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We have isolated a new mutant, hanaba taranu (han), which affects both flower and shoot apical meristem (SAM)

development in Arabidopsis thaliana. Mutants have fused sepals and reduced organ numbers in all four whorls, especially in

the 2nd (petal) and 3rd (stamen) whorls. han meristems can become flatter or smaller than in the wild type. HAN encodes

a GATA-3–like transcription factor with a single zinc finger domain. HAN is transcribed at the boundaries between the

meristem and its newly initiated organ primordia and at the boundaries between different floral whorls. It is also expressed

in vascular tissues, developing ovules and stamens, and in the embryo. han interacts strongly with clavata (clv) mutations

(clv1, clv2, and clv3), resulting in highly fasciated SAMs, and we find that WUS expression is altered in han mutants from

early embryogenesis. In addition, HAN is ectopically expressed both in clv1 and clv3 mutants. We propose that HAN is

normally required for establishing organ boundaries in shoots and flowers and for controlling the number and position of

WUS-expressing cells. Ectopic HAN expression causes growth retardation, aberrant cell division patterns, and loss of

meristem activity, suggesting that HAN is involved in controlling cell proliferation and differentiation.

INTRODUCTION

During the reproductive growth phase of Arabidopsis thaliana,

flowers arise in a spiral phyllotaxis from the flanks of the shoot

apical meristem (SAM), which is located at the tip of the stem and

encompasses a stem cell population whose descendants es-

sentially give rise to all of theaerial parts of theplant. TheSAMcan

be divided into three zones: the central zone, which is composed

of a small number of slowly dividing stem cells at the meristem

apex, the rib meristem zone, which lies underneath the central

zone and gives rise to the pith and vascular structure of the stem,

and the peripheral zone, which surrounds the central zone and

provides founder cells for the formation of new leaves andflowers

(reviewed in Fletcher and Meyerowitz, 2000). Floral primordia

originate as a buttress of undifferentiated cells (the floral meri-

stem) growing at the peripheral zone of the SAM, which soon

separates itself from the SAM (only connects to the stem through

its peduncle) and sequentially gives rise to the sepals, the petals,

and the stamens. Eventually the remaining inner floral meristem

cells differentiate into two congenitally fused carpels (Smyth

et al., 1990).

Two major pathways, the WUSCHEL (WUS)–CLAVATA (CLV)

pathway and the SHOOTMERISTEMLESS (STM) pathway, have

been characterized as pivotal for meristem establishment and

maintenance. Both wus and stm mutants fail to initiate an

embryonic SAM and have premature termination of adventitious

shoot and floral meristems (Clark et al., 1996; Laux et al., 1996;

Long et al., 1996).WUS encodes a homeodomain protein that is

expressednear theboundaryof thecentral zoneand ribmeristem

in shoot and floral meristems and functions to promote meristem

activity (Mayer et al., 1998). The clv mutations (clv1, clv2, and

clv3) affect both SAMand floral meristem development, resulting

in enlarged shoot apical and floralmeristemsaswell as increased

floral organ numbers (Clark et al., 1996, 1997; Kayes and Clark,

1998). CLV3 is normally expressed in the central zone, overlying

the WUS domain (Fletcher et al., 1999), whereas CLV1 is ex-

pressed in the rib meristem zone, embracing the WUS domain

basally and laterally (Clark et al., 1997). It hasbeensuggested that

CLV3, a secreted small protein (Fletcher et al., 1999; Rojo et al.,

2002), interacts with the CLV1/CLV2 Leu-rich repeat receptor

proteins as a ligand/receptor complex to activate a signal trans-

duction cascade that limits WUS expression (Fletcher et al.,

1999; Brand et al., 2000; Schoof et al., 2000). In the absence of

CLV activity, WUS activity increases and causes accumulation

of stem cells and thereby an enlarged, fasciated meristem.

1Current address: Ceres Inc., 1535 Rancho Conejo Blvd., Thousand
Oaks, CA 91320.
2 These authors contributed equally to the work.
3 Current address: Laboratory of Molecular and Biochemical Toxicology,
Graduate School of Pharmaceutical Sciences, Tohoku University, Japan.
4 Current address: Plant Gene Expression Center, USDA/University of
California, Berkeley, CA 94710.
5 Current address: Department of Biological Sciences, National Univer-
sity of Singapore, 117543 Singapore.
6 Current address: DuPont Crop Genetics, Experimental Station E353,
Wilmington, DE 19880.
7 To whom correspondence should be addressed. E-mail meyerow@
caltech.edu; fax 626-449-0756.
The author responsible for distribution of materials integral to the
findings presented in this article in accordance with the policy described
in the Instructions for Authors (www.plantcell.org) is: Yuanxiang Zhao
(zhaoyx@caltech.edu).
WOnline version contains Web-only data.
Article, publication date, and citation information can be found at
www.plantcell.org/cgi/doi/10.1105/tpc.104.024869.

The Plant Cell, Vol. 16, 2586–2600, October 2004, www.plantcell.orgª 2004 American Society of Plant Biologists



Conversely, it has been shown that ectopicWUS expression can

induce ectopicCLV3 expression (Schoof et al., 2000). It has been

proposed, therefore, that WUS regulates its activity so as to

control SAM size by employing a negative feedback system

involving theCLVproteins.STM encodes amember of the class 1

KNOX family of homeodomain proteins (Long et al., 1996).STM is

expressed throughout the SAM where it appears to act through

downregulating the ASYMMETRIC LEAVES genes (AS1 and

AS2). Loss of AS1 activity restores meristem function to stm

mutants by derepressing the activities of other KNOX class

genes, such asKNAT1 (also namedBREVIPEDICELLUS; Venglat

et al., 2002) and KNAT2 (Byrne et al., 2000). More recently it has

been shown that the STM and WUS pathways can act together

to confer ectopic meristematic cell fate (Gallois et al., 2002;

Lenhard et al., 2002).

Although much is known about genetic regulatory pathways

within the SAM, little is known about the interactions between

meristematic cells and their neighboring differentiating cells.

Nevertheless, molecules coupling differentiating cells with meri-

stem development have been uncovered in recent years. In

Petunia hybrida, Hairy Meristem (HAM) encodes a GRAS family

putative transcription factor that is expressed in provascular

tissue, but ham mutations result in early termination of SAM

activity. Hence, HAM may represent an extrinsic antidifferentia-

tion factor that is required to maintain stem cells in the SAM

(Stuurman et al., 2002). Additionally, lateral organ polarity genes,

such as Antirrhinum majus PHANTASTICA and Arabidopsis

PHABULOSA, also appear to have positive effects on the for-

mation and maintenance of apical meristems (McConnell and

Barton, 1998; Waites et al., 1998). Furthermore, members of the

NAC-domain gene family expressed at the boundaries of meri-

stems and primordia, including the Petunia NO APICAL MERI-

STEM (Souer et al., 1996), the AntirrhinumCUPULIFORMIS (Weir

et al., 2004), and the Arabidopsis CUP-SHAPED COTYLEDON

genes CUC1, CUC2, and CUC3 (Aida et al., 1999; Takada et al.,

2001; Vroemen et al., 2003), regulate SAM development as well.

In this report, we describe a new gene in Arabidopsis, HANABA

TARANU (HAN; meaning fewer floral leaves in Japanese), that is

required for normal flower and SAM development. This gene is

expressed in the provascular tissues during embryogenesis and

later is expressed at the boundary tissues between meristems

and initiating organ primordia as well as in the vascular tissues.

We demonstrate that han mutations interact strongly with clv

mutations and that HAN is required for normal cell division and

positioning ofWUS-expressing cells in the SAM, suggesting that

HAN also represents one of the extrinsic molecules linking the

more mature boundary and vascular cells with SAM activities.

RESULTS

hanMutant Phenotypes and HAN Cloning

Four different hanmutant alleles (han-1 to han-4) were isolated in

three different mutagenesis screens in Arabidopsis. han-2 was

isolated in an ethyl methanesulfonate mutagenesis screen, and

the han-1, han-3, and han-4 alleles were generated in two

separate Agrobacterium tumefaciens–mediated T-DNA screens

(see Methods). All han mutants have similar flower defects,

including fused sepals, reduced numbers of petals and stamens,

and, sometimes, unfused carpels. Phenotypically han-2 is the

weakest allele, and han-3 is the strongest, whereas han-4 and

han-1 have similar, intermediate expressivity. Mutants homozy-

gous forhan-3, unlike lineshomozygous for theother alleles, have

fasciated SAMs. In addition, the han-3 allele shows slight semi-

dominance, whereas the other hanmutations are fully recessive.

We will focus on the recessive mutations in this report. The

majority of han-2mutant flowers have two to four sepals (sepals

fused together are counted as 1) in the 1st whorl, one or two

organs in the 2nd whorl (including petals as well as filamentous

structures), four or five stamens (including filaments lacking

anthers) in the 3rd whorl, and two asymmetric carpels in the 4th

whorl (Table 1, Figures 1B to 1E). Malformed organs observed

includebifid stamenswith two stalks fusedpartially or completely

along their length but with anthers separated (Figure 1C, arrow),

filamentous structures between whorls (Figure 1D), and stamens

with abnormal anthers. In >50% (31/54) of thecases, the valves of

the two fused carpels are not symmetrical, with one shorter than

the other at the basal region (Figure 1E, arrow). At a much lower

frequency (4/54), extra tissue is formed apically (Figure 1E,

arrowhead). han-2 homozygous plants are partially fertile. han-1

flowers have stronger defects in all whorls when compared with

han-2 flowers. In approximately half of han-1 flowers, all of the

sepals are either partially or completely fused (Table 1, Figures 1F

to 1H). Mature petals are rare and only appear in a few early

flowers. The majority of han-1 flowers lack second whorl organs.

In the third whorl, organ numbers are generally decreased to

Table 1. han Flower Phenotypes Summary

Organ Number Sepal Petal Stamen Carpel

Flower Number 0 1 2 3 4 5 0 1 2 3 4 0 1 2 3 4 5 6 2 Fused Unfused

han-2 0 4 27 57 21 1 13 31 40 23 3 0 0 0 6 40 55 9 49b 54 0

110a,b (4) (10) (13) (2) (4) (6) (1)

han-1 0 53 37 13 4 0 77 24 4 2 0 0 8 12 37 32 16 1 107 91 16

107a (6) (3) (3) (11) (77) (90) (62) (4)

The numbers in parentheses represent the total number of filamentous structures in all flowers of each category.
a Total number of flowers examined.
bOnly 54 flowers were examined for carpel number and fusion defects. Of the 54, 49 had two carpels, 1 had a single carpel, and 4 had extra carpel

tissues positioned apically.
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three or four, and stamens with normal morphology are rare. The

frequency of filamentous structures occupying stamen positions

in han-1 flowers is much higher than in han-2 flowers. han-1

homozygous plants have extremely low fertility. Consistent with

their reducedfloral organnumbersandsizes,han-1mutants have

smaller floral meristems than the wild type, as shown for a stage

3 flower in Figure 1J (arrow points to an area of congenital sepal

fusion). In addition, inner whorl organ primordia either fail to

develop or are delayed in appearance compared with the wild

type in stage 6 flowers (Figures 1K and 1L).

Figure 1. han Mutant Flower and Floral Meristem Phenotypes.

(A) A wild-type flower.

(B) to (E) han-2 homozygotes.

(F) to (H) han-1 homozygotes.

(B) A han-2 flower.

(C) The arrow points to the fusion of two stamens.

(D) Filamentous structures in place of a petal or a stamen are indicated by the arrow and arrowhead, respectively. Sepals were removed.

(E) Carpel defects include asymmetric silique valves (arrow) and extra carpel tissue positioned at the apical region of the silique (arrowhead). Siliques

shown are not age-matched.

(F) A han-1 inflorescence.

(G) An early-arising han-1 flower.

(H) A flower with sepals all fused into an open semicircle.

(I) A wild-type stage 3 flower. Se, sepal; FM, floral meristem.

(J) A han-1 stage 3 flower (because han floral meristem development is generally delayed, floral stage is determined based on sepal size).

(K) A wild-type stage 6 flower. St, stamens.

(L) A han-1 stage 6 flower.

(M) A han-1 inflorescence at late stage. The black arrow points to a carpelloid sepal, and the white arrowhead points to a sepalloid carpel.

(N) An enlarged view of the carpelloid sepal indicated in (M). Arrow points to stigmatic papillae at the edge of the sepal.

(O) An enlarged view of the sepal (Se) and carpel (Ca) fusion structure in (M).

(P) A wild-type SAM.

(Q) A han-1 mutant SAM.

Bars in (A) to (H) ¼ 0.5 mm; bars in (I) to (Q) ¼ 50 mm (unless indicated otherwise).
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Vegetative growth and inflorescence structure of hanmutants

appears fairly normal. However, in some of the han-1 and han-4

plants, flowers that arise toward theendof the reproductive stage

are morphologically more deformed than early flowers, com-

posed either of carpels alone (sometimes subtended by leaf/

sepal-like structures), carpelloid sepal/leaf-like structures (Fig-

ures 1M and 1N, arrows), or chimeric organs with carpelloid

character (Figures 1M, arrowhead, and 1O). In addition, later-

arising flowers fail to originate in a typical phyllotactic spiral.

Perturbed floral phyllotaxy generally reflects a SAM defect. To

determine if such a defect is visible in han-1 mutants, both early

(postembryonic day 30) and late stage (after postembryonic day

40) inflorescence SAMs were examined using scanning electron

microscopy. Early stagehanSAMsare normal comparedwith the

wild type, as also confirmed by confocal laser scanning micros-

copy (data not shown). However, for the late stage han inflores-

cences, five out of eight SAMs appeared flattened instead of

dome-shaped as in thewild type (Figures 1P and 1Q) and in some

cases appeared smaller and less distinct from the surrounding

initiating organ primordia. In the flattenedSAMs, early stage floral

organ primordia were not the usual hemispherical masses of

undifferentiated cells but were ridge-shaped. This indicates that

there is a gradual transition toward an aberrant SAMmorphology

in han mutants during reproductive development.

The HAN gene was cloned by both positional mapping of the

han-1 allele and by T-DNA tagging of the han-4 allele. HAN is

located on chromosome 3 (At3g50870), and its full-length cDNA

was isolated from a flower-specific lcDNA library. The protein

sequence deduced from the open reading frame consists of 295

amino acids, encoded by two exons, and resembles a GATA-3–

like protein with a single zinc finger motif (C-X2-C-X18-C-X2-C)

(Figure 2). In addition, there is a stretch of 14 amino acids

N-terminal to the zinc finger that appears highly conserved

among some plant GATA transcription factors. The han-1 muta-

tion results in a complete deletion of the gene, starting from 709

bpupstreamof the translation initiation codonandendingat 1298

bp downstream of the stop codon. The mutation in han-2 results

in a single amino acid change at position 179, Gly (GGC) to Ser

(AGC). Themutation in han-4 is caused by the insertion of at least

two copies of a T-DNA sequence into the intron at 112 bp,

followed by a deletion of 20 bp. Both a 9- and 6-kb genomic

fragment spanning the HAN gene fully rescues the han pheno-

types (data not shown). Database searches identified 25 puta-

tive GATA genes in the Arabidopsis genome, among which are

two close HAN relatives, located on chromosomes 2 and 4

(At2g18380 and At4g36620), and here named HANL1 and

HANL2. The HAN gene shares 46 and 50% sequence similarity

to its two close homologs HANL1 and HANL2, respectively.

HAN Expression

The HAN expression pattern was examined by in situ hybridiza-

tion using a full-length cDNA probe and aHAN-specific 59-cDNA

probe, both of which are specific to HAN (see Methods) and

which gave the same results.HAN is expressed in vegetative and

inflorescence SAMs, axillary SAMs, floral meristems, developing

ovules and stamens, vascular tissues, and in the embryo. In the

developing axillary SAM, it is expressed at the boundary between

nascent axillary meristems and the adaxial side of leaves (Figure

3A, a, arrows). Expression in allmatureSAMs is similar, located at

the boundaries between the central SAM and the initiating organ

primordia, as well as between the neighboring initiating organ

primordia (Figures 3A, b and c, and 3B).

Expression in the floral meristem reiterates the pattern seen in

the SAM, with strong expression at the boundaries between the

meristematic dome and the initiating floral organ primordia, and

also at the boundaries between the primordia of different whorls

(Figure 3A, d). Expression at the boundaries attenuates as the

organ primordia grow apart. In stage 5 flowers, expression

remains at the boundary between the central meristematic cells

and differentiating stamen primordia (data not shown). In stage 6

flowers, expression is the strongest at the medial ridge region

of the carpel (Figure 3A, e). In the developing ovule, HAN is

expressed in the inner and outer integuments, with signal absent

from the nucellus (Figure 3A, f and g). In all of the aerial tissues

examined, including flowers, HAN is expressed strongly in cell

types associated with the phloem tissues (arrows in Figure 3A, f

and g). It is expressed strongly in the developing anthers in as

Figure 2. Protein and Gene Structure.

The HAN protein sequence deduced from the open reading frame of the full-length HAN cDNA. The position of the intron is indicated by the open

triangle; a 14–amino acid domain that is highly conserved among some plant GATA factors is underlined twice; the zinc finger domain is underlined

once. The mutation in han-1 results in deletion of the whole gene. The mutation in han-2 changes a Gly (GGC) to a Ser (AGC) at amino acid position 179

(asterisk). The mutation in han-4 results from a T-DNA insertion within the intron (arrow). The 59 junction sequence is flanked by the Bar gene in the

T-DNA, whereas the 39 is flanked by the 43 35S promoter in the T-DNA (near the right border).
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early as stage 8 flowers when locules are initiated, in the tapetum

cell layer, as well as the microsporocytes (Figure 3A, h). Expres-

sion persists until the tapetum layer degenerates and haploid

pollen ismature (Figure 3A, i). Expression ofHAN in the embryo is

detected uniformly in the embryo proper of the eight-cell stage

embryo (Figure 3A, j). It is then concentrated in the center cells

of the embryo and absent from the epidermal cell layer at the

globular stage (Figure 3A, k). This expression pattern persists in

the center four files of cells; expression is not observed in the

outermost two apical layers through the transition and late heart

stages (Figure 3A, l to n). In the torpedo stage embryo, expres-

sion is detected in all provascular tissues (Figure 3A, o).

Genetic Interactions of hanwith Mutations Affecting

Flower Development

Double mutants of han-1 with the floral organ identity mutations

apetala 3, pistillata, and agamous are generally additive (data not

Figure 3. HAN Expression Pattern.

(A) Budding axillary SAMs are shown in (a). Arrows point to the expression domains of HAN at the boundaries between the SAM and the adaxial sides of

leaves. Lf, leaf. (b) Older axillary SAM. Arrows point to the expression domains of HAN at the boundaries between the SAM and the newly initiated organ

primordia (pr, small arrowheads). Large arrowhead indicates the junction of the HAN expression domain in the SAM and its vascular expression in the

stem. (c) Inflorescence SAM. Arrows point to two stripes of HAN expression at the boundaries between the SAM and newly initiated floral primordia.

Small arrowheads indicate HAN expression in a stage 2 flower at the boundaries between the floral meristem and the soon-to-be-specified sepal

primordia. Large arrowheads point to the junction of the HAN expression domain in the SAM and in the stem (note that the angle of this section is tilted

toward the reader, and the domain indicated by the large arrow includes some of the expression of HAN between the SAM and a primordium pointing

toward the reader). (d) Stage 5 flower. Arrow points to the connection arch of HAN expression in the floral meristem and its expression in the peduncle

vascular tissue. Se, sepal. (e) Expression in the lateral and basal regions of carpel primordia in a stage 6 flower. (f) Early stage 12 ovary (cross section).

HAN is expressed in initiating inner and outer integuments as well as in the vascular tissue (arrows). (g) Expression in integuments continues in the stage

13 ovary. Arrow points to expression in funiculus vascular tissue. (h) HAN expression in the stamens of a stage 8 flower. lo, locule. (i) HAN expression

persists in the tapetum cell layer until it has degenerated and is absent in mature haploid pollen. t, tapetum. (j) Eight-cell stage embryo. HAN is

expressed in all cells of the embryo proper. (k and l) Globular and transition stage embryos. HAN is expressed in the center files of cells. (m and n) Heart

and torpedo stage embryos. HAN expression remains in the center cells destined to be provascular tissues. (o) Late torpedo stage. Bars ¼ 10 mm.

(B) Expression in SAM in serial longitudinal (a to f) and cross sections (g to j). Arrows point to expression at the boundaries between the SAM and new

organ primordia as well as between organ primordia. Expression of HAN in the SAM merges with its expression in the vascular strands in the stem

(arrowheads) as illustrated in (k). In (k), red lines represent the expression domains of HAN in the SAM, stem, and developing organ primordia (P1 and

P2). Arrowhead corresponds to the regions indicated by large arrowheads in Figure 3A (b and c). P, primordium. Bars ¼ 10 mm.
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shown). To determine if floral organ identity genes are affected in

their expression in han mutants, AP1 and AP3 expression was

examined in han-1 flowers. For both genes, expression was

detected in the mutant in correct spatial and temporal patterns,

but signal intensity was relatively low (data not shown). The lower

expression intensity is potentially because of a smaller number of

floral organ cells in han mutants. This indicates that the floral

organ identity genes act independently of HAN in controlling

flower development.

Doublemutants of han and clv (including clv1, clv2, and clv3) or

han and wus-1 were generated. Any combination of han/clv

double mutants results in increased inflorescence fasciation and

increased floral abnormalities as compared with either single

mutant. Among all clv mutants, the clv3-2 mutants show the

strongest phenotype with regards to SAM fasciation and in-

creased floral organ numbers in all four whorls (Figures 4A and

4B). Interactions between han-2 and clv3-2 or han-1 and clv3-2

make for very short plantswith fasciated stems thicker than those

of clv3-2 single mutants. Early-arising flowers have elongated

pedicels (Figure 4C, arrowhead) and are composed only of

reduced sepals (or sepal-like tissue) and carpels, which are

sometimes indeterminate and generate many sepal- or leaf-like

structures from the base, or on top of an undifferentiated mass

within the carpel valves (Figure 4D). Later-arising organs are

either filamentous or are bracts tipped with stigmatic tissue,

arising simultaneously in large numbers (Figure 4C, arrow). The

han-2 clv1-1 double mutants have either a fairly normal stem or

are shorter and more fasciated than clv1-1 and accumulate

numerous flowers at the topof the inflorescenceSAM (Figure 4E).

These double mutant flowers generally have reduced organ

numbers in the outer three whorls compared with han-2 mutant

flowers (Figure 4F). The han-2 clv2-1 double mutants either

appear similar to han-2 clv1-1 mutants or lack primary shoot

dominance and have several unfasciated stems terminating in

a ball of carpelloid structures (Figure 4G). han-1 clv1-1 and han-1

clv2-1 double mutants produce inflorescences more fasciated

than clv single mutants, with flowers for the most part composed

only of sepals and sometimes unfused carpels (Figure 4H). The

phenotypes of han-4 clv double mutants are similar to those of

han-1 clv double mutants.

han-1 wus-1 double mutants resemble wus-1 single mutants,

except that they appear darker green in color and have many

more radial-shaped leaf-like structures (with trichomes) arising

from the leaf axils (Figure 4J). No flowers were observed in han-1

wus-1 double mutants (three plants). The han-1/han-1 wus-1/þ
mutants are phenotypically similar to han-1 single mutants (data

not shown). We further compared the number of floral organs

present in han-1/þ wus-1/wus-1 flowers versus wus-1/wus-1

flowers. The former have an average of 3.2 (61.1) sepals, 1.5

(61.3) petals, and 0.5 (60.9) stamens (including in 27% of cases

filamentous structures) in 22 flowers counted, whereas the latter

has an average of 3.9 (61.0) sepals, 3.9 (60.6) petals, and 1.1

(60.3) stamens (no filamentous structures) of 10 flowers counted.

The P value for each organ type difference based on an unpaired

Student’s t test is smaller than 0.05, suggesting that the differ-

ence is significant. This suggests that whereaswus is epistatic to

Figure 4. Genetic Interactions of han and clv.

(A) clv3-2 inflorescence, top view.

(B) clv3-2 flower, top view.

(C) han-1 clv3-2 double mutant inflorescence. Arrowhead points to an early-arising flower with long peduncle, and arrow points to late-arising bract-like

or filamentous organs.

(D) han-1 clv3-2 double mutant flower.

(E) han-2 clv1-1 double mutant inflorescence.

(F) han-2 clv1-1 double mutant flower.

(G) han-2 clv2-1 double mutant inflorescence.

(H) han-1 clv1-1 double mutant inflorescence.

(I) wus-1 single mutant axillary shoot.

(J) han-1 wus-1 double mutant axillary shoot.

Bars ¼ 1 mm.

Arabidopsis HAN and Meristem Development 2591



han in overall development, flower development in wus mutants

relies on HAN activity in a dose-dependent manner.

HAN RegulatesWUS-Expressing Cells

WUS serves as the earliest knownmarker for SAM development.

It is detected in the inner two cells at the apical region of the

16-cell stage embryos, and its expression domain enlarges in

embryonic andpostembryonic SAMsof clvmutants (Mayer et al.,

1998; Brand et al., 2000; Schoof et al., 2000). Because han

mutations strongly enhance clv SAM phenotypes, we examined

WUS expression in both han single mutants and han clv double

mutants. In wild-type inflorescence meristems and floral meri-

stems, WUS is expressed in the central region of the SAM,

beneath the outermost two or three cell layers (Figures 5A and

5B). Expression in the floralmeristemattenuates after stage3and

is no longer detectable after stage 6. WUS expression in clv3-2

inflorescence and floral meristems expands outward along the

fasciatedmeristemsandupward into the L2 layer (Figures 5Cand

5D). In most of han-1 and han-4 inflorescences, whether in early

or late stages of development, the WUS expression domain

appears diffuse compared with the wild type, with a few central

cells showing the strongest expression and surrounding cells

showing weaker expression (Figures 5E and 5G). In the floral

meristem,WUS expression is clearly shifted to include the L2 and

L1 layers (Figures 5F and 5H). As in the SAM, the signal appears

diffuse, with the border between the WUS-expressing cells and

the surrounding cells not as sharp as is observed in the wild type

or in clv3-2 mutants. In some han meristems, however, WUS

expression appears comparable to that in the wild type (see

Supplemental Figure 1 online and Discussion).

In han-1 clv3-2 double mutants, the inflorescence SAM region

is expanded compared with clv3-2 single mutants (Figures 5K

and 5L). In contrast with its expression pattern in the clv3-2 single

mutant, WUS expression in the SAMs of the double mutants is

concentrated in the L2 layer cells (Figure 5I), and in the floral

meristems, expression extends upward into the epidermal cell

layer in some cases (Figure 5J). Ectopic expression of WUS in

han-1 or han-4 flowers all along the inflorescences is also

observed, appearing in undifferentiated cells in late stage flowers

and in the sepals, which in some cases are clearly carpelloid as

they produce WUS-expressing ovules (data not shown).

Figure 5. HAN Regulates WUS-Expressing Cells.

(A) and (B) WUS expression in wild-type inflorescence SAM is below the outermost three (shown) or two (data not shown) layers.

(B) WUS expression in the wild-type floral meristem (FM) is below the outermost two layers.

(C) WUS expression in the clv3-2 inflorescence SAM concentrates in the cells below the L2 layer and at lower level in the L2 layer.

(D) WUS expression in the clv3-2 floral meristem expands into the L2 layer.

(E) and (G) WUS expression in most of the han-1 inflorescence SAMs is diffuse.

(F) and (H) WUS expression in the han-1 floral meristems is shifted to include the L2 and L1 layers.

(I) WUS expression in the han-1 clv3-2 double mutant inflorescence SAM is concentrated in the L2 layer.

(J) WUS expression in the han-1 clv3-2 double mutant floral meristem extends in some cases into the L1 layer.

(K) Overview of a clv3-2 inflorescence SAM.

(L) Partial view of a han-1 clv3-2 double mutant inflorescence SAM.

Bars ¼ 50 mm.
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To find out how early the aberrant WUS expression occurs in

han mutants, as well as how early its impact on morphological

development ismanifested, embryos from han-1/þ siliques were

examined. Morphological defects can be observed as early as

globular stage, when the shapes of what are likely the han-1

mutant embryos deviate from the wild type (Figures 6A and 6B).

By the heart stage, some mutant embryos clearly fail to properly

develop cotyledons, which appear as small stubs (Figure 6D) or

are barely visible (data not shown). By the torpedo or walking

stick stages,mutant embryos appear stunted to various degrees,

with a majority having thickened hypocotyls and small cotyle-

dons in numbers ranging from two to four (Figures 6F and 6H).

Inwild-type embryos,WUS is expressed in the center two cells

at the subepidermal layer of the apical region at the globular and

transition stages (Figure 6I). At the heart stage,WUS expression

shifts to the central two cells of the corpus (Figure 6K). In mature

embryos,WUS is expressed even deeper in the meristem and is

excluded from the L2 layer (Figure 6M). However, in apparent han

mutant embryos, WUS expression is observed in both L2 and

corpus cells and in more than two cells in the transition stage

embryo, which corresponds to the enlarged size of the embryo

(Figure 6J). At the heart stage, WUS expression is likewise

concentrated in both L2 cells and deeper cells (Figure 6L). By

the walking stick stage, expression in some apparent han-1

embryos stays strong in L2 cells (Figures 6N to 6P). Aberrant

WUS expression in early stagehan embryos suggests thatHAN is

normally required to control the number ofWUS expressing cells

and to correctly position these cells.

Because there is a feedback loop interaction between WUS

and CLV3 in shoot and floral meristems (Brand et al., 2000;

Schoof et al., 2000), we also examined CLV3 expression in han

mutants in both embryonic and inflorescence stages. No obvious

difference in CLV3 expression was observed between han

mutant and wild-type plants during embryogenesis, but CLV3

expression becomes variable in han inflorescence meristems

(Figure 7). In approximately half of the cases, CLV3 expression

appears fairly normal as compared with the wild type (Figures 7C

and7D versus 7Aand7B). However, in the other half of the cases,

CLV3 expression becomes slightly (Figure 7E, arrow) or more

widely diffuse (Figures 7F to 7H, arrows). The effect of han on the

CLV3 expression domain could be because of the alteration of

theWUS expression domain that occurs in early embryogenesis

before CLV3 expression is initiated.

Interactions between HAN and the CLV Pathway

To uncover potential regulatory interactions between HAN and

CLV, we also examined HAN expression in clv3-2 mutants. The

HAN expression pattern in clv3-2 was unchanged in all tissues

except for the meristems, where HAN was detected strongly in

the L2andcorpus layers along theentire fasciatedSAMaswell as

in the late stage floral meristems (Figures 8A, arrowheads, 8B,

large arrow). This expression pattern mimicked theWUS expres-

sion pattern in clv3-2 mutants (Figure 8C, arrowhead, 8D, large

arrow), suggesting that in the absence of CLV3 activity, HAN

expression is ectopically induced in the apical region of the SAM.

Because WUS is also ectopically expressed in clv1 mutants

(Schoof et al., 2000), we also assessed whether HAN expression

was altered in clv1 mutants. HAN shows a similar expression

pattern in the SAM of clv1-4 mutants as in clv3-2 (data not

shown). However,HAN is not ectopically expressed in the clv2-1

SAM (data not shown). To find out how early HAN expression is

perturbed, we examined HAN expression in clv3-2 embryos.

From globular stage to mature embryos, the HAN expression is

similar in wild-type and clv3-2 mutants (Figures 8E to 8G). This

suggests thatHAN expression is altered in the clv3-2SAMduring

postembryonic development.

Phenotypes Caused by Ectopic Expression of HAN

To examine the effects of HAN gain-of-function, we generated

transgenic plants carrying 35S:HAN or 35S:HAN-GR (glucocor-

ticoid receptor binding domain; Lloyd et al., 1994) transgenes.

Among Landsberg erecta (Ler) plants transformed with

a 35S:HAN construct, only four T1 transgenic plants were pro-

duced from >4 mL (;1.5 3 104) of seeds screened, which is

substantially lower than the normal transformation efficiency for

the binary vector used (>0.05%). Of the four, one looked fairly

normal, but the others were small in size, with unevenly shaped

rosette leaves and cauline leaves that gradually turned purple,

starting from the abaxial side (Figure 9A). The smallest one of the

three died prematurely after making some miniature flowers that

did not produce seeds. The remaining two plants had smaller

inflorescences than the wild type (Figures 9B and 9C). Floral

organs were shorter in length when compared with the wild type

at similar stages. The gynoecium was short and also appeared

bulky, with wavy surfaces and elongated peduncles compared

with the wild type (Figures 9D and 9E). The scarcity of T1

transformants suggests that constitutive overexpression of

HAN might be deleterious.

More than 50 T1 35S:HAN-GR transgenic plants were gen-

erated and all looked normal in the absence of dexamethasone

(DEX). When treated three times at 1-d intervals with 10 mMDEX

solution, the transgenic plants showed a distinctive morphol-

ogy. Young flowers opened up precociously (Figure 9F), and

stem elongation was retarded. In the 2-d interval between the

2nd and 3rd treatments, the mock-treated control plants in-

creased in height an average of 2.1 cm, whereas the DEX-

treated transgenic plants only increased an average of 0.8 cm.

When seedlings from a homozygous T2 line were treated with

10 mM DEX four times at 1-d intervals, starting on postgermi-

nation day 11 (solution applied via soil), plants began to show

accelerated leaf senescence after the second treatment. New

leaves were still produced, but leaf expansion was inhibited,

and leaf blades were serrated, similar to the leaves of the

35S:HAN transgenic lines (Figure 9H, arrow). Twelve days after

the last treatment, the mock-treated control group plants had

already bolted (Figure 9G), but approximately half of the DEX-

treated plants were dead, and the surviving plants remained in

miniature form (Figure 9H). The miniature plants were still able to

produce flowers that grew extremely slowly and never reached

normal size. These flowers had normal organ identities and

numbers but were male sterile. When seeds from a T2 homo-

zygous line were germinated on DEX plates, all seedlings

ceased growth at the stage shown in Figure 9I and did not

develop further. Transgenic seedlings on non-DEX MS plates
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Figure 6. han Mutant Embryo Defects and Perturbed WUS Expression in han Embryos.

(A) Globular stage wild-type embryo.

(B) Globular stage han-1 mutant embryo.

(C) Late heart stage wild-type embryo. C, cotyledon.

(D) Late heart stage han-1 embryo with stunted cotyledons.

(E) Walking stick stage wild-type embryo.

(F) Walking stick stage han-1 embryo.

(G) Mature wild-type embryo.

(H) Mature han-1 mutant embryo with three cotyledons.

(I) WUS expression in the transition stage wild-type embryo is concentrated in two cells in the subepidermal L2 layer.

(J) WUS expression in the transition stage han-1 embryo is located in more than two cells within and beneath the L2 layer.

(K) WUS expression in the heart stage wild-type embryo is shifted to two central cells in the corpus.

(L) WUS expression in the heart stage han-1 embryo in the L2 layer.

(M) WUS expression in the mature stage wild-type embryo is centered below the outermost two layers.

(N) WUS expression in the mature han-1 embryo.

(O) and (P) WUS expression in the L2 layer of mature han-1 embryos. (P) is an enlarged view of (N).

Bars ¼ 50 mm in (A) to (H) and 10 mm in (I) to (P).
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grew normally, as did wild-type seedlings on DEX and non-DEX

plates.

Stalled growth in 35S:HAN-GR DEX-treated transgenic seed-

lings suggests inhibited cell proliferation/growth and possible

cessation of shoot and root meristem activity. To evaluate this,

the SAM structures of homozygous 35S:HAN-GR seedlings that

were germinated on either DEX or non-DEX plates were

examined on postgermination day 10 using scanning electron

microscopy. Whereas the non-DEX-treated control SAMs were

dome-shaped like wild-type SAMs (Figure 9J), the DEX-treated

SAMs either were flat (Figure 9K, arrow) or were no longer

identifiable between the leaf primordia (Figure 9L, arrow).

Because WUS serves as a marker of active meristematic cell

activity in the SAM during normal development, we examined

WUS expression in day 10 plants as well as in day 6 seedlings

germinated on DEX plates. In both cases, no WUS expression

was found in the DEX-treated seedlings (Figure 9N), suggesting

that they had already lost active SAM activity. Similarly, STM

expression is also lost in treated seedlings by day 6 (data not

shown). HAN expression in the same plants was strong and

ubiquitous (data not shown). DEX-treated 35S:HAN-GR seed-

lings had smaller cells in all cell layers of the cotyledons

compared with untreated ones (data not shown), which explains

at least in part why the treated plants have small cotyledon

blades. In addition, stomatal pores in the cotyledons of induced

seedlings were often composed of three or more guard cells

instead of two cells as in the control (Figures 9O to 9Q), implying

abnormal cell division of the guard cell mother cells or in-

complete differentiation of the guard cells. In contrast with the

cotyledon cells, the root cells of the induced seedlings were in

general larger in size than those of the control group (Figures 9R

and 9S). Additionally, in the induced roots, cell files were not

as organized as in the control, and root caps were usually

Figure 8. HAN Is Ectopically Expressed in clv3-2 Mutants.

(A) HAN expression in a clv3-2 inflorescence SAM (arrowheads).

(B) HAN expression in the undifferentiated center dome cells in a late

stage clv3-2 flower (large arrow). Small arrow points to HAN expression

in the integuments of ovule.

(C) WUS expression in a clv3-2 inflorescence SAM (arrowhead).

(D) WUS expression in the undifferentiated cells in a late stage clv3-2

flower (large arrow). Small arrows point to WUS expression in the

nucellus.

(E) HAN expression in a heart stage clv3-2 embryo.

(F) and (G) HAN expression in the SAM and the root of a clv3-2 embryo

in late torpedo stage, respectively.

Bars ¼ 50 mm.

Figure 7. CLV3 Expression in han Mutants.

(A) and (B) CLV3 expression in the wild-type inflorescence SAM and

floral meristem (FM) is concentrated in the central outermost three layers,

at about three to four cells width.

(C) and (D) CLV3 expression appears fairly normal in some han in-

florescence SAMs and floral meristems.

(E) CLV3 expression is slightly diffuse in some han mutants.

(F) CLV3 expression is expanded in some han floral meristems.

(G) and (H) CLV3 expression is markedly diffuse in some han mutants.

Arrows point to the regions of diffuse expression.

Bars ¼ 50 mm.
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Figure 9. Phenotypes of Ectopic HAN Expression.

(A) Lobed cauline leaf from a 35S:HAN plant. Inset shows a wild-type cauline leaf.

(B) Wild-type inflorescence.

(C) 35S:HAN inflorescence.

(D) Wild-type (left) and 35S:HAN flowers.

(E) Wild-type (right) and 35S:HAN siliques.

(F) to (H) 35S:HAN-GR transformants.

(F) DEX-treated inflorescence has early opening flowers and a short stem.

(G) Seedlings mock-treated from at 11 d of age, shown at 29 d old.

(H) Seedlings treated with DEX beginning at 11 d of age, shown at 29 d old. Arrow points to lobed leaf margins.

(I) Homozygous 35S:HAN-GR seedling germinated on a DEX plate at 9 d.

(J) SAM of 10-d-old wild-type seedling. M, SAM.

(K) and (L) SAMs of 10-d-old 35S:HAN-GR seedlings germinated on DEX plates. Arrows point to the SAMs.

(M) WUS expression in a 10-d-old 35S:HAN-GR seedling germinated on non-DEX plates.

(N) Absence of WUS expression in a 10-d-old 35S:HAN-GR seedling germinated on DEX plates.

(O) Non-DEX-induced control stomata with two guard cells.

(P) and (Q) Guard cells in 10-d-old and 6-d-old DEX-treated 35S:HAN-GR seedlings, respectively. Arrows point to stomata with five or seven guard

cells.

(R) Mock-treated 35S:HAN-GR root tip. Arrow points to the root cap.

(S) DEX-induced 35S:HAN-GR root tip.

Bars in (A) to (I) ¼ 1 mm; bars in (J) to (S) ¼ 50 mm (except for [Q], in which the bar ¼ 10 mm).
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diminished or absent, further indicating aberrant cell division

and positioning in HAN-overexpressing plants.

DISCUSSION

Functions of HAN in Flower Development

HAN mutations affect various aspects of flower development,

including floralmeristemsize, floral organ separation, floral organ

number and size, and floral organ identity. This indicates that

HAN plays multiple developmental roles. Because the floral

meristem size reduction precedes the other floral organ defects,

it could be the primary cause of the other defects. Reduced floral

meristem size suggests that HAN is important for controlling the

proliferation of floral meristem cells, which are embraced by the

cup-shaped HAN expression domain. WUS expression is more

diffuse inhan floralmeristems than in thewild type, and it couldbe

that a centered and high level of WUS expression, mediated by

HAN, is required forpromoting floralmeristemcell proliferation. In

addition, ectopic WUS expression in peripheral zone cells could

hinder their progression toward cell differentiation and therefore

repress organ primordium initiation. This might explain why floral

organ initiation in han floral meristems is delayed. On the other

hand, because the level of ectopicWUS expression in these cells

is low, theperipheral zonecellsmaynotbeable tobe transformed

into central zone cells and thus do not contribute to a larger floral

meristem. An alternative explanation for the reduced floral

meristem size is that, as HAN is expressed in cells appearing to

be the provascular tissue cells in as early as stage 1 flowers, the

HAN-expressing cells may serve to transport nutrients or signals

from other parts of the plant to the developing flower. In the case

of insufficient supply of these factors, growth of the floral

meristem is hindered.

However, unlike in SAM development where han mutations

interact synergistically with clv mutations (see below), han ap-

pears epistatic to clv in flower development. han clv double

mutants have similar or greater loss of floral organs than han

single mutants, indicating that the mode of action of the HAN

protein in controlling the proliferation of floral meristem cells may

be different from that in the SAM, or HAN may have additional

functions in flower development. The difference between HAN

function in thedevelopment ofSAMandflower is also reflectedby

the observation that wus is epistatic to han in SAM development

but not in flower development in wus/wus han-1/þ mutants

because these have reduced floral organ numbers compared

with wus single mutants. This suggests that HAN is required for

initiatingand/ormaintaining theproliferationoffloralmeristematic

cells inwusmutants.By contrast, the increased leaf-like or shoot-

like organs arising from the axils of leaves in wus han double

mutants compared with wus single mutants suggests that HAN

restricts meristematic cell activity in axillary meristem positions.

In addition to controlling floral meristem cell proliferation, HAN

also appears to act in establishing boundaries between different

whorls, as well as between different organ primordia in the same

whorl. One possible mechanism for the boundary establishment

is that HAN prevents cells expressing it from dividing, leading to

the gap between organ primordia. In han mutants, gaps fail to

form or bemaintained, therefore resulting in one of itsmajor floral

defects: organ fusions. This theory is supported by the observa-

tion that overexpression ofHAN causes growth retardation, small

organs, and abolished meristem activity.

The othermajor floral defect in hanmutants is decreased organ

numbers in all four whorls, particularly in the 2nd and 3rd whorls.

This could be a consequence of either reduced floral meristem

size preceding organ initiation, diminished boundary formation,

or both.

Interactions between HAN and the CLV-WUS Pathway

in SAM Development

The HAN expression domain overlaps with the WUS expression

domain during embryonic development, but HAN-expressing

cells surround WUS-expressing cells in mature SAMs, with the

possibility of some overlap. This suggests that, as in flower

development, HAN’s function in the SAM is to set up a boundary

between the meristem and nascent organ primordia, which is

required to confine WUS-expressing cells to a central domain.

The WUS expression domain is spatially perturbed in han

mutants beginning early in embryogenesis, before CLV3 and

CLV1 expression initiates. This is consistent with the loss ofWUS

RNA in HAN overexpression.

Mutations in HAN greatly enhance clv phenotypes, implying

that HAN may normally function to limit SAM size. Several

mutations have been shown to enhance clvmutant phenotypes,

including wiggum/enhanced response to abscisic acid1 and

ultrapetala (Running et al., 1998; Fletcher, 2001). However, unlike

the other enhancers, han loss of function does not lead to a SAM

fasciation phenotype. Rather, some han mutants show flat or

smaller SAMs toward the late stage of flowering. So how might

perturbed WUS expression be tied to gradually flattened and

reduced size of theSAM in hanmutants? It is possible that diffuse

WUS expression might result in a low level of WUS activity in

individual cells, causing meristem cells gradually to lose their

potency as stem cells, which may lead to flat and smaller SAMs.

This possibility is supported by the observation that in some han

inflorescence SAMs, the CLV3 domain also appears diffuse,

which could have resulted from the low level ofWUS expression.

In contrast with han mutants, clv mutants have an expanded

domain ofWUS expression as a result of SAM enlargement. The

different phenotypes of han and clv SAMsmay be attributable to

the fact that in the latter, WUS expression is not diffuse but is

located in two cell layers below the epidermal cells of the SAM,

and the expression level is fairly uniform across a single layer.

Therefore, the mechanisms through which HAN and CLV control

WUS-expressing cells are likely different. In either case, it is not

clear whether the expanded WUS expression is caused by

enhanced proliferation ofWUS-expressing cells or by peripheral

zone cells activating WUS expression.

Why thenmight the perturbedWUS expression in hanmutants

greatly enhance SAM fasciation in clv mutants? As mentioned

above, HAN may play a partially CLV-independent role in

restricting WUS expression to the L3 layer. A combination of

han and clvmutations could lead to moreWUS-expressing cells

in the outer cell layers and peripheral zone, as well as increased

levels of WUS expression, thus causing the formation of a more

fasciated meristem. Although the above scenario may account
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for the increased SAM fasciation in han/clv double mutants, we

cannot exclude the possibility that organ differentiation is further

delayed in han/clv than in han mutants, which might also

contribute to the accumulation of SAM cells.

The size variation of han mutant SAMs at different stages, as

well as the variation ofWUS andCLV3 expression in different han

mutant meristems, suggests that the structure of the han SAM is

dynamic and possibly self-correcting. Nevertheless, a more pre-

cise genetic control is required for a wild-type SAM, as han

mutant SAMs become more irregularly shaped and produce

more deformed organ primordia toward the later stages of

development. The dynamic aspect of the SAM is shown by the

observation that the WUS expression domain in wild-type in-

florescence SAMs is variable either beneath two cell layers or

(more often) three cell layers, suggesting that the WUS expres-

sion domain is fluctuatingwithin an individual SAMduring normal

development. Another indication of regulatory activity in the SAM

is the observation that in clv embryos,WUS expression is shifted

to the L2 layer at the heart stage but moves to the layers

underneath the L2 in mature embryos (Schoof et al., 2000). After

postembryonic development, the WUS domain shifts back to

include the L2 layer in clv inflorescence SAMs.We can speculate

that in han mutants, the dynamics of WUS-expressing cells are

imprecise, leading to a gradual disruption of the SAM structure.

In both clv1 and clv3mutants,HAN expression is elevated and

expanded along the fasciated SAM, overlapping with the WUS

expression domain. Because HAN expression is not changed

during clv3 mutant embryogenesis, the alteration of the HAN

domain happens during postembryonic development. Is there

any biological function of HAN expression in the outer layers of

the SAMs in clv3 and clv1 mutants, or is it a mere effect of the

altered SAM structure, causing the han domain to stretch

laterally? It is possible that ectopicHAN expression in clv3 SAMs

prevents WUS from further shifting toward the L2/L1 layer,

making it still concentrated in the layer below the L2 layer. This

explains why in the absence of both CLV and HAN functions,

WUS becomes concentrated in the L2 layer and sometimes even

shifted to the L1 layer. It is worth noting that HAN expression

remains fairly normal inclv3mutant flowers, further indicating that

themodeof action ofHAN in the floralmeristemmight bedifferent

from that in the SAM.

Effect of Differentiating Tissues on SAM Development

HAN is expressed in the provascular tissues below the WUS

domain and begins to overlap with the WUS domain during the

transition to the walking stick stage of embryogenesis. Later in

the adult SAM, HAN expression marks the boundaries between

the meristem and its initiating organs and between the WUS

domain and the differentiated stem tissues below, with overlap

between the HAN and WUS expression domains not being

excluded. The effect of HAN on WUS-expressing cells could be

direct during embryogenesis, but during postembryonic devel-

opment it seems likely to be non-cell-autonomous. This adds

another example of more mature cells exerting effects on

meristematic cell activities (Stuurman et al., 2002). One can

speculate that HAN-expressing cells could express certain

secreted factor(s) or that the HAN protein could move from cell

to cell via plasmodesmata to coordinate cell division/differenti-

ation activity of WUS-expressing cells or to prevent non-WUS-

expressing cells from activating WUS. In the absence of this

coordination or prevention, cell division and differentiation be-

come aberrant.

The han mutant phenotypes, HAN expression patterns, meri-

stem marker analysis in han mutants, and overexpression of

HAN all suggest that HAN is involved in regulating meristem cell

activity by setting up a boundary between the meristem and

differentiating organ primordia. In the event of HAN loss of

function, the meristematic structure becomes disorganized,

leading to meristem size reduction, reduced organ numbers

and size, and organ fusion. Further molecular and biochemical

studies will shed light on the mechanisms through which HAN

regulates these important developmental processes.

METHODS

Plant Growth

Seeds were imbibed at 48C cold room for 4 d before growth in con-

stant light at 228C. Plant age is calculated from the first day at 228C.

Seeds germinated on MS plates were sterilized as described at http://

plantpath.wisc.edu/;afb/vapster.html.

Isolation of han Alleles and Mapping of hanMutation

The han-1 allele (Clark et al., 1994) was isolated during T-DNA trans-

formation mutagenesis of Wassilewskija ecotype seeds. The han-2 allele

was isolated from an ethyl methanesulfonate mutagenesis screen in

Landsberg erecta (Ler). The han-3 and han-4 alleles were both isolated

from an activation-tagging screen in the clv1-1 mutant background

(Weigel et al., 2000). Each single han mutant was backcrossed to Ler

three times before phenotypic and genetic characterization.

The HAN gene was positionally mapped by crossing the han-1mutant

to the wild-type Columbia strain. DNA was prepared from 423 han-1

mutant plants in the T2 generation. Using cleaved amplified polymorphic

sequence markers, recombination events between han-1 and surround-

ing regions were identified (Konieczny and Ausubel, 1993). Using this

approach, theHAN regionwas narrowed down to BACclone ATF18B3 on

chromosome 3 (information about the polymorphic markers spanning

HAN region is available in the supplemental data online). Sequencing of

candidate genes revealed a 3262-bp DNA deletion at At3g50870 gene

locus in han-1, when compared with wild-type sequences.

Morphological Analyses

Scanning electron microscope images were generated as described

(Bowman et al., 1989). Confocal laser scanning microscopy images were

generated as described (Running et al., 1995).

For 49,6-diamidino-2-phenylindole staining, samples were fixed in

ethanol/acetic acid (3:1) for 4 h on ice, washed twice in PBT (13 PBS

with 0.1% Tween-20), each for 45 min, then stained with 1 mg/mL of 49,6-

diamidino-2-phenylindole in PBT for 15 min at room temperature. Sam-

ples were then rinsed four times with PBT and once with 25% glycerol.

They weremounted on depression slides with glycerol and observed with

a Zeiss LSM 510META NLO confocal microscope (Jena, Germany) using

a Chameleon titanium-sapphire laser at a wavelength of 760 nm.

In Situ Hybridization

HAN expression was examined by in situ hybridization using a full-length

cDNA probe. The results were also confirmed using a 620-bp HAN DNA
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fragment starting from 170 bp upstream of the start codon and ending

before the zinc finger domain (data not shown). Both HAN probes were

tested on han-1 mutant samples and did not detect any specific signals.

WUS, CLV3, and CLV1 probes were generated as described previously

(Clark et al., 1997; Mayer et al., 1998; Brand et al., 2000). Apparent han-1

embryos were determined by the deviation of their morphology from the

wild type in serial sections. ForWUSandCLV3probes, sectionsof thewild

type and hanmutant inflorescenceswere hybridized on the same slides or

on different slides but were paired in sandwiches during probe hybrid-

ization, antibody incubation, and antibody detection. Conditions for all

slides were identical in the remaining procedures. In situ hybridization

was done by following the protocol at http://www.its.caltech.edu/

;plantlab/html/protocols.html with the following modifications. (1) After

antibody reaction followed by four washes with antibody buffer, slides

were equilibrated in detection buffer for 10 min (100 mM Tris-HCl, pH 9,

100 mM NaCl, and 50 mM MgCl2). Excess detection buffer was blotted

off, and slides were then incubated with substrate solution (0.2 mM

5-bromo-4-chloro-3-indolyl phosphate and 0.2mM nitro blue tetrazolium

in detectionbufferwith 10% [w/v] polyvinyl alcohol [70 kD]) for 12 to 24hat

308C in darkness. (2) Slides were rinsed three times in distilled water to

stop the detection reaction and mounted with 50% glycerol for observa-

tion under the microscope.

Construction of 35S:HAN and 35S:HAN-GR Lines

Both constructs were generated using the pGreen 0229 vector containing

a 23 35S promoter and a nopaline synthase terminator (http://

www.pgreen.ac.uk/JIT/pGreen0000_fr.htm). Transformation was per-

formed in Ler plants (see protocol at http://plantpath.wisc.edu/;afb/

protocol.html from Andrew Bent’s lab in University of Illinois at

Urbana-Champaign).

DEX Solution and Mock Solution

DEX stock solution (10 mM in ethanol) was stored at �208C for up to 2

weeks. DEX solution (10 mM) was made by diluting the stock solution in

pure water with or without 0.01% Triton X-100 (for inflorescences or soil,

respectively). Mock solution consists of an equal concentration of ethanol

and Triton X-100 in water per the final DEX solution.
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