Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Aug 1;88(15):6437–6441. doi: 10.1073/pnas.88.15.6437

Crosslinking the active site of sarcoplasmic reticulum Ca(2+)-ATPase completely blocks Ca2+ release to the vesicle lumen.

D B McIntosh 1, D C Ross 1, P Champeil 1, F Guillain 1
PMCID: PMC52100  PMID: 1830661

Abstract

Intramolecular crosslinking of the active site of the sarcoplasmic reticulum Ca(2+)-ATPase with glutaraldehyde results in substantial inhibition of ATPase activity and stabilization of the ADP-sensitive E1 approximately P(2Ca) intermediate (E, enzyme) with occluded Ca2+ [Ross, D. C., Davidson, G. A. & McIntosh, D. B. (1991) J. Biol. Chem. 266, 4613-4621]. We show here, using conditions of low passive vesicle permeability and absence of ADP, that Ca2+ "deoccludes" more rapidly than it leaks out of the vesicle lumen. Deocclusion is paralleled by dephosphorylation. Therefore, turnover of crosslinked E1 approximately P(Ca) (approximately 5 nmol/min per mg of protein at 25 degrees C) involves Ca2+ release to the vesicle exterior and concomitant phosphoenzyme hydrolysis. Ca2+ release to the lumen, the normal pathway, is apparently blocked completely. In the presence of ADP, Ca2+ is also released to the vesicle exterior, and this release is coupled to the synthesis of ATP. The results suggest that a tertiary structural change at the active site follows phosphorylation and is an absolute requirement for Ca2+ release from the native enzyme to the vesicle lumen.

Full text

PDF
6437

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bodley A. L., Jencks W. P. Acetyl phosphate as a substrate for the calcium ATPase of sarcoplasmic reticulum. J Biol Chem. 1987 Oct 15;262(29):13997–14004. [PubMed] [Google Scholar]
  2. Champeil P., Guillain F., Vénien C., Gingold M. P. Interaction of magnesium and inorganic phosphate with calcium-deprived sarcoplasmic reticulum adenosinetriphosphatase as reflected by organic solvent induced perturbation. Biochemistry. 1985 Jan 1;24(1):69–81. doi: 10.1021/bi00322a012. [DOI] [PubMed] [Google Scholar]
  3. Clarke D. M., Maruyama K., Loo T. W., Leberer E., Inesi G., MacLennan D. H. Functional consequences of glutamate, aspartate, glutamine, and asparagine mutations in the stalk sector of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem. 1989 Jul 5;264(19):11246–11251. [PubMed] [Google Scholar]
  4. Dupont Y. Occlusion of divalent cations in the phosphorylated calcium pump of sarcoplasmic reticulum. Eur J Biochem. 1980 Aug;109(1):231–238. doi: 10.1111/j.1432-1033.1980.tb04788.x. [DOI] [PubMed] [Google Scholar]
  5. Fernández Belda F., García de Ancos J., Inesi G. Fluorometric titration of the sarcoplasmic reticulum adenosinetriphosphatase calcium sites in the presence of vanadate. Biochim Biophys Acta. 1986 Jan 29;854(2):257–264. doi: 10.1016/0005-2736(86)90118-5. [DOI] [PubMed] [Google Scholar]
  6. Froehlich J. P., Heller P. F. Transient-state kinetics of the ADP-insensitive phosphoenzyme in sarcoplasmic reticulum: implications for transient-state calcium translocation. Biochemistry. 1985 Jan 1;24(1):126–136. doi: 10.1021/bi00322a018. [DOI] [PubMed] [Google Scholar]
  7. Inesi G. Sequential mechanism of calcium binding and translocation in sarcoplasmic reticulum adenosine triphosphatase. J Biol Chem. 1987 Dec 5;262(34):16338–16342. [PubMed] [Google Scholar]
  8. Inesi G., de Meis L. Regulation of steady state filling in sarcoplasmic reticulum. Roles of back-inhibition, leakage, and slippage of the calcium pump. J Biol Chem. 1989 Apr 5;264(10):5929–5936. [PubMed] [Google Scholar]
  9. Jencks W. P. The utilization of binding energy in coupled vectorial processes. Adv Enzymol Relat Areas Mol Biol. 1980;51:75–106. doi: 10.1002/9780470122969.ch2. [DOI] [PubMed] [Google Scholar]
  10. Kawakita M., Yasuoka K., Kaziro Y. Selective modification of functionally distinct sulfhydryl groups of sarcoplasmic reticulum Ca2+,Mg2+-adenosine triphosphatase with N-ethylmaleimide. J Biochem. 1980 Feb;87(2):609–617. doi: 10.1093/oxfordjournals.jbchem.a132785. [DOI] [PubMed] [Google Scholar]
  11. MacLennan D. H., Brandl C. J., Korczak B., Green N. M. Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature. 1985 Aug 22;316(6030):696–700. doi: 10.1038/316696a0. [DOI] [PubMed] [Google Scholar]
  12. Medda P., Hasselbach W. The vanadate complex of the calcium-transport ATPase of the sarcoplasmic reticulum, its formation and dissociation. Eur J Biochem. 1983 Dec 1;137(1-2):7–14. doi: 10.1111/j.1432-1033.1983.tb07788.x. [DOI] [PubMed] [Google Scholar]
  13. Nakamura Y., Tonomura Y. Changes in affinity for calcium ions with the formation of two kinds of phosphoenzyme in the Ca2+,Mg2+-dependent ATPase of sarcoplasmic reticulum. J Biochem. 1982 Feb;91(2):449–461. doi: 10.1093/oxfordjournals.jbchem.a133717. [DOI] [PubMed] [Google Scholar]
  14. Nir S., Stegmann T., Wilschut J. Fusion of influenza virus with cardiolipin liposomes at low pH: mass action analysis of kinetics and extent. Biochemistry. 1986 Jan 14;25(1):257–266. doi: 10.1021/bi00349a036. [DOI] [PubMed] [Google Scholar]
  15. Orlowski S., Champeil P. Kinetics of calcium dissociation from its high-affinity transport sites on sarcoplasmic reticulum ATPase. Biochemistry. 1991 Jan 15;30(2):352–361. doi: 10.1021/bi00216a007. [DOI] [PubMed] [Google Scholar]
  16. Petithory J. R., Jencks W. P. Binding of Ca2+ to the calcium adenosinetriphosphatase of sarcoplasmic reticulum. Biochemistry. 1988 Nov 15;27(23):8626–8635. doi: 10.1021/bi00423a018. [DOI] [PubMed] [Google Scholar]
  17. Petithory J. R., Jencks W. P. Phosphorylation of the calcium adenosinetriphosphatase of sarcoplasmic reticulum: rate-limiting conformational change followed by rapid phosphoryl transfer. Biochemistry. 1986 Aug 12;25(16):4493–4497. doi: 10.1021/bi00364a006. [DOI] [PubMed] [Google Scholar]
  18. Ross D. C., Davidson G. A., McIntosh D. B. Mechanism of inhibition of sarcoplasmic reticulum Ca2(+)-ATPase by active site cross-linking. Impairment of nucleotide binding slows nucleotide-dependent phosphoryl transfer, and loss of active site flexibility stabilizes occluded forms and blocks E2-P formation. J Biol Chem. 1991 Mar 5;266(7):4613–4621. [PubMed] [Google Scholar]
  19. Ross D. C., McIntosh D. B. Intramolecular cross-linking at the active site of the Ca2+-ATPase of sarcoplasmic reticulum. High and low affinity nucleotide binding and evidence of active site closure in E2-P. J Biol Chem. 1987 Sep 25;262(27):12977–12983. [PubMed] [Google Scholar]
  20. Ross D. C., McIntosh D. B. Intramolecular cross-linking of domains at the active site links A1 and B subfragments of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem. 1987 Feb 15;262(5):2042–2049. [PubMed] [Google Scholar]
  21. Scofano H. M., Vieyra A., de Meis L. Substrate regulation of the sarcoplasmic reticulum ATPase. Transient kinetic studies. J Biol Chem. 1979 Oct 25;254(20):10227–10231. [PubMed] [Google Scholar]
  22. Shigekawa M., Dougherty J. P. Reaction mechanism of Ca2+-dependent ATP hydrolysis by skeletal muscle sarcoplasmic reticulum in the absence of added alkali metal salts. III. Sequential occurrence of ADP-sensitive and ADP-insensitive phosphoenzymes. J Biol Chem. 1978 Mar 10;253(5):1458–1464. [PubMed] [Google Scholar]
  23. Sorenson M. M. Calcium control of passive permeability to calcium in sarcoplasmic reticulum vesicles. J Biol Chem. 1983 Jun 25;258(12):7684–7690. [PubMed] [Google Scholar]
  24. Stahl N., Jencks W. P. Reactions of the sarcoplasmic reticulum calcium adenosinetriphosphatase with adenosine 5'-triphosphate and Ca2+ that are not satisfactorily described by an E1-E2 model. Biochemistry. 1987 Dec 1;26(24):7654–7667. doi: 10.1021/bi00398a019. [DOI] [PubMed] [Google Scholar]
  25. Takisawa H., Makinose M. Occlusion of calcium in the ADP-sensitive phosphoenzyme of the adenosine triphosphatase of sarcoplasmic reticulum. J Biol Chem. 1983 Mar 10;258(5):2986–2992. [PubMed] [Google Scholar]
  26. Verjovski-Almeida S., Kurzmack M., Inesi G. Partial reactions in the catalytic and transport cycle of sarcoplasmic reticulum ATPase. Biochemistry. 1978 Nov 14;17(23):5006–5013. doi: 10.1021/bi00616a023. [DOI] [PubMed] [Google Scholar]
  27. Vilsen B., Andersen J. P. Occlusion of Ca2+ in soluble monomeric sarcoplasmic reticulum Ca2+-ATPase. Biochim Biophys Acta. 1986 Mar 13;855(3):429–431. doi: 10.1016/0005-2736(86)90089-1. [DOI] [PubMed] [Google Scholar]
  28. Wakabayashi S., Shigekawa M. Effect of metal bound to the substrate site on calcium release from the phosphoenzyme intermediate of sarcoplasmic reticulum ATPase. J Biol Chem. 1987 Aug 25;262(24):11524–11531. [PubMed] [Google Scholar]
  29. Yamamoto T., Tonomura Y. Reaction mechanism of the Ca++ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Kinetic studies. J Biochem. 1967 Nov;62(5):558–575. doi: 10.1093/oxfordjournals.jbchem.a128706. [DOI] [PubMed] [Google Scholar]
  30. le Maire M., Lund S., Viel A., Champeil P., Moller J. V. Ca2(+)-induced conformational changes and location of Ca2+ transport sites in sarcoplasmic reticulum Ca2(+)-ATPase as detected by the use of proteolytic enzyme (V8). J Biol Chem. 1990 Jan 15;265(2):1111–1123. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES