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Prostaglandin E2 promotes intestinal repair
through an adaptive cellular response of
the epithelium
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Abstract

Adaptive cellular responses are often required during wound repair.
Following disruption of the intestinal epithelium, wound-associated
epithelial (WAE) cells form the initial barrier over the wound. Our
goal was to determine the critical factor that promotes WAE cell
differentiation. Using an adaptation of our in vitro primary epithelial
cell culture system, we found that prostaglandin E2 (PGE2) signaling
through one of its receptors, Ptger4, was sufficient to drive a
differentiation state morphologically and transcriptionally similar to
in vivo WAE cells. WAE cell differentiation was a permanent state
and dominant over enterocyte differentiation in plasticity experiments.
WAE cell differentiation was triggered by nuclear b-catenin
signaling independent of canonical Wnt signaling. Creation of WAE
cells via the PGE2-Ptger4 pathway was required in vivo, as mice
with loss of Ptger4 in the intestinal epithelium did not produce
WAE cells and exhibited impaired wound repair. Our results
demonstrate a mechanism by which WAE cells are formed by PGE2
and suggest a process of adaptive cellular reprogramming of the
intestinal epithelium that occurs to ensure proper repair to injury.
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Introduction

The intestinal epithelium is comprised of a single layer of columnar

epithelial cells that separate the luminal contents from the rich

networks of vascular, structural, and immune cells that reside in the

lamina propria. This semipermeable cellular barrier functions to

reduce exposure to pathogenic and commensal microbes, toxins,

and other immunogenic substances (Turner, 2009). During homeo-

stasis, the epithelial cell barrier is maintained by highly active stem

cells residing at the base of the crypts that provide continuous and

perpetual cell renewal, with the majority of the differentiated cells

being replaced every 3–5 days (Cheng & Leblond, 1974b; Potten

et al, 1992; Crosnier et al, 2006; Barker et al, 2007; Noah et al,

2011). However, in response to injury (i.e. infection, ischemia, toxin

exposure), additional mechanisms are rapidly implemented to restore

the epithelial barrier. Delay or failure to do so can facilitate exposure

to luminal antigens and potentially direct invasion of luminal micro-

organisms into the host, resulting in a heightened pro-inflammatory

response, worsened tissue damage, and systemic infection.

Adaptive cellular responses are triggered by injury or damage to

promote the survival and regeneration of a diverse array of mamma-

lian tissues. Two general classes of these responses have been

recognized. In one state, a transient class of repair cells is formed

that has an atypical differentiation state for that tissue. In a second

state, cells lost during damage are directly replaced (Jessen et al,

2015). The intestinal epithelium appears to employ the first

approach in a process termed epithelial restitution (Svanes et al,

1982; Ito et al, 1984; Lacy, 1988). The critical driver is a transient,

specialized repair cell type, which we subsequently termed wound-

associated epithelial (WAE) cells (Seno et al, 2009; Stappenbeck &

Miyoshi, 2009). These atypical epithelial cells migrate over the

surfaces of intestinal wounds within minutes to hours after injury to

re-establish the epithelial barrier. The initial restitution phase of

repair does not depend on altered cellular proliferation rates of

nearby stem cells (Podolsky, 1999; Dignass, 2001); however, a

subsequent repair phase requires enhanced proliferation of stem

and progenitor cells in the crypts adjacent to the wound to replace

crypts lost during severe damage (Seno et al, 2009).

Several factors have been proposed to affect epithelial restitution,

including growth factors (e.g. TGF-b, EGF, IGF-1), cytokines (e.g.

IL-2, IFN-c, IL-1b), and a variety of peptide (e.g. trefoil factors) and

non-peptide (e.g. lysophosphatidic acid, polyamines, short chain

fatty acids) molecules (Moore et al, 1989, 1992; Nusrat et al, 1992;
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Dignass & Podolsky, 1993; Dignass et al, 1994; Wilson & Gibson,

1997; Dignass, 2001). However, due to the limitations of the experi-

mental model systems used in these previous studies, it is still

unclear as to which of these factors, if any, are necessary and suffi-

cient for the WAE cell formation that occurs in the initial phase of

repair. Understanding the regulation of such WAE mediators in the

intestine could provide a potential avenue for regenerative

therapies.

We and others have modeled WAE cells in vivo using a biopsy

injury system to generate focal wounds in the mouse colon. This

method allows the investigator to study mucosal repair with

control over spatial and temporal variables (Becker et al, 2005;

Seno et al, 2009; Manieri et al, 2012, 2015; Miyoshi et al, 2012;

Leoni et al, 2013). Following biopsy injury, wound surfaces are

rapidly covered by WAE cells (Seno et al, 2009). Multiple lineage

tracing models have shown that these WAE cells emanate from

crypts adjacent to the wounded area and are replaced by columnar

epithelial cells in a subsequent repair phase (Seno et al, 2009;

Miyoshi et al, 2012). With this injury method, we found that mice

deficient for prostaglandin-endoperoxide synthase 2 (Ptgs2), which

encodes the inducible prostaglandin synthase family member

cyclooxygenase 2, have multiple defects in repair including incom-

plete covering of biopsy wounds with WAE cells (Manieri et al,

2012, 2015). Prostaglandins likely exert their effects near their site

of production due to their chemical and/or metabolic instability

(Narumiya et al, 1999; Matsuoka & Narumiya, 2007). We previ-

ously found that Ptgs2-expressing mesenchymal stem cells localize

specifically in the colonic wound bed in close association with

crypts adjacent to the wound and their associated WAE cells

(Manieri et al, 2012). From these observations, we reasoned that

prostaglandins were promising candidate molecules to investigate

for capacity to directly induce adaptive cellular reprogramming of

the intestinal epithelium and stimulate WAE cell formation during

early wound repair.

Ptgs2-mediated synthesis of prostaglandins increases during

acute inflammation, and the resulting influx of these lipid mediators

acts to orchestrate pro-inflammatory and anti-inflammatory

responses in a cell type- and context-dependent manner (Ricciotti &

FitzGerald, 2011; Kalinski, 2012). Thus, to study the direct effects of

prostaglandins on intestinal epithelial cells, we utilized our culture

system for primary intestinal epithelial cells (Miyoshi et al, 2012;

Miyoshi & Stappenbeck, 2013). With this system, primary epithelial

cell lines are generated from any region of the gastrointestinal tract

and propagated as spheroids enriched for epithelial stem cells in a

conditioned media containing Wnt3a, R-spondin 3, and noggin

(Miyoshi & Stappenbeck, 2013), the critical factors that support

intestinal stem cell growth (Sato et al, 2009). As WAE cells are

known to be post-mitotic (Lacy, 1988), a key advantage of the

spheroid culture system is that withdrawal of the conditioned

medium promotes exit from the cell cycle and differentiation to

mature intestinal epithelial cell types (Miyoshi et al, 2012; Patel

et al, 2013; Moon et al, 2014; Sun et al, 2015; VanDussen et al,

2015). Here, we use this culture system to show that prostaglandin

E2 (PGE2) signals through the EP4 receptor on epithelial stem and/

or progenitor cells to directly induce WAE cells and validate these

findings in vivo with our biopsy injury model and a genetic

mouse lacking EP4 receptor expression specifically in the intestinal

epithelium.

Results

PGE2 induces differentiation of intestinal epithelial stem cells to
WAE cells through EP4

To investigate whether prostaglandins can directly promote the

formation of WAE cells, we utilized our culture system for

primary intestinal epithelial cells (Miyoshi et al, 2012; Miyoshi &

Stappenbeck, 2013). Stem cell-enriched spheroids from the

jejunum were passaged and then cultured in serum- and canoni-

cal Wnt-free differentiation medium (supplemented with EGF) for

24 h in the absence or presence of stabilized PGE2 analog

16,16-dimethyl PGE2 (dmPGE2; Narumiya et al, 1999) or prosta-

glandin I2 (PGI2) analog iloprost (Schror et al, 1981; Abramovitz

et al, 2000) (Fig 1A). These two prostaglandins rescue repair

defects in Ptgs2-deficient mice (Walker et al, 2010; Manieri et al,

2012). Treatment with dmPGE2 stimulated WAE cell formation.

There was a dose-dependent effect on spheroid size (Fig 1B and

C), cell flattening (Fig 1D), and mRNA expression of the one

previously described WAE cell marker, Claudin-4 (Cldn4) (Seno

et al, 2009; Fig 1E). In contrast, spheroids treated with the PGI2
analog iloprost did not stimulate WAE cell phenotypes at equiva-

lent dosages (Fig 1F). Thus, PGE2 treatment appeared to directly

stimulate WAE cells.

PGE2 can signal through four prostaglandin E receptors: Ptger1

(encoding EP1), Ptger2 (encoding EP2), Ptger3 (encoding EP3),

and Ptger4 (encoding EP4; Narumiya et al, 1999). All four of these

receptors were readily detectable in whole organ preparations of

lung, small intestine, and colon (Fig 2A). In contrast, only Ptger1

and Ptger4 mRNAs, but not Ptger2 or Ptger3 mRNAs, were detect-

able in jejunal spheroid epithelial cells (Fig 2A). The PGI2 receptor

Ptgir was also undetectable in the spheroids. These data corrobo-

rated a previous in situ hybridization study reporting mRNA

expression of Ptger1 and Ptger4 throughout the intestinal epithe-

lium (Morimoto et al, 1997) and our own validation of Ptger4

mRNA localization (Appendix Fig S1). To determine which cellular

receptor mediated the effects of PGE2 on WAE cell formation,

spheroids were treated with dmPGE2 and specific pharmacological

inhibitors for EP1 (SC 51322), EP2 (PF 04418948), EP3

(L-798,106), or EP4 (L-161,982). Of these, only EP4 inhibitor

(EP4i) blocked the dmPGE2-induced WAE formation (Fig 2B–D).

These results support a role for dmPGE2 signaling through EP4 to

promote WAE formation. We next utilized a genetic model of

Ptger4 deficiency to confirm the effect of the PGE2-EP4 signaling

pathway on WAE formation. Spheroid lines were established from

the jejunum of the Ptger4flox/flox mouse (Schneider et al, 2004) and

delivered transient recombinant Tat-Cre (Shaw et al, 2008;

Morimoto et al, 2010; Patel et al, 2013) to generate heterozygous

Ptger4flox/D and knockout Ptger4D/D spheroid lines (Fig 2E and F).

Ptger4D/D spheroids did not make WAE cells by any of the above

criteria (Fig 2G–I).

We then tested whether PGE2 signaling through EP4 was impor-

tant for the formation of WAE cells in human lines. In response to

treatment with dmPGE2, human ileal spheroids exhibited morpho-

logical changes and induction of CLDN4 mRNA (Fig 2J–L) similar to

mouse spheroids. EP4i blocked these responses (Fig 2J–L). Thus,

PGE2-EP4 signaling appears to be a conserved mechanism in mouse

and human.
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In vitro-induced WAE cells resemble WAE cells in vivo

Our next goals were to validate that PGE2-treated cells highly

resembled WAE cells and to identify additional markers to

describe this cell population more precisely. To do this, we

performed microarray transcriptional profiling of these cells

compared to stem cell-enriched spheroids as well as EP4i-treated

spheroids (Fig 3A). We used EP4i-treated cells to eliminate the

effects of endogenous PGE2 present in the culture medium or

produced by the spheroid epithelial cells. We observed signifi-

cant and differential expression of 11,925 probes between the

groups of cells. Unsupervised hierarchical clustering showed that

dmPGE2-treated and EP4i-treated spheroids were more related to

each other than to stem cells (Fig 3B). The clustering analysis

also highlighted six major gene clusters. Detailed analysis of

these clusters developed the hypothesis that stimulation or

inhibition of PGE2 signaling directed distinct differentiation

states.

The two largest clusters corresponded to genes that encode

mRNAs either highly expressed in stem cell spheroids (Cluster 1;

5,289 probes) or in post-mitotic intestinal epithelial cells (Cluster 4;

4,636 probes). Cluster 1 was enriched for cell cycle and mRNA

processing pathways and cellular component gene ontology (GO)

terms related to the nucleus, whereas Cluster 4 was enriched for

metabolism pathways and GO terms related to the endoplasmic

reticulum (Fig 3C and D), suggesting that mitotic state is driving the

major transcriptional feature distinguishing stem cell spheroids from

dmPGE2- or EP4i-treated spheroids. We validated that PGE2- and

EP4i-treated cells were post-mitotic by assessing proliferation with

an EdU incorporation assay (Fig 3E and F) and a spheroid prolifera-

tion reporter line (Cdc25a-CRBLuc; Fig 3G; Sun et al, 2015).

Additionally, the mRNA levels of the intestinal stem cell marker

A

B
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Figure 1. Prostaglandin E2 induces differentiation of intestinal epithelial stem cells to wound-associated epithelial cells.

A Schematic of spheroid differentiation method. L-WRN CM, conditioned medium from an L cell line engineered to secrete Wnt3a, R-spondin 3, and noggin. Y-27632,
ROCK inhibitor. EGF, epidermal growth factor.

B–F Mouse jejunal spheroids were cultured in differentiation medium containing 0–1,000 nM dmPGE2 or iloprost. (B) Representative bright-field images of
spheroids treated with dmPGE2. Scale bars, 200 lm. (C) Quantification of average spheroid area � s.e.m. relative to spheroids treated with 0 nM dmPGE2
(average area was 3,761 lm2 for 0 nM group; n = 4 images with a minimum of 50 spheroids counted from two independent experiments). (D)
Representative histological sections of spheroids treated with 1 lM dmPGE2 or an equivalent volume of DMSO and stained with hematoxylin. Scale bars,
100 lm. (E) Quantification of the average expression � s.e.m. of Cldn4 mRNA relative to the 0 nM treatment group (n = 3 independent experiments). (F)
Quantification of average spheroid area � s.e.m. relative to spheroids treated with 0 nM iloprost (n = 4 images with a minimum of 50 spheroids counted
from two independent experiments). ***P < 0.001, ****P < 0.0001 by one-way ANOVA and Dunnett’s post-test.
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leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5)

(Barker et al, 2007) and the proliferation marker antigen identified

by monoclonal antibody Ki-67 (Mki67) (Iatropoulos & Williams,

1996) were lower in PGE2- and EP4i-treated spheroids than stem cells

(Fig 3H). We also found that dmPGE2 treatment had no obvious

effects on the proliferation of stem cell spheroids (Appendix Fig S2).

A

B

C D E F

G
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J K L

Figure 2.
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Two gene clusters discriminated PGE2-treated cells, Cluster 5

(616 probes) and Cluster 6 (701 probes) (Fig 3B). These clusters

contained genes associated with focal adhesion, cell junction organi-

zation, regulation of actin cytoskeleton, and the MAPK and Rap1

signaling pathways (Fig 4A and B). These functions and pathways

are consistent with the migratory properties of WAE cells (Dignass,

2001; Blikslager et al, 2007).

To confirm that in vitro WAE cells were transcriptionally similar

to in vivo WAE cells, we compared the gene sets from Cluster 5

and Cluster 6 to previous microarray data obtained from laser

capture microdissected WAE cells that covered colonic biopsy

wounds (Miyoshi et al, 2012). We found a statistically significant

overlap of the in vivo and in vitro WAE cell gene sets (P = 0.0026)

by hypergeometric probability test and similar pathway overrepre-

sentation (Fig 4C). One difference between these two data sets

was that the in vivo WAE cell cluster was additionally enriched for

genes associated with cytokine and chemokine signaling pathways,

which was likely a consequence of the inflammatory response that

occurred in the wound bed. These data suggest that small intesti-

nal WAE cells generated in vitro have similarity to colonic WAE

cells in vivo.

Cellular markers to distinguish WAE cells are lacking. We previ-

ously reported Cldn4 protein expression in WAE cells in vivo (Seno

et al, 2009). We confirmed this expression pattern in WAE cells

generated in vitro (Fig 4D). Cldn4 mRNA robustly distinguishes

dmPGE2- and EP4i-treated spheroids, but is also expressed in stem

cell-enriched spheroids (Fig EV1). Despite this, mitotic state (Fig 3)

and morphology (Fig EV1) can be used to distinguish stem and

WAE spheroids. Thus, we used our transcriptional profiling data to

identify additional mRNA markers that were enriched in dmPGE2-

treated spheroids as compared to both stem and EP4i-treated

spheroids. We validated the genes diffuse panbronchiolitis critical

region 1 (Dpcr1) and CD55 decay accelerating factor for

complement B (Cd55b; also known as Daf2) as novel mRNA mark-

ers for WAE cells that were induced by PGE2 signaling through EP4

receptor in mouse and human small intestinal epithelial cells as well

as mouse colonic epithelial cells (Figs 4E and F, and EV2).

To further confirm that in vitro WAE cells resembled in vivo

WAE cells, we next compared their ultrastructure and histology.

Cells treated with dmPGE2 had an increased cytoplasmic to nuclear

ratio compared to spheroid stem cells and an apical brush border

(although the microvilli were short), consistent with being a

◀ Figure 2. PGE2 signals through the prostaglandin receptor EP4 to induce differentiation of wound-associated epithelial cells.

A Quantification of the average expression � s.e.m. of Ptger1, Ptger2, Ptger3, Ptger4, and Ptgir mRNAs in whole-thickness mouse lung, ileum, or colon tissues or in
jejunal spheroids cultured in stem cell (Stem), WAE (dmPGE2), or enterocyte (EP4i) medium (n = 3 independent experiments). Data are presented as fold change
compared to lung tissue. n.d., not detected.

B–D Mouse jejunal spheroids were cultured in differentiation medium with DMSO only or with 1 lM dmPGE2 and pharmacological inhibitors of EP1 (EP1i, SC 51322),
EP2 (EP2i, PF 04418948), EP3 (EP3i, L-798,106), or EP4 (EP4i, L-161,982) at a concentration of 10 lM or an equivalent volume of DMSO vehicle. **P < 0.01,
***P < 0.001, ****P < 0.0001 compared to the DMSO only group by one-way ANOVA and Dunnett’s post-test. (B) Representative bright-field images. Scale bars,
200 lm. (C) Quantification of average spheroid area � s.e.m. relative to spheroids treated with DMSO alone (n = 4 images with a minimum of 50 spheroids
counted from two independent experiments). (D) Quantification of the average expression � s.e.m. of Cldn4 mRNA relative to stem cell spheroids (n = 3
independent experiments).

E, F Tat-Cre mediated recombination of Ptger4flox/flox (fl/fl) jejunal spheroids to generate Ptger4flox/D (fl/D) and Ptger4D/D (D/D) spheroid lines. (E) Schematic and
representative PCR genotyping results. M, marker lane. bp, base pairs. (F) Quantification of the average expression � s.e.m. of Ptger4 mRNA in spheroids cultured
in stem cell media relative to fl/fl genotype (n = 3 independent experiments). ***P < 0.001 by two-way ANOVA and Dunnett’s multiple comparisons post-test with
the EP4i-treated fl/fl group set as the control.

G–I Ptger4flox/flox, Ptger4flox/D, and Ptger4D/D spheroids were cultured in differentiation medium with 1 lM dmPGE2 or 10 lM EP4i. **P < 0.01, ****P < 0.0001 by one-
way ANOVA and Tukey’s post-test. (G) Representative bright-field images. Scale bars, 200 lm. (H) Quantification of average spheroid area � s.e.m. (n = 4 images
with a minimum of 50 spheroids counted per group from two independent experiments) and (I) average expression � s.e.m. of Cldn4 mRNA (n = 3 independent
experiments) relative to EP4i-treated Ptger4flox/flox spheroids.

J–L Human ileal spheroids were cultured in differentiation medium with 1 lM dmPGE2 or 10 lM EP4i. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by one-way
ANOVA and Tukey’s post-test. (J) Representative bright-field images. Scale bars, 200 lm. (K) Quantification of average spheroid area � s.e.m. (n = 4 images with a
minimum of 50 spheroids counted per group from three independent donor lines examined over 3 passages each) and (L) the average expression � s.e.m. of
CLDN4 mRNA (n = 3 independent donor lines) relative to stem spheroids.

◀ Figure 3. Spheroids differentiated with dmPGE2 or EP4i are composed of post-mitotic intestinal epithelial cells.

A Schematic of method used to generate stem cell, enterocyte, and WAE cell groups.
B Heatmap showing unsupervised hierarchical clustering of genes that were significantly (FDR-adjusted P < 0.05) and differentially expressed between the three

groups (n = 4 samples per treatment from two independent experiments). Each column is one sample and each row is one gene. Red and blue indicate genes with
enriched or de-enriched mRNA expression in a particular group, respectively. The dendrogram for the gene clustering is colored to highlight major gene clusters 1–
6. The number of probes in each cluster is in parentheses.

C, D Graphs showing the top five most significant pathways (C) and gene ontology cellular component terms (D) associated with Cluster 1 and Cluster 4.
E, F Spheroids were cultured as indicated for 24 h followed by a 1-h pulse with EdU to mark the cells undergoing DNA synthesis. (E) Representative images of EdU

staining (red). Nuclei are visualized with bisbenzimide (blue). Scale bars, 20 lm. (F) Quantification of EdU-positive nuclei � s.e.m. as a percent of the total nuclei
(n = minimum of 15 spheroids counted per sample from two independent experiments). ****P < 0.0001 by one-way ANOVA and Tukey’s post-test.

G Graph of the fold change in background-subtracted luminescence � s.e.m. (relative to 0 h measurement) of Cdc25A-CBRLuc spheroids (n = 3 independent
experiments with four technical replicates). ****P < 0.0001 for dmPGE2- and EP4i-treated spheroids compared to stem cells by repeated measures two-way ANOVA
(variable = treatment). P < 0.001 at the 16, 20, and 24 h time points by Dunnett’s post-test comparing dmPGE2-treated and EP4i-treated spheroids to the stem
cell control.

H Quantification of the average expression � s.e.m. of Lgr5 and Mki67 mRNAs in jejunal spheroids cultured in stem cell (Stem) or in differentiation medium with the
indicated supplements relative to the stem cell group (n = 3 independent experiments). **P < 0.01, ****P < 0.0001 by one-way ANOVA and Dunnett’s post-test.
n.d., not detected.
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differentiated intestinal epithelial cell type (Fig 4G–I). The cyto-

plasm of these cells contained prominent vacuoles and lysosomes,

consistent with highly migratory cells (Tuloup-Minguez et al, 2013;

Fig 4J). These features are in accordance with GO term analysis of

the WAE cell gene clusters, which showed enrichment for vacuolar

and lysosomal membrane terms (Fig 4B). In vivo WAE cells shared

similar ultrastructural features (Fig 4G). We next examined histo-

logical sections stained for F-actin to visualize the brush border and

A B

C D

E F

G H

Figure 3.
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b-catenin to visualize the plasma membrane. The dmPGE2-treated

spheroids were composed of flattened, squamous cells with thin

apical F-actin staining, similar to in vivo WAE cells (diclofenac-

induced ulcer) (Fig 4K). Together, these data demonstrate that the

transcriptional, histological, and ultrastructural features of the WAE

cells generated in vitro upon dmPGE2 treatment closely resemble

WAE cells observed in vivo.

Inhibition or absence of PGE2-EP4 signaling leads to
enterocyte differentiation

We noted that the EP4i-treated cells exhibited a columnar shape and

apical enrichment for F-actin, features consistent with enterocytes

(Fig 5A; Crawley et al, 2014). Therefore, we analyzed the genes

most highly enriched after EP4i treatment and found many genes

known to be highly enriched in enterocytes, including Fabp1, Ace2,

and Maoa (Iemhoff & Hulsmann, 1971; Gordon et al, 1985;

Sivasubramaniam et al, 2003; Hamming et al, 2004; Narisawa et al,

2007). We used quantitative PCR to validate the enrichment of

these mRNAs in the EP4i-treated spheroids (mouse and human;

Figs 5B and EV2) and immunostaining to validate the expression

of Ace2 protein (Fig 5C) in the EP4i-treated spheroids. For mouse

colonic spheroids, we validated that EP4i treatment resulted in

induction of a colonocyte marker, Car4 (Kaiko et al, 2016;

Fig EV2). Pathway and GO term analysis of the gene cluster specif-

ically associated with EP4i treatment (Cluster 3; 289 probes)

showed enrichment for functions associated with mitochondria,

including metabolism, TCA cycle, respiratory electron transport,

and oxidative phosphorylation pathways (Fig 5D and E).

Ultrastructure analysis of EP4i-treated cells showed that these cells

had a columnar shape, basally located nucleus, large cytoplasm

with abundant mitochondria, and a well-developed brush border

composed of long, densely packed microvilli (Figs 4H and I, and

5F and G). These features were all consistent with enterocytes

(Cheng & Leblond, 1974a; Crawley et al, 2014).

We used the Seahorse Bioscience assay to test the differences

in oxidative phosphorylation predicted by microarray. We found

a higher oxidation consumption rate to extracellular acidification

rate (OCR/ECAR) ratio with EP4i-treated cells as compared to

stem cells or PGE2-treated cells (Fig 5H), suggesting that EP4i-

treated cells favor oxidative phosphorylation. This result is

consistent with a recent report demonstrating greater OCR/ECAR

ratio in differentiating daughter cells compared to Lgr5-positive

intestinal stem cells (Fan et al, 2015). We also assessed secretory

cells (endocrine, goblet, and Paneth cells) in the EP4i-treated

spheroids and found that these constituted a very small propor-

tion (~5%) of the total cell number (Fig EV3). Overall, the tran-

scriptional analysis and its validation suggested that PGE2-EP4

signaling regulates a cell fate decision primarily between entero-

cytes and WAE cells.

PGE2 treatment dominates cell fate plasticity

We next tested whether the cell fate choice between WAE cells and

enterocytes was permanent. To do this, we first determined the time

course of differentiation; mRNA expression levels of WAE cell genes

(Dpcr1 and Cd55b) and enterocyte genes (Fabp1 and Ace2) were

assessed at 2, 6, 12, and 24 h after starting treatment with differenti-

ation medium containing dmPGE2 or EP4i. The WAE cell mRNAs

were detected by 6 h of treatment (Fig 6A). In contrast, enterocyte

mRNA induction did not occur until 12–24 h of treatment (Fig 6B).

These results suggest that WAE cell genes are rapidly and directly

induced by EP4 signaling, whereas enterocyte genes are more

slowly induced, likely indicative of a transcriptional cascade orches-

trating enterocyte differentiation. To test whether expression of

these markers was permanent, we treated spheroids with either

dmPGE2 or EP4i for 12 h. We then washed out the media and re-fed

with the opposing treatment for an additional 12 h. If spheroids

were treated during the second 12-h period with dmPGE2, then the

WAE cell markers Dpcr1 and Cd55b were expressed, regardless of

the treatment during the initial 12 h (Fig 6C). In contrast, the ente-

rocyte markers Fabp1 and Ace2 were suppressed if spheroids were

treated with dmPGE2 in either phase (Fig 6D). These results indicate

that PGE2 is a potent inhibitor of enterocyte differentiation that irre-

versibly alters epithelial cell fate.

We observed that dmPGE2 was unable to induce WAE cells in

EP4-deficient spheroids (Figs 2 and 6E). This finding led us to next

interrogate whether these cells were instead directed to the entero-

cyte fate. We found that the enterocyte markers Fabp1 and Ace2

were similarly induced following dmPGE2 or EP4i treatment in EP4-

deficient cells (Fig 6F), suggesting that the enterocyte program is

the default differentiation pathway. Moreover, these data further

support that, during the response to injury, PGE2 not only augments

the WAE program of differentiation but also suppresses the entero-

cyte program of differentiation. Of note, EP4 heterozygous spheroids

exhibited an intermediate phenotype, with partial induction of both

WAE and enterocyte markers (Figs 2 and 6E and F). These data

suggest that a certain threshold of PGE2-EP4 signaling must be met

◀ Figure 4. In vitro generated wound-associated epithelial cells resemble their in vivo counterparts.

A, B Graphs showing the top five most significant pathways (A) and gene ontology cellular component terms (B) associated with Cluster 5 and Cluster 6.
C Graph of the top twelve significantly enriched pathways in in vivo colonic WAE cells.
D Representative images of spheroids stained for Cldn4 (red). Nuclei are visualized with bisbenzimide (blue) (n = 2 independent experiments). Scale bars, 20 lm.
E, F Jejunal spheroids were cultured as in Fig 2B–D. Quantification of the average expression � s.e.m. of Dpcr1 (E) and Cd55b mRNAs relative to DMSO group (n = 3

independent experiments). *P < 0.05, ****P < 0.0001 by one-way ANOVA and Dunnett’s post-test.
G–J Representative transmission electron microscopy (TEM) images of stem and WAE spheroids and an in vivo WAE cell from a biopsy-injured mouse colon. (G) The

basal plasma membranes are outlined in orange solid lines, lateral plasma membranes are indicated with orange arrowheads, and nuclei are outlined with wide
yellow dashed lines. Insets show a magnified view of the apical cell surface. Quantification of cytoplasmic:nuclear ratio (H) and microvillar length (I) � s.e.m. from
the TEM images (n = minimum of five images per group). *P < 0.05, **P < 0.01, ****P < 0.0001 by one-way ANOVA and Tukey’s post-test. (J) Higher power image
of the cytoplasm of a WAE spheroid cell. Single mitochondria are outlined with a narrow blue dashed line; vacuole structures are indicated with red asterisks. Scale
bars, 1 lm.

K Representative image of a spheroid stained for b-catenin (green) and F-actin (red). Nuclei are visualized with bisbenzimide (blue). A similarly stained section of a
small intestinal ulcer is shown for comparison. Arrowheads indicate the apical cell membrane. Scale bars, 50 lm.
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for full suppression of enterocyte differentiation and full activation

of WAE cell differentiation.

Inhibition of GSK-3b suppresses enterocyte differentiation

We next investigated the cellular signaling events that occur down-

stream of the EP4 receptor to direct differentiation to the WAE cell

lineage. EP4 signaling is known to activate adenylate cyclase

followed by cAMP formation (Konya et al, 2013). We confirmed this

in our system by treating spheroids with forskolin, an adenylate

cyclase activator. This treatment stimulated the WAE cell-associated

morphological alterations and induced Cldn4 mRNA in small intesti-

nal spheroids (Fig 7A and B). The morphologic effects were similar

to previous reports using forskolin (Dekkers et al, 2013; Schwank

A B

C

D

F G H

E

Figure 5. Inhibition of the prostaglandin receptor EP4 produces enterocytes in vitro.

A Representative image of a mouse spheroid stained for b-catenin (green) and F-actin (red). Nuclei are visualized with bisbenzimide (blue). A similarly stained section
of a mouse villus is shown for comparison. Arrowheads indicate the apical cell membrane. Scale bars, 50 lm.

B, C Mouse jejunal spheroids were cultured as indicated. (B) Quantification of the average expression � s.e.m. of Fabp1, Ace2, and Maoa mRNAs (n = 3 independent
experiments). *P < 0.05, **P < 0.01 by one-way ANOVA and Tukey’s post-test. (C) Representative images of spheroids stained for Ace2 (green) and b-catenin (red).
Nuclei are visualized with bisbenzimide (blue). Scale bars, 20 lm.

D, E Graphs showing the top five most significant pathways (D) and gene ontology cellular component terms (E) associated with Cluster 3.
F, G Representative TEM images of EP4i-treated spheroids. (F) The basal plasma membranes are outlined in orange solid lines, lateral plasma membranes are indicated

with orange arrowheads, and nuclei are outlined with wide yellow dashed lines. Inset shows a magnified view of the apical cell surface. (G) Higher power image of
the cytoplasm. Single mitochondria are outlined with a narrow blue dashed line. Scale bars, 1 lm.

H Graph of spheroid oxygen consumption rate (OCR) to extracellular acidification rate (ECAR) ratio expressed as mean � s.e.m. (n = 3 independent experiments).
**P < 0.01 by one-way ANOVA and Tukey’s post-test.
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et al, 2013). cAMP is known to activate a multitude of effector

proteins. Because of the abundant transcript differences and the

altered differentiation states between PGE2- and EP4i-treated cells,

we reasoned that a transcriptional regulator would be altered down-

stream of PGE2-EP4 signaling. We took a candidate approach based

on the literature and focused on glycogen synthase kinase-3b (GSK-

3b), as several lines of evidence have indicated that PKA signaling

(a target of cAMP) can suppress GSK-3b (Jensen et al, 2007;

Hundsrucker et al, 2010; Whiting et al, 2015). GSK-3b phosphory-

lates b-catenin and promotes its degradation (Krausova & Korinek,

2014). Therefore, we determined protein levels of nuclear b-catenin
in spheroids cultured as stem cells or cultured in differentiation

medium and treated with dmPGE2 or EP4i (Figs 7C and EV4). As

expected, significant levels of nuclear b-catenin were detected in

A B

C D

E F

Figure 6. PGE2-EP4 signaling controls a differentiation switch between wound-associated epithelial cells and enterocytes.

A–D Quantification of the average expression � s.e.m. of Dpcr1 and Cd55b mRNAs (A, C) or Fabp1 and Ace2 mRNAs (B, D) in mouse jejunal spheroids cultured in
differentiation medium containing EP4i or dmPGE2. (A, B) Gene expression analyzed 2, 6, 12, or 24 h after the start of treatment (n = 3 independent experiments).
***P < 0.001, ****P < 0.0001 comparing the two treatment groups and †P < 0.05, †††P < 0.001, ††††P < 0.0001 compared to the 2-h time point of the same
medium by two-way ANOVA and Sidak’s multiple comparisons test. (C, D) Gene expression was analyzed after culturing spheroids in EP4i (E) or dmPGE2 (P) for the
first 12 h followed by washout and re-feeding with EP4i or dmPGE2 for the second 12 h as shown (n = 3 independent experiments). *P < 0.05, **P < 0.01,
***P < 0.001, and ****P < 0.0001 by one-way ANOVA and Dunnett’s post-test.

E, F Gene expression was analyzed in Ptger4flox/flox, Ptger4flox/D, and Ptger4D/D spheroids and expressed as fold change relative to EP4i-treated Ptger4flox/flox (n = 3
independent experiments). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by two-way ANOVA and Tukey’s post-test comparing the genotypes within a
treatment group. †P < 0.05, †††P < 0.001, ††††P < 0.0001 by two-way ANOVA and Sidak’s post-test comparing the effects of the treatments within a genotype.
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stem cell spheroids but not in EP4i-treated spheroids. This is

consistent with canonical Wnt signaling in vivo, which is active in

intestinal stem cells and inactive in enterocytes (Clevers, 2013;

Krausova & Korinek, 2014). Interestingly, dmPGE2-treated spher-

oids exhibited high levels of nuclear b-catenin that were similar to

those in stem cell spheroids. To functionally test whether inhibi-

tion of GSK-3b could recapitulate the effects of dmPGE2, we

treated spheroids with the GSK-3b inhibitor CHIR 99021 in addi-

tion to EP4i (to ensure inhibition of endogenous PGE2 signaling).

CHIR 99021 inhibited the degradation of nuclear b-catenin (Figs 7D

and EV4). CHIR 99021 also suppressed mRNA expression of the

enterocyte marker Fabp1 and induced mRNA expression of the

WAE cell marker Cldn4 in a dose-dependent manner (Fig 7E and

F). Histological analysis of Ptger4D/D spheroids showed that the

accumulation of actin filaments on the apical surface observed in

DMSO-treated spheroids was abolished by CHIR 99021 (Fig 7G).

Together, these results indicate that PGE2 suppresses enterocyte

differentiation to promote WAE cell differentiation through mainte-

nance of nuclear b-catenin.
We considered that active canonical Wnt signaling could cause

nuclear b-catenin localization in WAE cells (Krausova & Korinek,

2014). As the differentiation medium used to generate WAE cells

does not contain Wnt ligands, we tested whether the WAE-enriched

spheroids were secreting and responding to Wnts in a cell-

autonomous manner. Our microarray data highlighted mRNAs

encoding several Wnt ligands that were potentially expressed in the

PGE2-treated cells (Appendix Fig S3). Due to functional redundancy

among Wnt ligands, we chose to block all Wnt secretion with a

pharmacological inhibitor of porcupine, an essential enzyme for

Wnt lipidation and secretion (Proffitt et al, 2013). We first deter-

mined the effective concentration of porcupine inhibitor using the

L-WRN cell line because these cells abundantly secrete Wnt3a

(Miyoshi et al, 2012). L-WRN cells were cultured in the presence or

absence of the porcupine inhibitor C59 to generate conditioned

media. These media were applied to 293FT cells expressing the

TOP/FOPFlash luciferase reporter system to measure the Wnt

signaling activity (Fig 7H). C59 concentrations from 10 lM to

100 pM potently inhibited Wnt secretion by L-WRN cells.

We next tested whether C59 had an inhibitory effect on the

formation of WAE cells. We found that spheroids treated with

PGE2 and C59 had a similar induction of Cldn4 mRNA as those

treated with PGE2 alone (Fig 7I), and low expression levels of

Fabp1 mRNA were observed in both of these treatment groups

compared to EP4i-treated spheroids (Fig 7J). These data show that

WAE differentiation in the spheroids is not mediated by cell-

autonomous Wnt signaling. Furthermore, they suggest that a

mechanism other than canonical Wnt signaling is driving the

accumulation of nuclear b-catenin in WAE cell spheroids. Accord-

ingly, we observed that the mRNA levels of Axin2, a transcrip-

tional readout for canonical Wnt signaling (Jho et al, 2002; Lustig

et al, 2002), were extremely low in WAE cells compared to stem

cells (Fig 7K).

EP4 is required for WAE cell differentiation and wound
healing in vivo

We have shown that PGE2 is sufficient to form WAE cells using our

in vitro model. However, there are many factors that have been

proposed to affect intestinal epithelial restitution (Dignass, 2001)

and these or others could potentially compensate for loss of PGE2-

EP4 signaling in vivo. Thus, to test the requirement for EP4-

mediated signaling to form WAE cells during wound healing, we

utilized a colonic biopsy injury model (Seno et al, 2009; Manieri

et al, 2012, 2015; Miyoshi et al, 2012). We chose this model

because the location and timing of injury and mucosal healing is

controlled and well understood (Seno et al, 2009). To examine the

role of PGE2-EP4 signaling in the intestinal epithelium, we bred

Ptger4flox/flox mice (Schneider et al, 2004) with VilCre mice (Madison

et al, 2002) and generated mice that were deficient for Ptger4

expression specifically in intestinal epithelial cells (VilCre

Ptger4flox/flox). VilCre Ptger4flox/flox and Ptger4flox/flox littermate

controls were biopsy-injured and wound repair was assessed 4 days

post-injury, a time at which WAE cells should completely cover the

wound surface (Seno et al, 2009). Although similar numbers of

crypts were initially removed during biopsy injury, we consistently

observed decreased healing in the VilCre Ptger4flox/flox mice

◀ Figure 7. Nuclear b-catenin signaling without canonical Wnt signaling suppresses enterocyte and promotes wound-associated epithelial cell differentiation.

A, B Mouse jejunal spheroids were cultured in differentiation medium containing 10 lM of forskolin or an equivalent volume of DMSO. (A) Representative bright-field
images. Scale bars, 200 lm. (B) Quantification of the average expression � s.e.m. of Cldn4 mRNA relative to the DMSO treatment group (n = 3 independent
experiments). *P < 0.05 compared to DMSO group by unpaired t-test.

C, D Representative immunoblots for b-catenin detected in nuclear (Nuc) and cytoplasmic (Cyt) protein lysates. Lamin A/C and actin were used as loading controls for
the nuclear and cytoplasmic fractions, respectively (n = 3 independent experiments). (C) Spheroids were cultured in stem, enterocyte (EP4i), or WAE (dmPGE2)
media. (D) Spheroids were cultured in enterocyte medium with DMSO or 10 lM CHIR 99021.

E, F Spheroids were cultured in enterocyte medium with the indicated concentrations of CHIR 99021. Quantification of the average expression � s.e.m. of Cldn4 (E)
and Fabp1 (F) mRNAs shown as fold change relative to 0 lM group (n = 3 independent experiments). **P < 0.01, ****P < 0.0001 as determined by one-way
ANOVA and Dunnett’s post-test.

G Representative images of Ptger4D/D spheroids cultured in differentiation medium with DMSO or 10 lM CHIR 99021 and stained for b-catenin (green) and F-actin
(red). Nuclei are visualized with bisbenzimide (blue). Arrowheads indicate the apical cell membrane. Scale bars, 20 lm.

H Graph of TOPFlash (TOP) to FOPFlash (FOP) luciferase reporter ratios � s.e.m. (n = 3 independent experiments) in transfected 293FT cells treated with conditioned
mediums collected from L-WRN cells and diluted as indicated. L-WRN CM had been produced in the presence or absence of the porcupine inhibitor C59 (10-fold
dilutions, 10 lM to 1 pM). *P < 0.05, ***P < 0.001, ****P < 0.0001 by one-way ANOVA and Dunnett’s post-test compared to 0% L-WRN CM group.

I, J Spheroids were cultured in enterocyte media, WAE media, or WAE media containing 100 pM C59. Quantification of the average expression � s.e.m. of Cldn4 (I) and
Fabp1 (J) mRNAs shown as fold change relative to EP4i group (n = 3 independent experiments). ***P < 0.001, ****P < 0.0001 as determined by one-way ANOVA
and Tukey’s post-test.

K Quantification of the average expression � s.e.m. of Axin2 mRNA in spheroids cultured in stem cell or in differentiation medium with the indicated supplements
relative to stem (n = 3 independent experiments). ****P < 0.0001 compared to stem cell group as determined by one-way ANOVA and Dunnett’s post-test.
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compared to the controls 4 days post-injury by whole-mount micro-

scopy (Fig 8A and B), suggesting impaired or delayed healing. In

addition, fibrin clots were frequently found to be covering the

wound surface in VilCre Ptger4flox/flox mice to a greater extent than

control mice (Fig 8C). Histological analysis of wounded regions

showed that a layer of flattened, Cldn4-positive cells was covering
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I J K

Figure 7.
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the wound surface in control injured mice (Fig 8D and E). These

wound surface cells also exhibited accumulation of nuclear

b-catenin (compared to surface epithelial cells of uninjured regions

of colonic tissue), lacked Axin2 and Lgr5 expression, and were

non-proliferative, similar to in vitro WAE cells (Fig EV5). In

contrast, a layer of flattened, Cldn4-positive epithelial cells was

lacking at the VilCre Ptger4flox/flox wound surfaces (Fig 8D and E).

Instead, Cldn4-positive cells were only located at the edge of the

wound and were frequently non-adherent. These data confirm that

expression of EP4 in the intestinal epithelium is critical for

complete covering of the wound bed with WAE cells and proper

epithelial restitution in response to intestinal biopsy injury.

Discussion

We identified the prostaglandin PGE2 as a factor that is necessary

and sufficient to promote WAE differentiation and wound repair

A B C

D

E

Figure 8. Intestinal epithelium deficient for Ptger4 lacks wound-associated epithelial cells and has delayed wound repair following biopsy injury.

A Representative whole-mount images of wounds from Ptger4flox/flox (Ptger4fl/fl) and VilCre Ptger4flox/flox (VilCre Ptger4fl/fl) mice 4 days post-biopsy injury. Scale bars,
750 lm. Wounds are outlined with a black dashed line. Asterisk indicates fibrin clot.

B, C Quantification of percent healing (1 – [day 4 wound area/original wound area] × 100) (B) and fibrin clot areas (C) � s.e.m. (n = 7–8 mice per genotype with 3–4
wounds each, three independent experiments). *P = 0.0270, **P = 0.0057 by two-tailed unpaired t-test.

D, E Representative images of serial wound tissue sections from the indicated genotypes. (D) Fluorescent images of sections stained for Claudin-4 (red). Nuclei are
visualized with bisbenzimide (blue). Epithelial crypts adjacent to the wound bed are indicated by dashed yellow lines. Layer of adherent WAE cells indicated by
white arrowheads. Non-adherent residual WAE cells indicated by orange arrows. (E) Grayscale images of hematoxylin- and eosin-stained sections. Insets of the
boxed regions show a higher magnification of the region typically containing WAE cells (red arrowheads, dashed line indicates border with wound bed). Orange
arrow indicates region of non-adherent residual WAE cells. Scale bars, 100 lm.
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after mucosal injury. In the older literature, flattened, migratory

epithelial cells were shown to be responsible for quickly re-

establishing the epithelial barrier after mucosal injury (Svanes et al,

1982; Ito et al, 1984; Lacy, 1988; Moore et al, 1989). Subsequent

tracing experiments showed that WAE cells emanate from crypt

stem cells adjacent to the wound bed (Miyoshi et al, 2012). Here,

we identified PGE2 as a potent inductive factor that directly acts on

crypt epithelial cells to produce this atypical epithelial cell type. This

mechanism appears to be conserved in mouse and human. Primary

columnar intestinal epithelial cells cultured with PGE2 rapidly tran-

sitioned to a squamous cell shape and induced WAE cell markers

within 2–6 h after treatment. Inhibition of the EP4 receptor in

intestinal epithelial cells either pharmacologically or by genetic defi-

ciency abolished these effects and impaired wound healing in vivo.

We showed that WAE cells were post-mitotic and exhibited tran-

scriptional and ultrastructural features consistent with in vivo WAE

cells. Our findings agree with early epithelial restitution studies, which

also reported the short time frame of this process and indicated a

primary dependence on cellular migration that was independent of

cellular proliferation (Lacy, 1988; Wilson & Gibson, 1997; Dignass,

2001). Thus, our work highlights the unique nature of the gastroin-

testinal wound response and WAE cells in particular. In contrast, skin

wound healing requires dedifferentiation of epidermal cells and migra-

tion of this proliferative cell type to cover and re-epithelialize wound

surfaces (Singer & Clark, 1999; Gurtner et al, 2008).

We found that PGE2 suppressed the enterocyte differentiation

program and redirected differentiating intestinal epithelial cells to the

WAE cell lineage. In the intestine, stem cells located at the crypt base

continually produce daughter cells that migrate out of the crypt and

onto the villus to replenish the intestinal epithelium. Our data suggest

that PGE2 produced in response to injury can direct intestinal stem

cells, progenitor cells, and/or immature enterocytes to the WAE

lineage. Addition of PGE2 12 h into the differentiation process could

still activate WAE cell differentiation. Thus, the continually renewing

intestinal epithelium provides a perpetual source of cells that, when

called upon, can rapidly acquire a migratory phenotype and act to

Figure 9. Model of wound-associated epithelial cell formation in response to mucosal injury.
In the absence of injury, PGE2-EP4 signaling does not reach the signal threshold required for WAE cell formation, and enterocytes differentiate from intestinal epithelial stem
cells in accordance with their normal program of differentiation. Upon mucosal injury, Ptgs2-expressing mesenchymal cells become localized to the wound bed in close
proximity with the migratingWAE cells. High local production of PGE2 signals to the EP4 receptor on differentiating intestinal epithelial cells to induce formation of WAE cells,
which migrate to cover and seal the wound bed, thereby re-establishing the epithelial barrier.
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cover wound surfaces. It is important to note that the presence of

WAE cells is transient and typically lasts only a few days (Seno et al,

2009; Miyoshi et al, 2012). In addition, once epithelial cell commit-

ment to the WAE lineage has been triggered by PGE2, enterocyte dif-

ferentiation is irreversibly blocked. We propose that the quick onset

and durability of WAE differentiation is a protective mechanism for

the host. Once a wound is sealed by WAE cells, prostaglandins dimin-

ish (Manieri et al, 2012). The WAE cells are then rapidly replaced by

newly formed enterocytes during the later phase of repair.

Cross talk between mesenchymal cells and epithelial cells is criti-

cal for wound repair in the intestine. We have previously reported

that intestinal injury results in activation and enrichment of

mesenchymal stem cells that express Ptgs2, the rate-limiting enzyme

for PGE2 production, in close proximity to the crypts adjacent to

injured regions and migrating WAE cells (Brown et al, 2007; Malvin

et al, 2012; Manieri et al, 2012). Proper activation and positioning

of the Ptgs2-expressing cells is dependent both on injury and Myd88

signaling (Brown et al, 2007; Malvin et al, 2012). Taken together

with the current study, we propose the following model for the early

repair process (Fig 9): (i) Mucosal injury results in activation of

TLR/Myd88 signaling in the stromal compartment, (ii) TLR/Myd88

signaling activates and enriches for Ptgs2-positive cells at the site of

injury to stimulate high local production of PGE2, (iii) PGE2 signals

to several local target cell populations, including intestinal epithelial

cells, to mediate the repair response, (iv) PGE2 signals through the

EP4 receptor to direct intestinal stem cells, progenitor cells, and

likely immature enterocytes to form WAE cells. This mechanism

allows the intestinal epithelium to rapidly mount an adequate early

repair response and form sufficient numbers of WAE cells without

relying on cellular proliferation.

We found accumulation of nuclear b-catenin in WAE cells, and

this was functionally important for their formation. In the intestine,

Wnt/b-catenin signaling is critical for maintenance of the intestinal

epithelial stem cell compartment (Krausova & Korinek, 2014). Indu-

cible loss of b-catenin in the intestinal epithelium results in rapidly

diminished proliferation and differentiation of stem cells (Ireland

et al, 2004; Fevr et al, 2007), whereas forced b-catenin expression

results in polyp and tumor formation (Wong et al, 1996, 1998;

Harada et al, 1999; van Es et al, 2005). Thus, it is challenging to

genetically manipulate b-catenin signaling in vivo or in vitro within

a time frame that allows for the study of its role in WAE cells and

intestinal wound repair. Instead, we used a GSK-3b inhibitor to treat

spheroid epithelial cells deficient in EP4 and showed that the result-

ing accumulation of nuclear b-catenin was sufficient to suppress

enterocyte gene induction and promote WAE cell formation. There

is an accumulating body of evidence linking cell adhesive and

migratory properties with alterations in b-catenin signaling

(Daugherty & Gottardi, 2007; Maher et al, 2009; Amini-Nik et al,

2014). As WAE cells are migratory and exhibit high levels of nuclear

b-catenin, our data provide further support of this literature.

However, as canonical Wnt signaling was not active in WAE cells,

some factor other than canonical Wnt ligands (e.g. extracellular

matrix components) (Bielefeld et al, 2011) must be critical for regu-

lating b-catenin in these cells. Further study of the transcriptional

mechanisms that regulate WAE cells could yield new insights into

the relationship between cell adhesiveness and b-catenin signaling.

EP4 agonist treatment has been shown to provide a beneficial

effect in rodent models of colitis (Kabashima et al, 2002; Nitta et al,

2002; Jiang et al, 2007; Okamoto et al, 2012; Watanabe et al, 2015)

and in a Phase II trial with ulcerative colitis patients (Nakase et al,

2010). Accordingly, there is interest in the potential for using EP4

agonists to treat inflammatory bowel disease patients. Although the

beneficial effects of EP4 agonists are likely mediated through multi-

ple EP4-expressing cell types, our data suggest that one benefit

could be an improved wound repair response of the intestinal

epithelium. We found that Ptger4 expression levels were critical for

WAE cell formation. Intestinal spheroids heterozygous for Ptger4

exhibited a haploinsufficiency phenotype, with impaired WAE cell

formation and skewing toward the enterocyte lineage. These data

are intriguing because PTGER4 is the closest gene to one of the most

significant susceptibility loci for inflammatory bowel disease

(Jostins et al, 2012; Liu et al, 2015). SNPs within this locus have

been proposed to regulate PTGER4 gene expression (Libioulle et al,

2007; Glas et al, 2012); however, it is currently unknown how this

susceptibility region contributes to disease. PTGS2 (aka COX-2) has

also been implicated as a candidate susceptibility gene for

inflammatory bowel disease in a recent meta-analysis of patients of

European descent (Liu et al, 2015). Thus, we speculate that genetic

variations at these loci could potentially affect PGE2-EP4 signaling

in human intestinal epithelial cells, leading to inter-individual varia-

tion in the ability to form WAE cells and efficiently repair wounds

upon mucosal damage.

Materials and Methods

Mice

All animal studies were performed according to protocols approved

by the Washington University School of Medicine Animal Studies

Committee. Mice were maintained in a specific pathogen-free barrier

facility with a strict 12-h light cycle. Experiments utilized mice that

were 8–10 weeks old. VilCre mice (Madison et al, 2002) obtained

from Jackson Laboratory (Bar Harbor, ME) were crossed to previ-

ously described Ptger4flox/flox mice (Schneider et al, 2004) to gener-

ate intestinal epithelium with Ptger4flox/flox, Ptger4flox/D, or Ptger4D/D

genotype. All experimental mice were littermates on the C57BL/6

background. The following primers were used for PCR genotyping:

VilCre forward primer 50-gtg tgg gac aga gaa caa acc-30; VilCre reverse
primer 50-aca tct tca ggt tct gcg gg-30; Ptger4 locus forward primer 50-
gtg cgg aga tcc aga tgg tc-30; Ptger4 locus reverse primer 50-cgc act

ctc tct ctc cca agg aa-30. Lgr5-EGFP-IRES-creERT2 mice (Barker et al,

2007) were obtained from the Jackson Laboratory.

Colonic biopsy and tissue preparation

Colorectal injuries (3–4 wounds/mouse) were created using a high-

resolution miniaturized colonoscope as previously described (Seno

et al, 2009; Manieri et al, 2012, 2015). Mice were sacrificed 4 days

after biopsy injury unless stated otherwise. Dissected colons were

opened longitudinally to obtain images of the mucosal gross

morphology using an Olympus SZX12 stereo dissection microscope

equipped with an Olympus DP70 digital camera and DP Controller

software. Tissues fragments (10 × 10 mm) with the wound located

at the center were then frozen in OCT. Perpendicular serial 5-lm
sections from the center of each wound were prepared with a
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cryostat and used for later analysis. Wound and fibrin clot areas

were determined with ImageJ (Schneider et al, 2012). Percent heal-

ing was determined as (1 – [wound area on day 4/original wound

area] × 100). Adobe Photoshop CS6 was used to uniformly adjust

the brightness and contrast and crop images.

Spheroid culture of primary small intestinal epithelial cells

For mouse spheroid culture, small intestinal or colonic crypts were

isolated from the jejuna of the indicated mice and grown as three-

dimensional epithelial spheroids in Matrigel as previously described

(Miyoshi et al, 2012; Miyoshi & Stappenbeck, 2013). For human

spheroid cultures, spheroid lines were established from biopsy

tissues obtained from three adults during routine endoscopy at the

Washington University School of Medicine. This study was

approved by the Institutional Review Board of Washington Univer-

sity School of Medicine. Written informed consent was obtained

from all donors. The procedures for establishing and maintaining

the human spheroid cultures have been previously described

(VanDussen et al, 2015).

Stem cell media contained 50% L-WRN conditioned medium,

which is a 50/50 mix of L-WRN conditioned medium (CM) (col-

lected from an L cell line engineered to secrete Wnt3a, R-spondin 3,

and noggin as previously described (Miyoshi & Stappenbeck, 2013)

and fresh primary culture media, which is Advanced DMEM/F-12

(Invitrogen) supplemented with 20% fetal bovine serum, 2 mM

L-glutamine, 100 units/ml penicillin, and 0.1 mg/ml streptomycin.

Differentiation medium is primary culture medium without serum

supplemented with 50 ng/ml EGF (Peprotech) and 10 lM Y-27632

(ROCK inhibitor; R&D Systems). For WAE cell medium, differentia-

tion medium was supplemented with 1 lM dmPGE2 (R&D Systems),

unless indicated otherwise. For enterocyte medium, differentiation

medium was supplemented with 10 lM L-161,982 (EP4 inhibitor,

R&D Systems). To induce synchronized differentiation, stem cell-

enriched spheroids were trypsinized, plated into fresh Matrigel in

24-well or 96-well tissue culture plates, and then grown in differenti-

ation medium containing the indicated supplements for 24 h.

Other cell culture reagents used were SC 51322 (EP1 inhibitor;

R&D Systems), PF 04418948 (EP2 inhibitor; R&D Systems),

L-798,106 (EP3 inhibitor; R&D Systems), CHIR 99021 (GSK-3b inhi-

bitor; R&D Systems), iloprost (PGI2 analog; Cayman Chemical), and

Wnt-C59 (porcupine inhibitor; R&D Systems). Tat-Cre mediated

recombination was used to generate Ptger4flox/D and Ptger4D/D

spheroid lines from Ptger4flox/flox spheroids as previously described

(Patel et al, 2013). For spheroid genotyping, genomic DNA was

isolated with the Qiagen DNeasy Mini kit according to the manufac-

turer’s instructions followed by PCR with the Ptger4 genotyping

primers listed above. The luminescence assay with spheroids gener-

ated from the jejunum of the Cdc25A-CBRLuc fusion protein knock-

in mouse was performed as previously described (Sun et al, 2015).

Metabolic profiling was performed using a Seahorse XF96e analyzer

(Seahorse Bioscience) as previously described (Kaiko et al, 2016).

Live spheroids were imaged with a Pupil Cam camera (Ken-a-

Vision) fixed to a phase microscope (Fisher Scientific) equipped

with an LPL4/0.10 4× objective lens. ImageJ (Schneider et al, 2012)

was used to determine the average individual spheroid area from

bright-field images taken in the center of each tissue culture plate

well of each sample (n = 4 four images [i.e. wells] and a minimum

of 50 spheroids analyzed per sample). Similar densities of spheroids

were seeded for all area measurement experiments. Adobe Photo-

shop CS6 was used to convert images to grayscale, uniformly adjust

brightness and contrast, and crop images.

Antibodies

The following antibodies were used for immunostaining: polyclonal

goat anti-Ace2 (AF933, R&D Systems), polyclonal rabbit anti-ChgA

(ab15160, Abcam), polyclonal rabbit anti-Muc2 (sc-15334, Santa

Cruz), polyclonal goat anti-Lyz (sc-27958, Santa Cruz), polyclonal

rabbit anti-Claudin-4 (36-4800, Thermo Fisher), monoclonal rabbit

anti-Ki67 (VP-RM04, Vector), polyclonal rabbit anti-b-catenin
(Sigma), and monoclonal mouse anti-b-catenin (14/B-catenin, BD

Transduction Laboratories). F-actin was visualized with a rhoda-

mine-phalloidin conjugate (Invitrogen). For immunoblotting, the

following antibodies were utilized: anti-actin (A2066, Sigma),

monoclonal mouse anti-b-catenin (14/B-catenin, BD Transduction

Laboratories), mouse monoclonal anti-GAPDH (6C5, Advanced

ImmunoChemicals), and monoclonal mouse anti-lamin A/C (clone

14, EMD Millipore).

Immunohistochemistry, immunofluorescence, and in situ
hybridization

Dissected tissues or recovered intestinal spheroids were fixed with

4% paraformaldehyde (PFA) overnight at 4�C in phosphate-buffered

saline (PBS), immersed in 20% sucrose solution, and then quickly

frozen in OCT compound (Sakura Finetek) or embedded as unfixed

tissues. Histological sections (4-lm) were prepared and post-fixed

with 4% PFA, 10% neutral buffered formalin, or methanol. Histologi-

cal sections were incubated in blocking buffer (3% BSA or 10%

normal serum and 1% Triton X-100 in PBS) followed by addition of

diluted primary antibodies in blocking buffer. For immunofluores-

cence, sections were incubated with Alexa Fluor secondary antibodies

conjugated to 488 or 594 fluorophores (Invitrogen), counterstained

with bis-benzamide (Hoechst 33258: Invitrogen) and coverslips were

mounted with Fluoromount (Sigma). For immunohistochemistry,

sections were incubated with biotin-conjugated secondary antibodies

(Vector Laboratories) followed by visualization with the VECTAS-

TAIN Elite ABC and DAB (3,30-diaminobenzidine) Substrate Kits

(Vector Laboratories) and coverslips were mounted with Cytoseal

XYL (Thermo Scientific). EdU detection was performed using the

Click-iT Plus EdU imaging kit with Alexa Fluor 594 and a 1-h EdU

incorporation period prior to fixation and embedding of spheroids

(Molecular Probes, C10639). For the in situ hybridization, antisense

probe was generated from a SmaI-digested Ptger4 mouse cDNA plas-

mid (GE Dharmacon, Clone ID 3481696) using the T7 promoter and

a previously reported probe for Axin2 and methods (Miyoshi et al,

2012). Fluorescent images were acquired with a Zeiss Axiovert 200M

inverted microscope equipped with Apochromat (10×/0.25 Ph1 and

20×/0.80) and LD-A-Plan 20×/0.30 Ph1 objective lenses, an Axiocam

MRm digital camera, and Axiovision LE software. Bright-field images

were acquired with an Olympus BX51 microscope equipped with

UPlan 20×/0.50 and 10×/0.30 objective lenses, an Olympus DP70

camera, and DP Controller software. Adobe Photoshop CS6 was used

to uniformly adjust brightness and contrast, sharpen and crop

images.
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Immunoblotting

Matrigel-embedded intestinal spheroids were first recovered using

cell recovery solution (Corning). Next, the NE-PER Nuclear and

Cytoplasmic Extraction Kit (Thermo Fisher Scientific) was used for

fractionation of nuclear and cytoplasmic proteins in conjunction

with protease inhibitors (Sigma) and phosphatase inhibitors

(Nacalai). Denatured protein samples were run on 10% Tris–HCl

gels (Bio-Rad) and transferred onto nitrocellulose membranes (Bio-

Rad). Membranes were incubated in blocking reagent (Blocking

One, Nacalai) for 1 h at 4°C, then incubated with primary antibod-

ies diluted with Blocking One overnight at 4°C. Membranes were

washed with Tris-buffered saline containing 0.1% Tween-20 (TBS-

T) and incubated with horseradish peroxidase-conjugated

secondary antibodies (Bio-Rad) before detecting signals using the

SuperSignal West Dura chemiluminescent kit (Thermo Fisher

Scientific).

Transmission electron microscopy

Spheroid–Matrigel mixtures were scraped out of the tissue culture

plate wells with a pipette tip in 1 ml of PBS and centrifuged for

5 min at 113 × g to pellet the cells. Mouse colon tissue and pelleted

spheroids were fixed with 2% paraformaldehyde/2.5% glutaralde-

hyde in 100 mM cacodylate buffer, pH 7.2 for 2 h at room tempera-

ture. Samples were washed in cacodylate buffer and post-fixed in

1% osmium tetroxide (Polysciences Inc.) for 1 h. Samples were then

rinsed extensively in dH2O prior to en bloc staining with 1% aque-

ous uranyl acetate (Ted Pella Inc., Redding, CA) for 1 h. Following

several rinses in dH2O, samples were dehydrated in a graded series

of ethanol and embedded in Eponate 12 resin (Ted Pella Inc.).

Sections of 95 nm were cut with a Leica Ultracut UCT ultramicro-

tome (Leica Microsystems Inc., Bannockburn, IL), stained with

uranyl acetate and lead citrate, and viewed on a JEOL 1200 EX

transmission electron microscope (JEOL USA Inc., Peabody, MA)

equipped with an AMT 8 megapixel digital camera (Advanced

Microscopy Techniques, Woburn, MA). Adobe Photoshop CS6 was

used to uniformly adjust brightness and contrast and crop images.

ImageJ was used to quantify the cytoplasmic and nuclear areas of

imaged cells as well as microvillar lengths.

RNA isolation and quantitative RT–PCR

Total RNA was purified using NucleoSpin RNA II kit (Macherey-

Nagel, Duren, Germany). cDNA was synthesized using Super-

Script III (Invitrogen), and qPCR was performed using SYBR

Green reagents (Clontech, Palo Alto, CA) on an Eppendorf Master-

cycler. Primer sequences are listed in Appendix Table S1. Relative

expression levels were normalized to GAPDH or B2m (Miyoshi

et al, 2012), which were expressed at similar levels in all

samples.

Microarray analysis

RNA was isolated from spheroids cultured as described above

(n = 4/group). Samples were tested for quality with the Agilent

Bioanalyzer followed by cDNA synthesis with the MessageAmp II

kit and hybridization to Agilent 4 × 44K mouse gene expression

microarrays at the Washington University Genome Technology

Access Center (GTAC). Data are deposited at ArrayExpress (http://

www.ebi.ac.uk/arrayexpress/; accession number E-MTAB-3952).

Microarray data from in vivo laser capture microdissected WAE cells

in wild-type mice were previously reported and deposited at

ArrayExpress (accession number E-MTAB-1175; Miyoshi et al,

2012). Data normalization, statistical analysis, and hierarchical clus-

tering were performed using Partek software. Genes considered to

be significantly differentially expressed between at least two treat-

ments had a false discovery rate-adjusted P < 0.05. Pathway and

GO term analyses were performed using the ToppGene Suite

(https://toppgene.cchmc.org/).

TOPFlash reporter assay

L-WRN cells were cultured in 24-well plates until post-confluent and

then re-fed with primary culture medium containing C59 (concentra-

tion range from 10 lM to 1 pM) or without C59 for 24 h. Condi-

tioned mediums were collected as previously described from three

independent passages of cells (Miyoshi & Stappenbeck, 2013). Prior

to use in the reporter assay, these media were diluted with 293FT

media. M50 Super8x TOPFlash (Addgene plasmid #12456) and M51

Super8x FOPFlash (TOPFlash mutant; Addgene plasmid #12457)

were gifts from Randall Moon (Veeman et al, 2003). The reporters

were transiently transfected into 293FT cells cultured in 24-well

plates using Lipofectamine 2000 (Thermo Fisher Scientific) accord-

ing to the manufacturer’s directions. The following day, the 293FT

cells were stimulated with the conditioned mediums for 24 h. Cell

lysates (120 ll total volume) were generated using 1× Cell Culture

Lysis Buffer and luminescence (1 s reads) was measured using 20 ll
of cell lysate and 100 ll of luciferase substrate (Luciferase Assay

System; Promega) with a Cytation 5 Multi-mode Reader (BioTek).

The total protein content of each sample was determined by BCA

assay (Thermo Fisher Scientific) and used to perform initial normal-

ization of luciferase activity values. These normalized values were

then used to generate the TOP/FOPFlash ratios for each treatment.

Statistical analysis

GraphPad Prism software (version 6) was used to perform all statis-

tical analyses unless indicated otherwise with P < 0.05 considered

to be significant.

Expanded View for this article is available online.
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