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Tumors are a serious threat to human health. The oncolytic virus is a kind of tumor killer virus which can infect and lyse cancer
cells and spread through the tumor, while leaving normal cells largely unharmed. Mathematical models can help us to understand
the tumor-virus dynamics and find better treatment strategies. This paper gives a new mathematical model of tumor therapy with
oncolytic virus and MEK inhibitor. Stable analysis was given. Because mitogen-activated protein kinase (MEK) can not only lead
to greater oncolytic virus infection into cancer cells, but also limit the replication of the virus, in order to provide the best dosage
of MEK inhibitors and balance the positive and negative effect of the inhibitors, we put forward an optimal control problem of the
inhibitor. The optimal strategies are given by theory and simulation.

1. Introduction

Tumors are a serious threat to human health, and chemother-
apy and radiotherapy may not only kill cancer cells, but also
damage human body normal cells at the same time [1]. The
oncolytic virus is a kind of tumor killer virus which can infect
and lyse cancer cells and spread through the tumor, while
leaving normal cells largely unharmed [2]. When oncolytic
viruses are inoculated into a cancer patient or directly
injected into a tumor, these viruseswill spread throughout the
tumor and infect tumor cells.The viruses can be replicated in
the infected tumor cells.When an infected tumor cell is lysed,
it can burst out a mass of new oncolytic viruses. Then, these
new viruses can infect much more neighboring tumor cells
[3].

Experiments using oncolytic viruses such as adenovirus,
CN706 [4], and ONYX-15 [5] in animal tumors show that
these viruses are nontoxic and infect tumor cells specifically.
Now, treatment of cancer with oncolytic virus has been
clinically tested [6–8].This treatment of cancerwith oncolytic
viruses has been explored by clinicians [9–11].

In recent years, in order to understand the cancer-
virus dynamics and find better treatment strategies, some
mathematical models have been set up [12–19]. Tian pro-
posed a mathematical model to describe the development of

a growing tumor and an oncolytic virus population as follows
[18]: 𝑑𝑥𝑑𝑡 = 𝜆𝑥 (1 − 𝑥 + 𝑦𝐾 ) − 𝛽𝑥V,𝑑𝑦𝑑𝑡 = 𝛽𝑥V − 𝛿𝑦,𝑑V𝑑𝑡 = 𝑏𝛿𝑦 − 𝛽𝑥V − 𝛾V,

(1)

where variables 𝑥, 𝑦, and V stand for the population of
uninfected cells, infected tumor cells, and oncolytic viruses,
respectively. The coefficient 𝛽 represents the infection of the
virus. The tumor growth is modeled by logistic growth, and𝐾 is themaximal tumor size. 𝜆 is the per capita tumor growth
rate. 𝛿 means the lysis rate of the infected tumor cells. 𝑏
represents the burst size of new viruses coming out from the
lysis of an infected tumor cell. 𝛾 represents the death rate of
the virus.

It was shown that when the threshold 𝑏 < 1 + 𝛾/(𝐾𝛽), the
equilibrium solution (𝐾, 0, 0) is globally asymptotically stable
[18], indicating that the oncolytic virus therapy finally has no
effect. Obviously, the smaller the value of 𝐾, the more easily𝑏 < 1 + 𝛾/(𝐾𝛽) holds. Since 𝐾 represents the total number
of tumor cells, smaller tumors may be more resistant to the
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treatment by oncolytic virus than large ones, which should be
a contradiction. In [19], by replacing 𝛽𝑥V with 𝑥V/(𝑥 + 𝑦+ 𝜀),
we proposed the model

𝑑𝑥𝑑𝑡 = 𝜆𝑥 (1 − 𝑥 + 𝑦𝐾 ) − 𝛽 𝑥V𝑥 + 𝑦 + 𝜀 ,𝑑𝑦𝑑𝑡 = 𝛽 𝑥V𝑥 + 𝑦 + 𝜀 − 𝛿𝑦,𝑑V𝑑𝑡 = 𝑏𝛿𝑦 − 𝛽 𝑥V𝑥 + 𝑦 + 𝜀 − 𝛾V.
(2)

The meanings of variables 𝑥, 𝑦, and V and parameters𝜆, 𝛽, 𝛿, 𝛾, 𝑏, and𝐾 are the same as those in model (1), and𝜀 is positive and sufficiently small. The threshold obtained
by our model is 𝑏 < 1 + (𝛾/𝛽)(1 + 𝜀/𝐾), which is almost
independent of𝐾 when 𝜀 is sufficiently small.

On the other hand, all the above papers did not consider
coxsackie-adenovirus receptor (CAR). In fact, CAR is a main
receptor when oncolytic viruses enter into tumor cells [20–
22]. The successful entry of viruses into cancer cells is related
to the presence of CAR. When oncolytic viruses infect the
tumor cells, firstly, they combine with the CAR and are
absorbed into the cells.

Mitogen-activated protein kinase (MEK) inhibitors have
been shown to promote CAR expression and could increase
oncolytic viruses infection into tumor cells. But MEK
inhibitors may also limit the replication of viruses [23–25],
which will affect the treatment by oncolytic virus. With the
function of MEK, [25] gave a model:

𝑑𝑥𝑑𝑡 = 𝜌𝑥 (1 − 𝑢) − 𝑑𝑥 − 𝛽𝑧𝑥V1 + 𝜀V ,𝑑𝑦𝑑𝑡 = 𝛽𝑧𝑥V1 + 𝜀V − 𝑑𝑦 − 𝑎 (1 − 𝑢) 𝑦,𝑑V𝑑𝑡 = 𝑘 (1 − 𝑢) 𝑦 − 𝑏V,𝑑𝑧𝑑𝑡 = 𝜂𝑢 (𝑝 − 𝑧) − 𝑐𝑧.
(3)

The variables 𝑥, 𝑦, and V have the same meanings as those in
model (2); 𝑧 represents the average expression level of CAR
on the surface of the cells. The intensity of MEK inhibitor
application is captured in the parameter 𝑢, 𝑢 ∈ [0, 1]. If𝑢 = 0, there is no MEK inhibitor application, and the
CAR expression level will gradually decline. If 𝑢 = 1, the
MEK inhibitor has the maximum possible effect. The model
assumes that exponential growth can be slowed down by the
inhibitor with expression 1 − 𝑢. CAR grow at the rate of𝑔(𝑝 − 𝑧) and become extinct at the rate of 𝑐.

Based on models (2) and (3), we establish the following
mathematical model:𝑑𝑥𝑑𝑡 = (1 − 𝑢) 𝑟𝑥 (1 − 𝑥 + 𝑦𝐾 ) − 𝛽𝑥V𝑧𝑥 + 𝑦 + 𝜀 ,𝑑𝑦𝑑𝑡 = 𝛽𝑥V𝑧𝑥 + 𝑦 + 𝜀 − (1 − 𝑢) 𝛿𝑦,𝑑V𝑑𝑡 = 𝑏 (1 − 𝑢) 𝛿𝑦 − 𝛽𝑥V𝑧𝑥 + 𝑦 + 𝜀 − 𝛼V,𝑑𝑧𝑑𝑡 = 𝑔𝑢 (𝑝 − 𝑧) − 𝑐𝑧.

(4)

The variables 𝑥, 𝑦, V, and 𝑧 have the samemeanings as those
in model (3). The parameters 𝜆, 𝛽, 𝛿, 𝛾, 𝑏, and 𝐾 are the
same as those of (1). The parameter 𝑢 has the same meaning
as that in model (3). All the parameters are strictly positive.

Since the use of MEK inhibitors not only results in
enhanced oncolytic virus entry into the tumor cells, but also
renders infected cells temporarily unable to produce viruses,
the maximum dosage of MEK use may not result in the best
treatment effect, so the optimal control-based schedules of
MEK inhibitor application should be studied. The optimal
MEK inhibitor application strategy can increase the efficacy
of this treatment in an economical fashion. So, first, in this
paper, we let the control variable 𝑢 be a constant; a stability
analysis of our model is conducted, and then the optimal
control strategy is discussed; we also compare the optimal
control with constant control by simulation.

2. Materials and Methods

2.1. Stability Analysis. System (4) always has two equilibrium
points: 𝐸0 = (0, 0, 0, 𝑔𝑢𝑝𝑔𝑢 + 𝑐) ,𝐸1 = (𝐾, 0, 0, 𝑔𝑢𝑝𝑔𝑢 + 𝑐) . (5)

If 𝜀 is sufficiently small, when 𝑏 > 1 + (𝛼(𝐾 + 𝜀)/𝛽𝐾)((𝑔𝑢 +𝑐)/𝑔𝑢𝑝), the third steady state 𝐸2 = (𝑥2, 𝑦2, V2, 𝑧2) exists in
which

𝑥2 = Δ + √Δ2 + 4 (𝑏 − 1)𝐾𝛼𝛽𝑧2𝑟 (1 − 𝑢)2 𝛿𝜀2 (𝑏 − 1) 𝛽𝑧2𝑟 (1 − 𝑢) ,
𝑦2 = [(𝑏 − 1) 𝛽𝑧2𝛼 − 1] 𝑥2 − 𝜀,
V2 = (𝑏 − 1) (1 − 𝑢) 𝛿𝛼 𝑦2,𝑧2 = 𝑔𝑢𝑝𝑔𝑢 + 𝑐 .

(6)

Here, Δ = (1 − 𝑢) 𝑟𝛼 (𝐾 + 𝜀) − 𝐾 (𝑏 − 1) (1 − 𝑢) 𝛿𝛽𝑧2+ 𝐾𝛼 (1 − 𝑢) 𝛿. (7)
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It should be noted that 𝑏 > 1 + (𝛼(𝐾 + 𝜀)/𝛽𝐾)((𝑔𝑢 + 𝑐)/𝑔𝑢𝑝)
is equivalent to (𝑏 − 1)𝛽𝑧2/𝛼 − 1 > 0 to ensure that 𝑦2 > 0
when 𝜀 is sufficiently small.

The Jacobi matrix at point 𝐸0 is
𝐽|𝐸0 =(

𝑟 (1 − 𝑢) 0 0 00 − (1 − 𝑢) 𝛿 0 00 𝑏𝛿 −𝛼 00 0 0 −𝑔𝑢 − 𝑐). (8)

Obviously, 𝜇1 = 𝑟(1 − 𝑢) > 0 is one eigenvalue of 𝐽|𝐸0
which means 𝐸0 is unstable. The unstable result of 𝐸0 seems
consistent with the biological meaning that, without viruses
and infected tumor cells, the tumor will grow from an initial
small value around 𝐸0.

As for equilibrium point 𝐸1, we have the following
theorem.

Theorem 1. When 𝑏 < 1+(𝛼(𝐾+𝜀)/𝛽𝐾)⋅((𝑔𝑢+𝑐)/𝑔𝑢𝑝),𝐸1 is
locally asymptotically stable.When 𝑏 > 1+(𝛼(𝐾+𝜀)/𝛽𝐾)((𝑔𝑢+𝑐)/𝑔𝑢𝑝), 𝐸1 is unstable.
Proof. At the equilibrium point 𝐸1, the Jacobi matrix is

𝐽|𝐸1
=(− (1 − 𝑢) 𝑟 − (1 − 𝑢) 𝑟 −𝐻 00 − (1 − 𝑢) 𝛿 𝐻 00 𝑏 (1 − 𝑢) 𝛿 −𝛼 − 𝐻 00 0 0 −𝑔𝑢 − 𝑐), (9)

where 𝐻 = 𝛽𝐾𝑔𝑢𝑝/(𝐾 + 𝜀)(𝑔𝑢 + 𝑐). The eigenvalues of 𝐽|𝐸1
are 𝜇1 = −(1 − 𝑢)𝑟, 𝜇2 = −𝑔𝑢 − 𝑐,

𝜇3,4 = − ((1 − 𝑢) 𝛿 + 𝛼 + Δ 2) ± 𝐺2 . (10)

Here, 𝐺 = √(𝛿(1 − 𝑢) − 𝛼 − Δ 2)2 + 4Δ 2𝑏𝛿(1 − 𝑢) in whichΔ 2 = 𝛽𝐾𝑢𝑔𝑝/(𝐾 + 𝜀)(𝑔𝑢 + 𝑐).
When 𝑏 < 1 + (𝛼(𝐾 + 𝜀)/𝛽𝐾)((𝑔𝑢 + 𝑐)/𝑔𝑢𝑝), we have

𝐺 = ((1 − 𝑢) 𝛿 − 𝛼 − Δ 2)2 + 4Δ 2𝑏 (1 − 𝑢) 𝛿< ((1 − 𝑢) 𝛿 + 𝛼 + Δ 2)2 , (11)

which ensure that 𝜇3 and 𝜇4 are negative, so 𝐸1 is locally
asymptotically stable.

Similarly, when 𝑏 > 1 + 𝛼(𝐾 + 𝜀)(𝑔𝑢 + 𝑐)/𝛽𝐾𝑔𝑢𝑝, 𝜇3 is
positive, and 𝐸1 is unstable.

Actually, we can prove that the equilibrium solution 𝐸1 is
globally asymptotically stable when 𝑏 < 1 + 𝛼(𝐾 + 𝜀)(𝑔𝑢 +

𝑐)/𝛽𝐾𝑔𝑢𝑝. But we need to show the boundness of system (4).
From the first two equations, we obtain𝑑 (𝑥 (𝑡) + 𝑦 (𝑡))𝑑𝑡= (1 − 𝑢) 𝑟𝑥 (𝑡) (1 − 𝑥 (𝑡) + 𝑦 (𝑡)𝐾 ) − (1 − 𝑢) 𝛿𝑦 (𝑡)

≤ 𝑟 (𝑥 (𝑡) + 𝑦 (𝑡)) (1 − 𝑥 (𝑡) + 𝑦 (𝑡)𝐾 ) .
(12)

By the comparison principle, we can obtain lim𝑡→∞sup(𝑥(𝑡) +𝑦(𝑡)) ≤ 𝐾.
From the third equation of (4), we can have𝑑V𝑑𝑡 ≤ (1 − 𝑢) 𝑏𝛿𝐾 − 𝛽 𝑥V𝑧𝑥 + 𝑦 + 𝜀 − 𝛼V≤ (1 − 𝑢) 𝑏𝛿𝐾 − 𝛼V. (13)

It is easily shown that V(𝑡) ≤ (1 − 𝑢)𝑏𝛿𝐾/𝛼.
Similarly, from𝑑𝑧𝑑𝑡 = 𝑔𝑢 (𝑝 − 𝑧) − 𝑐𝑧 = 𝑔𝑢𝑝(1 − 𝑔𝑢 + 𝑐𝑔𝑢𝑝 𝑧) , (14)

we can get that 𝑧(𝑡) ≤ 𝑔𝑢𝑝/(𝑔𝑢 + 𝑐) holds.
Theorem 2. When 𝑏 < 1 + (𝛼(𝐾 + 𝜀)/𝛽𝐾) ⋅ ((𝑔𝑢 + 𝑐)/𝑔𝑢𝑝),𝐸1 is globally asymptotically stable.

Proof. Consider the Lyapunov function 𝑉 = 𝑦 + (1/𝑏)V; the
derivative along a solution is given by𝑉̇ = 𝑦̇ + 1𝑏 V̇= 𝛽 𝑥V𝑧𝑥 + 𝑦 + 𝜀 − (1 − 𝑢) 𝛿𝑦+ 1𝑏 (𝑏 (1 − 𝑢) 𝛿𝑦 − 𝛽 𝑥V𝑧𝑥 + 𝑦 + 𝜀 − 𝛼V)= (1 − 1𝑏) 𝛽𝑥V𝑧𝑥 + 𝑦 + 𝜀 − 𝛼𝑏 V.

(15)

Since 0 < 𝑥 ≤ 𝐾, 0 < 𝑥 + 𝑦 ≤ 𝐾, we have 𝑥𝐾 + 𝑥𝜀 ≤𝑥𝐾 + 𝐾𝜀 + 𝐾𝑦, which implies𝑥𝑥 + 𝑦 + 𝜀 ≤ 𝐾𝐾 + 𝜀 , (16)

and because 𝑧 ≤ 𝑔𝑢𝑝/(𝑔𝑢 + 𝑐), therefore,𝑉̇ = (1 − 1𝑏) 𝛽𝑥V𝑧𝑥 + 𝑦 + 𝜀 − 𝛼𝑏 V≤ (1 − 1𝑏) 𝛽𝐾V𝐾 + 𝜀 𝑔𝑢𝑝𝑔𝑢 + 𝑐 − 𝛼𝑏 V= 𝛽 (𝑏 − 1)𝐾𝑔𝑝 − 𝛼 (𝐾 + 𝜀) (𝑔𝑢 + 𝑐)𝑏 (𝐾 + 𝜀) (𝑢𝑔 + 𝑐) V.
(17)
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When 𝑏 < 1 + (𝛼(𝐾 + 𝜀)/𝛽𝐾) ⋅ ((𝑔𝑢 + 𝑐)/𝑔𝑢𝑝), we can have𝑉̇ ≤ 0.
Let 𝐸 = {(𝑥, 𝑦, V, 𝑧) | 𝑉̇ = 0}; it is clear that 𝐸 ⊂{(𝑥, 𝑦, V, 𝑧) | V = 0}. Let𝑀 be the largest positively invariant

subset of the set 𝐸; by the third equation of system (4), we
can know that 𝑦(𝑡) = 0, so𝑀 = {(𝑥, 𝑦, V) | 𝑦 = 0, V = 0}. By
LaSalle invariance principal [26], we know

lim
𝑡→∞

𝑦 (𝑡) = 0,
lim
𝑡→∞

V (𝑡) = 0. (18)

So, the limit equation of system (4) is𝑑𝑥𝑑𝑡 = (1 − 𝑢) 𝑟𝑥 (1 − 𝑥𝐾) ,𝑑𝑧𝑑𝑡 = 𝑔𝑢 (𝑝 − 𝑧) − 𝑐𝑧. (19)

Therefore, 𝑥(𝑡) → 𝐾, 𝑧 → 𝑔𝑢𝑝/(𝑔𝑢 + 𝑐) when 𝑡 → ∞. So,𝐸1 is globally attractive; note that 𝑏 < 1 + (𝛼(𝐾 + 𝜀)/𝛽𝐾) ⋅((𝑔𝑢+𝑐)/𝑔𝑢𝑝) can also ensure the local asymptotical stability
of 𝐸1, so we can know that 𝐸1 of system (4) is globally
asymptotically stable when 𝑏 < 1 + (𝛼(𝐾 + 𝜀)/𝛽𝐾) ⋅ ((𝑔𝑢 +𝑐)/𝑔𝑢𝑝).

Although we can prove the global asymptotical stability
of E1, we would not want this to happen, because the global
asymptotical stability means the therapy does not have any
effect. When 𝑏 > 1 + (𝛼(𝐾 + 𝜀)/𝛽𝐾)((𝑔𝑢 + 𝑐)/𝑔𝑢𝑝) holds,
the coexistent steady state 𝐸2 = (𝑥2, 𝑦2, V2, 𝑧2) exists, but it is
difficult to give the stable analysis of E2, so we just give some
simulations about it.

We choose 𝛽 = 0.2 day−1, 𝜀 = 0.009, 𝛿 = 0.5 day−1,𝑟 = 6 cells day−1, 𝛼 = 0.5 day−1, 𝑝 = 10, 𝑔 = 0.1 day−1,𝑐 = 0.5 day−1, and𝐾 = 9 × 108 cells.
The initial condition is 𝑥0 = (6×107, 0, 5×104, 4×102),

where the unit of each is cells.
We choose 𝑏 = 10 cell−1 day−1, 𝑏 = 14 cell−1 day−1,

respectively, and 𝑏 > 1+(𝛼(𝐾+𝜀)/𝛽𝐾)((𝑔𝑢+𝑐)/𝑔𝑢𝑝) = 2.6389
all hold; the simulation results are shown in Figures 1 and 2.

The simulation results show that oncolytic virus therapy
may keep the tumor stable at some level as shown in Figure 1
or keep oscillating at a certain range as shown in Figure 2.
Since the cured equilibrium is always unstable, just from our
model, we could not give the condition that ensures the tumor
can be cured by oncolytic virus therapy, but if we choose
appropriate u which satisfies𝑏 > 1 + 𝛼 (𝐾 + 𝜀)𝛽𝐾 𝑔𝑢 + 𝑐𝑔𝑢𝑝 , (20)

the simulation shows that oncolytic virus therapy can prevent
the tumor from getting worse and worse. Some other therapy
methods should be combined to cure the tumor.

2.2. The Optimal Control of MEK. In the simulation of
Figures 1 and 2, we choose the control 𝑢 as constant. Since
the use of MEK inhibitors not only results in enhanced
oncolytic virus entry into the cells, but also renders infected
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Figure 1: State dynamics for uninfected and infected tumor cells
when 𝑏 = 10.
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Figure 2: State dynamics for uninfected and infected tumor cells
when 𝑏 = 14.
cells temporarily unable to produce viruses, how to use the
MEK inhibitors optimally should be studied. In model (4),
the function of MEK inhibitors was embodied by parameter𝑢; we use it as the control variable. The control goal is not
only to formulate an objective functional which lowers the
levels of tumor cells during and at the end of therapy, but
also to minimize the cost of MEK, so the objective function
is defined as follows:𝐽 (𝑢) = 12𝑎11𝑥2 + 12𝑎22𝑦2+ 12 ∫𝑡𝑓𝑡0 (𝑏11𝑥2 + 𝑏22𝑦2 + 𝑏33V2 + 𝑐11𝑢2) 𝑑𝑡, (21)

where 𝑡0 represents the beginning time of the treatment
and 𝑡𝑓 represents the terminal time of the treatment.
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𝑎11, 𝑎22, 𝑏11, 𝑏22, 𝑏33, and 𝑐11 represent the cost coefficients
for the variables, respectively.

For convenience, we define the state vector 𝑋 = (𝑥, 𝑦, V,𝑧)𝑇; system (4) can be written as𝑋̇ = 𝑓 (𝑋 (𝑇) , 𝑢 (𝑡) , 𝑡) ,𝑋 (𝑡0) = 𝑋0. (22)

And the corresponding cost function is defined as follows:

𝐽 = 12𝑋𝑇𝐴𝑋 + 12 ∫𝑡𝑓𝑡0 (𝑋𝑇𝐵𝑋 + 𝐶𝑢2) 𝑑𝑡. (23)

Here,

𝐴 =(𝑎11 0 0 00 𝑎22 0 00 0 0 00 0 0 0),

𝐴 =(𝑏11 0 0 00 𝑏22 0 00 0 𝑏33 00 0 0 0),
𝐶 = 𝑐11.

(24)

Based on the dynamic constraint 𝑓(𝑋(𝑇), 𝑢(𝑡), 𝑡) and the
Lagrangian 𝐿(𝑋(𝑡), 𝑢(𝑡), 𝑡), the Hamiltonian is as follows:𝐻(𝑋 (𝑡) , 𝑢 (𝑡) , 𝑡) = 𝐿 (𝑋 (𝑡) , 𝑢 (𝑡) , 𝑡)+ 𝜆𝑇𝑓 (𝑋 (𝑡) , 𝑢 (𝑡) , 𝑡) (25)

where 𝐿(𝑋(𝑡), 𝑢(𝑡), 𝑡) = (1/2)(𝑋𝑇𝐵𝑋 + 𝑐11𝑢2).
Using Pontryagin’s minimum principle, the necessary

conditions are given as follows:

(10)𝑋̇ = 𝑓 (𝑋 (𝑡) , 𝑢 (𝑡) , 𝑡)
=
{{{{{{{{{{{{{{{{{{{{{{{

𝑑𝑥𝑑𝑡 = (1 − 𝑢) 𝑟𝑥 (1 − 𝑥 + 𝑦𝑘 ) − 𝛽𝑥V𝑧𝑥 + 𝑦 + 𝜀𝑑𝑥𝑑𝑡 = 𝛽𝑥V𝑧𝑥 + 𝑦 + 𝜀 − (1 − 𝑢) 𝛿𝑦𝑑V𝑑𝑡 = 𝑏 (1 − 𝑢) 𝛿𝑦 − 𝛽𝑥V𝑧𝑥 + 𝑦 + 𝜀 − 𝛼V𝑑𝑧𝑑𝑡 = 𝑔𝑢 (𝑝 − 𝑧) − 𝑐𝑧,
(26)

(20) 𝑋(𝑡0) = 𝑋0, (27)

(30)

𝜆̇ = −𝜕𝐻𝜕𝑋
= −[[[[[[

𝜆1 ⋅ 𝑝𝑓11 + 𝜆2 ⋅ 𝑝𝑓21 + 𝜆3 ⋅ 𝑝𝑓31 + 𝜆4 ⋅ 𝑝𝑓41 + 𝑏11𝑥𝜆1 ⋅ 𝑝𝑓12 + 𝜆2 ⋅ 𝑝𝑓22 + 𝜆3 ⋅ 𝑝𝑓32 + 𝜆4 ⋅ 𝑝𝑓42 + 𝑏22𝑦𝜆1 ⋅ 𝑝𝑓13 + 𝜆2 ⋅ 𝑝𝑓23 + 𝜆3 ⋅ 𝑝𝑓33 + 𝜆4 ⋅ 𝑝𝑓43 + 𝑏33V𝜆1 ⋅ 𝑝𝑓14 + 𝜆2 ⋅ 𝑝𝑓24 + 𝜆3 ⋅ 𝑝𝑓34 + 𝜆4 ⋅ 𝑝𝑓44
]]]]]] ,

(28)

where

𝑝𝑓11 = 𝑟 (1 − 𝑢) (1 − 2𝑥 + 𝑦𝐾 ) − 𝛽 (𝑦 + 𝜀) V𝑧(𝑥 + 𝑦 + 𝜀)2 ,𝑝𝑓12 = 𝛽𝑥V𝑧(𝑥 + 𝑦 + 𝜀)2 − (1 − 𝑢) 𝑟𝐾𝑥,𝑝𝑓13 = − 𝛽𝑥𝑧𝑥 + 𝑦 + 𝜀 ,𝑝𝑓14 = − 𝛽𝑥V𝑥 + 𝑦 + 𝜀 ,
𝑝𝑓21 = 𝛽 (𝑦 + 𝜀) V𝑧(𝑥 + 𝑦 + 𝜀)2 ,𝑝𝑓22 = − (1 − 𝑢) 𝛿 − 𝛽𝑥V𝑧(𝑥 + 𝑦 + 𝜀)2 ,𝑝𝑓23 = 𝛽𝑥𝑧𝑥 + 𝑦 + 𝜀 ,𝑝𝑓24 = 𝛽𝑥V𝑥 + 𝑦 + 𝜀 ,
𝑝𝑓31 = − 𝛽 (𝑦 + 𝜀) V𝑧(𝑥 + 𝑦 + 𝜀)2 ,𝑝𝑓32 = 𝑏 (1 − 𝑢) 𝛿 + 𝛽𝑥V𝑧(𝑥 + 𝑦 + 𝜀)2 ,𝑝𝑓33 = − 𝛽𝑥𝑧𝑥 + 𝑦 + 𝜀 − 𝛼,𝑝𝑓34 = − 𝛽𝑥V𝑥 + 𝑦 + 𝜀 ,𝑝𝑓41 = 0,𝑝𝑓42 = 0,𝑝𝑓43 = 0,𝑝𝑓44 = −𝑔𝑢 − 𝑐,

(29)
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(40)

𝜆 (𝑡𝑓) = 𝐴𝑋(𝑡𝑓) = [[[[[[
𝑎11 0 0 00 𝑎22 0 00 0 0 00 0 0 0

]]]]]]
[[[[[[[
𝑥 (𝑡𝑓)𝑦 (𝑡𝑓)
V (𝑡𝑓)𝑧 (𝑡𝑓)

]]]]]]]
, (30)

(50)𝜕𝐻𝜕𝑢 = 𝑐11𝑢 − 𝜆1𝑟𝑥 (1 − 𝑥 + 𝑦𝐾 ) + 𝜆2𝛿𝑦 − 𝜆3𝑏𝛿𝑦+ 𝜆4𝑔 (𝑧 − 𝑝) . (31)

3. Results and Discussion

In this part, based on the minimum principle, we will give
the simulation of optimal strategy by using the Runge–Kutta
fourth-order scheme and the steepest gradient method [27].

We choose 100 days as the control time. The efficacy 𝑢
can theoretically lie between 0 and 1, where 0 corresponds
to no effectiveness of the MEK and 1 corresponds to full
effectiveness of the MEK. However, the perfect efficacy of
MEK is unlikely to be achieved totally, so we suppose that the
maximum effect is 0.98.

It is difficult to choose the parameters exactly based on
biological meaning without experiment data, since the global
stability of E1 means the therapy has no effect when𝑏 < 1 + 𝛼 (𝐾 + 𝜀)𝛽𝐾 ⋅ 𝑔𝑢 + 𝑐𝑔𝑢𝑝 . (32)

We choose 𝛽 = 0.2 day−1, 𝜀 = 0.009, 𝛿 = 0.5 day−1, 𝑟 = 6
cells day−1, 𝛼 = 0.5 day−1, 𝑝 = 10, 𝑔 = 0.1 day−1, 𝑐 =0.5 day−1, 𝐾 = 9 × 108 cells, 𝑏 = 4 cell−1 day−1, 𝑎11 = 𝑎22 = 1,𝑏11 = 𝑏22 = 𝑏33 = 10−5, and 𝑐11 = 8000.

Even if we use the maximum constant 𝑢 = 0.98, 𝑏 > 1 +(𝛼(𝐾 + 𝜀)/𝛽𝐾)((𝑔𝑢 + 𝑐)/𝑔𝑢𝑝) = 2.5255 also holds.
We give and compare two control strategies with the same

initial conditions:𝑥0 = (6 × 107, 0, 5 × 104, 4 × 102) . (33)

The optimal control simulation results are shown in Fig-
ure 3. The corresponding state dynamics for uninfected and
infected tumor cells under the optimal control are shown in
Figure 4 with solid line.

We choose constant control 𝑢 = 0.98 to compare with the
optimal control effect; the state dynamics for uninfected and
infected tumor cells under the constant control are shown in
Figure 4 with dotted line.

From the simulation, we can see that even if we use the
maximum constant 𝑢 = 0.98, the tumor cells still increase at
the former stage and then keep stable at some level. But if we
use the optimal control strategy as shown in Figure 3, that is
to say, we need not use the maximum dosage of MEK all the
time, though the tumor cells increase quickly with the lower
dosage of MEK at the beginning stage, about 5 days later, it
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Figure 3: The optimal control of MEK.
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Figure 4: State dynamics for uninfected and infected tumor cells
with different control strategies.

will begin to decrease and keep lower than that of constant
control. As for the infected tumor, it is apparent that more
tumor cells are infected with the optimal strategy; this in turn
can help tumor cells keep at a contrarily lower level.

4. Conclusion

This paper introduces a new mathematical model of tumor
therapy with oncolytic virus andMEK inhibitor.The stability
of the equilibrium points is analyzed. Because inhibitors
(MEK) can not only lead to greater oncolytic virus infection
into cancer cells, but also cause cell cycle to stop, from
theoretical analysis and numerical simulations, we compare
optimal control strategy about the dosage of MEK inhibitor
and constant control strategywith the same initial conditions.
Simulations show that the optimal control has better control
effect than constant control. But it should be pointed out that
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our model has no cure equilibrium point, so, just from our
model, we could not say that the tumor can be cured only
by oncolytic virus therapy. But the optimal control strategy
can help to prevent the tumor from getting worse and worse.
Some other therapy methods should be combined to cure the
tumor.

Aswe cannot get the exact parameters based on biological
meaning, more work should be done about the modeling and
simulations.
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