doxycycline-induced shRNA also diminished 
tumor size compared to the control cohorts 
(scramble shRNA) [17]. The PRNCR1-AR inter-
action mediated the methylation of AR at K349 
by disruptor of telomeric silencing 1-like (DOT1L) 
at the molecular levels, which was indispens-
able for the binding of PCGEM1 to the N termi-
nal of AR [17]. ChIP-3C assay confirmed that 
the recruitment of AR to the enhancer region of 
its downstream genes required the binding of 
PRNCR1 and PCGEM1, supporting the idea that 
PRNCR1 and PCGEM1 make the distant regula-
tion of AR possible by exerting as scaffold 
lncRNA to connect chromatin structure togeth-
er. Interestingly, PCGEM1 and PRNCR1 were 
highly induced in castration resistant PCa. 
Thereby, whether PCGEM1/PRNCR1 partici-
pates in the development of castration resis-
tance especially enzalutamide resistance 
deserves more efforts in the future scientific 
exploration. In addition, it is also prompting  
to block the interaction of PCGEM1/PRNCR1 
with AR by synthesis of oligoes in clinical trials.

HOTAIR

HOX transcript antisense RNA (HOTAIR), locat-
ed within HOX gene cluster, encodes 2.2 kb 
RNA transcript to influence chromatin state via 
binding PRC2 at its 5’ termini [18, 19]. More 
importantly, the function of Lysine Specific 
Demethylase (LSD1) on the epigenetic modifi-
cation was also coordinated with PRC2 with the 
assistance of HOTAIR. In clinical practice, 
HOTAIR has been recognized to be strongly 
associated with metastasis in various cancers, 
including breast cancer, renal cell carcinoma, 
colorectal cancer and PCa [19-25]. 

Particularly in PCa, Zhang found that HOTAIR 
expression was indistinguishable between be- 
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nign prostate and localized PCa, which was 
attributable to the transcriptional suppression 
of HOTAIR expression by androgen/AR in  
androgen dependent PCa [25]. However, upon 
castration resistance, the dominance of andro-
gen independent pathway in PCa allows cells  
to release HOTAIR expression from androgen/
AR inhibition. Based on these previous clinical 
findings, Zhang implemented a series of experi-
ments to uncover HOTAIR’s function in PCa. 
Targeted expression of HOTAIR in androgen-
dependent cell line LNCaP could promote  
cell growth and cell invasion even in the 
absence of androgen stimulation. Meanwhile, 
knockdown of HOTAIR in androgen indepen-
dent cell line C4-2B dramatically suppressed 
cell proliferation and cell invasion, indicating 
HOTAIR was tumor-progression driver in castra-
tion resistant PCa [25]. Mechanistically, HOTAIR 
binds to the N terminal of AR with its 5’  
end, preventing its interaction with E3 ubiquiti-
nation ligase MDM2 [26]. As a result, AR is 
more stable and more active even without 
androgen stimulation. 

Given the interaction between the HOTAIR and 
the N terminal of AR, it is possible that HOTAIR 
may also bind to another AR isoform AR-v7, 
which has been widely accepted as one of 
essential driving forces to confer enzalutamide 
resistance to PCa patients, to mediate castra-
tion resistance.  Consistently, Zhang found that 
enzalutamide resistant cells were noticed by 
their higher induction of HOTAIR level compared 
to parental cells. In the future, much attention 
should be paid on how HOTAIR synergizes AR-v7 
to control enzalutamide resistance.

MALAT1

MALAT1, also known as metastasis associated 
lung adenocarcinoma transcript 1, was docu-
mented as critical regulator in metastasis, 
alternative RNA splicing, nuclear organization 
and epigenetic modification [27, 28]. It is worth 
noting that MALAT1 has been highlighted for its 
crucial role in the progression of multiple can-
cers such as lung cancer, PCa, bladder cancer 
and breast cancer [29-32]. 

In 2013, Sun and colleagues demonstrated 
that MALAT1 was significantly elevated in 
human prostate cancer compared to the adja-
cent normal prostate tissues, and its expres-
sion was highly associated with Gleason stage, 

tumor stage, prostate specific antigen (PSA) 
level and castration resistance. All these 
strongly imply that MALAT1 may function as an 
onco-lncRNA in PCa [29]. To test MALAT1 func-
tion in PCa, they knocked down MALAT1 expres-
sion by using siRNA oligoes and observed a 
reduced cell growth and metastasis in MALAT1 
deficient PCa cells. In vivo xenograft animal 
model, delivery of siRNA against MALAT1  
contributed to the delay of tumor growth and 
inhibition of metastasis. However, the detailed 
mechanism by which MALAT1 controls cell 
growth and cell invasion is not clear at that 
moment. 

Recently, Wang discovered that MALAT1 could 
bind the N terminal of zeste homolog 2 (EZH2), 
a component of PRC2 complex that is frequent-
ly over-expressed in castration resistant pros-
tate cancer, to regulate its methylating activity. 
SiRNA against MALAT1 could impair EZH2 
recruitment to its favorable chromatin locus, 
leading to the transcriptional suppression of 
EZH2 downstream genes [33]. Now it is consid-
erably clear that MALAT1 promotes PCa pro-
gression by partially modulating EZH2 activity.

Since MALAT1 is up-regulated in castration 
resistant PCa, scientists have compelling  
rational to explore MALAT1 status/MALAT1 
function in enzalutamide resistant PCa. The 
fact that MALAT1 is documented as a splicing 
regulator and AR splice variant 7 (AR-v7) is  
produced by alternative splicing gives us  
much scientific imagination. Therefore, more 
efforts are suggested to put into the explora-
tion of the relationship between MALAT1 and 
enzalutamide resistance or AR-v7 production.

PCAT3

Development of diagnostic and prognostic bio-
markers for PCa is important to reduce over-
treatment and prolong overall survival. Serum 
PSA has been used to predicate the prognosis 
of PCa since 1994 [34]. Nevertheless, such a 
marker is organ specific rather than cancer 
specific, of which the indiscriminate utilization 
would result in over-diagnosis and over-treat-
ment in many patients. Therefore, it is neces-
sary to develop an efficient marker for the diag-
nosis of PCa. Of note, prostate cancer antigen 
3 PCA3 (also referred as DD3), a prostate tis-
sue specific lncRNA, is developed as an 
advanced PCa biomarker [35-37]. Compared to 
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PSA, PCA3 is of a lower sensitivity but a higher 
specificity. Nowadays, urinary detection of 
PCA3 by Progensa PCA3 has been proved by 
Food and Drug Administration (FDA) to predict 
the malignancy of PCa. 

However, there is a conflicting evidence when 
PCAT3 is used to correlate with prognostic fac-
tors such as Gleason score and tumor stage, 
indicating only PCAT3 alone is not adequate 
and enough to predict PCa status. To improve 
its prognostic value, the combination of PCAT3 
with one fused gene TMPRSS22-ERG, which is 
induced in advanced PCa, is highly recom-
mended in clinical practice [38]. This combined 
detection had surprisingly increased the pre-
dictive sensitivity by about 20% and significant-
ly reduced the rate of unnecessary biopsies. 

Small ncRNAs in PCa

Given the evidence that miRNAs play regula- 
tory roles in the development of various can-
cers and deregulation of miRNAs could cause 
adverse consequences, we therefore only focus 
on the discussion of miRNAs in this mini review.  
MiRNAs were 20-22 nucleotides RNA mole-

cules derived from so-called “pri-miRNA”. After 
being transcribed by Pol II, pri-miRNA is cleaved 
by nuclear RNase III endonuclease Drosha to 
produce pre-miRNA, which is exported from the 
nucleus and further processed by another 
endonuclease Dicer to generate mature miRNA 
(Figure 2) [39, 40]. Functionally, miRNA directly 
binds to the 3’ UTR of mRNA via incomplete 
base pairing and inhibits its translation.  It is 
estimated that 60% mRNAs can be regulated 
by miRNAs [41]. Extensive studies have demon-
strated that aberrant miRNA expression could 
contribute to cancer carcinogenesis including 
PCa [42, 43]. Meanwhile, several miRNAs have 
been highlighted for their crucial roles in deter-
mining PCa survival and metastasis. 

MIR-205

One of the well-documented miRNAs in PCa is 
miR-205, which is substantially decreased in 
prostate cancer compared to the matched 
benign PCa. Its level was further decreased  
in advanced or metastatic PCa [44]. In cancer-
ous cells, the folded chromosomal structure 
led by hyper-methylation on miR-205 locus  
contributed to its silenced expression. Indeed, 

Figure 2. Schematic model 
of biogenesis of miRNA. After 
being transcribed by Pol II, pri-
miRNA is further digested by 
Drosha to generate pre-miR-
NA. Pre-miRNA is exported to 
cytosol by exportin5, where it 
is processed by Dicer to form 
mature miRNA.
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addition of 5-Aza, one de-methylating reagent, 
into LNCaP caused dramatic induction of miR-
205, which is associated with a reduced cell 
proliferation. Therefore, the methylation status 
in miR-205 promoter has been considered as a 
predictive biomarker for advanced or recurrent 
PCa.

Based on online software prediction and exper-
imental results, miR-205 targeting genes are 
involved in signaling pathways which are relat-
ed to MAPK (mitogen activated protein kinase), 
androgen receptor, EMT (epithelial to mesen-
chymal transition), migration and invasion [45]. 
For instance, zinc finger E-box binding homeo-
box 1 (ZEB1) and zinc finger E-box binding 
homeobox 2 (ZEB2), two crucial molecules in 
governing EMT transition, were directly sup-
pressed by miR-205 [46]. Androgen receptor, 
one of the most importantly regulatory factors 
in PCa, was also post-transcriptionally inhibited 
by miR-205 [47]. Since up-regulation of miR-
205 provides beneficial effects to PCa cells, 
the study of its upstream pathways looks 
attractive for scientists. Recent findings sug-
gested that P63 showed anti-tumor activity via 
transcriptional activation of miR-205 in PC3 
cells [48]. More efforts should be taken to dis-
sect how miR-205 is regulated in PCa.

On this basis, development of new drugs that 
could induce miR-205 expression is appealing 
for the treatment of PCa. The 5-Aza may be one 
candidate but is not the perfect one due to its 
off-targeting effect. Therefore, identification of 
the specific methylating enzyme responsible 
for the hyper-methylation of miR-205 promoter 
is of necessity to design matched drug to alter 
miR-205 status without attendant toxicity.

MIR-34a

Just like the other cancers, PCa is also hetero-
geneous, composing of various types of cells 
including epithelial cells, fibroblasts, immune 
cells and cancer stem cells (CSCs) [49]. 
Prostate cancer stem cells (PCSCs) are potent-
ly tumorigenic because of their strong self-
renewal capability and potential differentiation 
ability [49, 50]. More importantly, PCSCs are 
relatively resistant to ADT and chemotherapy 
treatment due to their AR-negative characteris-
tics [51]. 

To explore the function of miRNAs in PCSCs,  
Liu found that miR-34a was under-expressed  

in isolated CD44 molecule (CD44+) cancer 
stem cells derived from either xenografts or  
primary tumors compared to their relative 
CD44- parental cells [52]. Enforced expression 
of miR-34a in CD44+ cells could suppress their 
sphere-forming ability, tumor regeneration and 
cell invasion. Consistently, introduction of  
miR-34a inhibitor into CD44- cells could redi-
rect cells to be stem cell like [53]. In xenograft 
model, systematic delivery of miR-34a delayed 
tumor growth and inhibited metastasis. The 
mechanistic dissection found that CD44 was  
a direct target of miR-34a. A decreased level  
of miR-34a in CD44+ cells guaranteed CD44 
expression level and maintained their tumori-
genic status. All these data suggest that miR-
34a could be served as a therapeutic target for 
PCa, PCSCs in particular.

MiR-34a is one of the downstream targets 
mediated by p53 [54, 55]. Therefore, research-
ers should have compelling rational to in- 
vestigate the role of p53 in balancing the 
homeostasis of PCSCs. Also, prostate cancer 
stem cells were also considered as AR-negative 
cells. Is there any cross-talk between p53 and 
AR signaling in PCSCs to regulate miR-34a 
expression level? All these questions deserve 
further studies.

AR/AR-v7 associated miRNAs

Enormous efforts have been paid to develop 
methods for inhibiting AR/AR signaling given 
the roles of AR/AR signaling in determining the 
pathology of PCa. ADT, anti-androgen and anti-
AR are all well-defined methods to block AR/AR 
signaling in PCa. However, further studies are 
still needed to develop miRNA-based therapeu-
tic approaches to target AR in order to fight 
against PCa. 

To systematically analyze AR-based miRNAs, 
Ostling applied LMA screening using 2 miRNA 
libraries with 1129 miRNAs to identify the 
miRNA candidates which have potential ability 
to target AR via binding to its 3’ UTR [56]. Data 
showed that about 77 miRNAs were reported to 
negatively affect AR protein level in 5 cell lines. 
After validation by 3’UTR based assay, 14 out 
77 miRNAs (miR-135b, miR-185, miR-297, miR-
299-3p, miR-34a, miR-9, miR-34c, miR-654-
5p, miR-634, miR-449b, miR-371-3p, miR-421, 
miR-449a, miR-449b) were reported to bind 
3’UTR of AR directly and inhibited cell prolifera-
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tion of LNCaP and CWR22Rv1. Since AR-v7 had 
its unique 3’UTR, its regulatory miRNAs were 
supposed to be different from these against full 
length AR. In fact, miR-124 was the only report-
ed one that directly targeted AR-v7 [57]. In vitro 
study showed that miR-124 evidently sup-
pressed cell proliferation of CWR22Rv1 cells 
via degrading AR-v7 protein level. As AR-v7 is a 
critical molecule that confers enzalutamide 
resistance to PCa, miR-124 could re-sensitize 
enzalutamide resistance by probably altering 
AR-v7 level. In vivo intravenous delivery of miR-
124 could increase tumor apoptosis in combi-
nation with enzalutamide administration. Taken 
together, these findings would build up strong 
rational to develop miRNAs as therapeutic 
approach to fight against PCa via reducing AR/
AR-v7 level.

MIR-15A-MIR-16-1

Allelic loss of miR-15a-miR-16-1 on chromo-
some 13 was viewed as predictive signature of 
metastatic PCa. Previous investigation showed 
that introduction of miR-15a-miR-16-1 inhibitor 
into non transformed prostate cells promo- 
ted cell carcinogenesis [58]. Delivery of mR-
15a-miR-16-1 antagomirs into normal mouse 
prostate could induce hyperplasia. Conversely, 
over-expression of miR-15a-miR-16-1 in pros-
tate cancer cells resulted in remarkable growth 
arrest, cell apoptosis and tumor shrinkage of 
tumor bearing xenografts. MiR-15a-miR-16-1 
cluster could reduce CCND1, WNT3A and BCL2 
via directly binding to their 3’UTRs, as well as 
preventing their translation. Furthermore, miR-
15a level was considered to be highly associ-
ated with cMYB function in PCa. MiR-15a 
reconstitution induced a significant down-regu-
lation of cMYB expression and an evident up-
regulation of AR in androgen dependent LNCaP 
cell lines, suggesting that the deficiency of miR-
15a in PCa cells contributed to cMYB-induced 
cell progression. However, two questions are 
raised from this report and deserves further 
investigation: does miR-15a directly regulate 
the cMYB via base pairing binding; what’s the 
underlying mechanism by which miR-15a up-
regulates AR.

Summary 

Novel target-based drugs are urgently needed 
for better improving the treatment of PCa. 

NcRNAs, including long noncoding RNAs and 
miRNAs have been extensively investigated  
in recent years. The aberrant expression of 
ncRNA caused by either genomic modification 
or transcriptional regulation was highly related 
to PCa progression. Even though targeting 
ncRNAs are effective in both the cell line ex- 
periment and animal model study, the appli- 
cation of ncRNAs into clinical trial is still far  
away from satisfaction. The off-target effect 
and the low efficiency of small RNA delivery  
are currently two major obstacles to prevent 
ncRNAs from further clinical application. 

The exploration on ncRNAs is still in its infancy. 
On one hand, the biological processes ncRNAs 
involved are largely uncovered. Earlier reports 
have mentioned that some ncRNAs could be 
translocated to certain organelle such as mito-
chondria or endoplasmic reticulum [59, 60], 
whereas they possibly control certain biological 
events that requires our exploration. On the 
other hand, for those lncRNAs functioning to 
control gene regulation, their regulatory codes 
remain largely unknown. The map of lncRNA-
regulated downstream genes and the DNA 
binding code are still mysterious to us. More 
investigations are required to solve these prob-
lems if we want to translate lncRNA functions 
into clinical use.
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