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ABSTRACT

The human disease methylation database
(DiseaseMeth, http://bioinfo.hrbmu.edu.cn/
diseasemeth/) is an interactive database that
aims to present the most complete collection and
annotation of aberrant DNA methylation in human
diseases, especially various cancers. Recently,
the high-throughput microarray and sequencing
technologies have promoted the production of
methylome data that contain comprehensive knowl-
edge of human diseases. In this DiseaseMeth
update, we have increased the number of samples
from 3610 to 32 701, the number of diseases from 72
to 88 and the disease–gene associations from 216
201 to 679 602. DiseaseMeth version 2.0 provides
an expanded comprehensive list of disease–gene
associations based on manual curation from ex-
perimental studies and computational identification
from high-throughput methylome data. Besides the
data expansion, we also updated the search engine
and visualization tools. In particular, we enhanced
the differential analysis tools, which now enable
online automated identification of DNA methylation
abnormalities in human disease in a case-control or
disease–disease manner. To facilitate further mining
of the disease methylome, three new web tools were
developed for cluster analysis, functional annotation
and survival analysis. DiseaseMeth version 2.0
should be a useful resource platform for further
understanding the molecular mechanisms of human
diseases.

INTRODUCTION

DNA methylation is a chemical modification on DNA se-
quence (1) that directs and restricts cell differentiation dur-
ing growth and development. Because of its important role
in mammals, the abnormal occurrence or removal of methy-
lation is likely to contribute to the risk of diseases. There-
fore, DNA methylation associated with disease has been a
focus of extensive research interest. To provide a compre-
hensive DNA methylation repository of human diseases,
we developed DiseaseMeth (2), which is a web-based re-
source of aberrant methylomes related to human diseases.
DiseaseMeth included 175 large-scale disease methylation
datasets from 88 diseases produced by 19 techniques, as well
as over 14 000 items of curated experimental information
mined from PubMed. In the five years since its publication,
DiseaseMeth has been used in disease methylation analyses
by more than 7000 visitors from more than 90 countries.

Recently, several high-throughput technologies have been
developed for detection of the DNA methylome in a large
number of samples including human diseases. The Illu-
mina Infinium Human Methylation450BeadChip has been
widely used to profile DNA methylation in various hu-
man diseases, including a large number of cancer sam-
ples from The Cancer Genome Atlas (TCGA) project (3).
TCGA project, for example, used an Infinium BeadChip
to map methylation profiles in more than 10 000 samples
from 32 cancer types including glioblastoma, breast cancer
and papillary kidney carcinoma (4–6). In addition, whole-
genome bisulfite sequencing (WGBS) has been used to de-
tect whole methylomes in human diseases at single-site res-
olution. By analyzing WGBS datasets, Hovestadt et al. (7)
found that alterations in DNA methylation of novel can-
didate genes (e.g. LIN28B) in medullablastoma resulted
in alternative promoter usage and/or differential messen-
ger RNA/microRNA expression. Reduced representative
bisulfite sequencing(RRBS) is another bisulfite-based tech-
nology that is suitable for obtaining methylation informa-
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tion from regions of high CpG content (e.g. CpG islands)
and has been used to provide detailed epigenetic status in
various human disease tissues and cell lines (8,9). For ex-
ample, Hascher et al. used RRBS to map the genome-wide
methylation landscape in lung cancer and found that DNA
methylation had an influence on poly comb target genes
(10).

DNA methylation experimental technologies have helped
to uncover more and more differential DNA methylation
of genes in disease. Agarwal et al. found that DNA-methyl
transferase 1 (DNMT1) was overexpressed in many can-
cers and was correlated to aberrant methylation in nasopha-
ryngeal carcinoma. It may be the risk stratification and fi-
nal outcomes in patients with nasopharyngeal carcinomas
(11). Lan et al. (12) found again in osuccinate synthase 1
(ASS1) deficiency maybe linked to therapeutic sensitivity to
arginine-depriving agents and promote tumor aggressive-
ness through its newly identified tumor suppressor func-
tion. Andres et al. (13) confirmed global DNA hypomethy-
lation in rheumatoid arthritis patients, with specificity for
some blood cell subpopulations. Hardy et al. (14) found dif-
ferential DNA methylation of the PPARγ promoter in 26
patients with biopsy-proven non-alcoholic fatty liver dis-
ease. Moreover, based on the rapidly increasing amount
of data, a number of relationships between DNA methy-
lation of genes and diseases have been reported. For exam-
ple, in prostate cancers, APC, MGMT and RASSF1A were
methylated in at least 60% of the patients in the study, while
other genes, including COX-2, DAPK1, CDH1, CDKN2A,
RUNX3 and THBS1 were methylated at frequencies lower
than 35% (15). Further, it was suggested that high levels of
CpG island hypermethylation might serve as a potential bi-
ological marker for aggressive prostate cancer.

Large amounts of methylation data are now available
from various sources including TCGA project, the In-
ternational Human Epigenome Consortium (IHEC, http:
//ihec-epigenomes.org/) and the Gene Expression Om-
nibus (GEO) (16). Databases, including DiseaseMeth (2),
MethHC (17), MethyCancer (18), NGSmethDB (19) and
MethBase (20), have been developed to store this methyla-
tion data and disease information. However, an online plat-
form that integrates high-throughput methylome data and
online analyses is still needed for detecting disease–gene as-
sociations. To meet this need, we have updated DiseaseMeth
and built an online platform for data integration and anal-
yses.

In this paper, we present DiseaseMeth version 2.0, which
represents a qualitative leap from the previous version (2).
DiseaseMeth version 2.0 is focused not only on curated in-
formation about diseases, genes and corresponding methy-
lation data, but also on predicted associations between dis-
eases of interest and methylation of specific DNA regions
based on the vast amounts of data that it contains. Dis-
easeMeth version 2.0 contains methylation data of 32 701
samples from 88 diseases together with 679 602 associa-
tions between diseases and methylation of genes. To facil-
itate research on the disease methylome, DiseaseMeth ver-
sion 2.0 has been updated and several new tools and features
have been added as follows. (i) The online workflow in the
analysis page was developed for differential DNA methyla-
tion analysis in selected diseases and further interpretation

for the results, including cluster analysis, functional anno-
tation, survival analysis and searching the existing disease–
gene associations stored in this database. (ii) The search en-
gine has been enhanced to search DNA methylation data in
selected samples or in given genomic regions. The search re-
sults can be visualized and users can select data for differen-
tial DNA methylation analysis. (iii) Four categories of asso-
ciations between diseases and genes are revealed according
to the text mining. (iv) We rebuild the genome browser, Dis-
MethBrowser, which contains abundant annotation tracks
with supporting customized views in the genomic scale.

In summary, DiseaseMeth version 2.0 not only enlarges
the data of increased DNA methylation, but also provides
new tools to explore the relationships between methylation
of genes and diseases. DiseaseMeth version 2.0 is a com-
prehensive resource that will help researchers understand
diseases from an epigenetics viewpoint.

DATA EXPANSION AND PRE-PROCESSING

DiseaseMeth version 2.0 is updated to include the increased
amount of DNA methylation data and associations be-
tween diseases and genes (Table 1). There are 88 kinds of
disease in the updated version. Among them, 74 diseases
were detected by high-throughput experimental technology
including 32 701 methylation profiles. The data sets were
collected from huge international disease projects including
TCGA and public genome databases including GEO (16).

For ease of usage and to reveal further information, we
processed and standardized the data sets. From TCGA
project, we downloaded 9795 profiles of the Illumina In-
finium HumanMethylation450 BeadChip, 2728 profiles of
the Illumina Infinium HumanMethylation27 BeadChip and
47 profiles of whole-genome bisulfite sequencing. The Illu-
mina Infinium HumanMethylation27 BeadChip data were
converted into the UCSC assembly (21) of the February
2009 human reference sequence (GRCh37) with LiftOver
(21). In addition, we downloaded 6522 profiles of Illumina
Infinium HumanMethylation450 BeadChip, 8567 profiles
of Illumina Infinium HumanMethylation27 BeadChip and
88 profiles of RRBS from GEO. We converted the methy-
lation levels represented by M-values to β-values (22). For
the raw sequencing data from bisulfite sequencing platforms
that we downloaded from the sequence read archive (23),
we performed read mapping and methylation calling us-
ing the bisulfite mapping tool Bismark (24) to obtain the
methylation levels. The source information about disease
status, sample ID, research ID or study ID, data platform,
download links and tissue or cell line of each methyla-
tion profile was assembled and stored into a MySQL back-
end database. Both the disease methylation profiles and
the query/analysis results could be downloaded from Dis-
easeMeth version 2.0 for the use of academic research.

Moreover, in DiseaseMeth version 2.0, the associations
between diseases and methylation of genes were increased
to 679 602 items including 256 919 that were predicted
from the 32 701 profiles. To provide distinct informa-
tion, the associations between diseases and genes were
classified into four groups: 2880 experimentally verified
disease–gene association; 214 084 inferred DNA methyla-
tion mediated disease–gene associations identified by com-

http://ihec-epigenomes.org/


D890 Nucleic Acids Research, 2017, Vol. 45, Database issue

Table 1. Expanded data content in DiseaseMeth version 2.0 compared with the previous version of DiseaseMeth

Total No. Items No. of each item

Illumina Infinium HumanMethylation450 BeadChip 16 317 (16 317)
Illumina Infinium HumanMethylation27 BeadChip 11 295 (9506)
Reduced Representation Bisulfite Sequencing 88 (30)

Methylation profiles in human diseases 32 701 (28 471) Whole-Genome Bisulfite Sequencing 80 (80)
Methylated DNA Immunoprecipitation Sequencing 58 (58)
Methylation-sensitive Restriction Enzyme Sequencing 33 (33)
Illumina GoldenGate DNA methylation Beadchip 1280 (1265)
Other 3550 (1182)

Disease and Gene Association 679 602 (471 916) Inferred relationship 256 919 (42 835)
Potential relationship 429 081 (429 081)
experimentally verified 2880 (535)

Transcription Factor Binding Sites 438 044 (438 044) Transcription Factor Binding Sites 438 044 (438 044)
DNase I hypersensitive sites 1 867 665 (1 867 665) DNase I hypersensitive sites 1 867 665 (1 867 665)
Genome information 99 865 (0) UCSC mRNA 58 939 (0)

CpG Island 40 926 (0)

The numbers in parentheses indicate the expanded data in DiseaseMeth version 2.0.

putational methods from the reported analysis of DNA
methylation profiles; and 429 081 potential methylation-
associated disease–gene associations that were published in
DisGeNET (25) which integrates information on disease–
gene associations from several public data sources and the
literature. In addition, based on the DNA methylation pro-
files hosted in DiseaseMeth version 2.0, we identified 42
835 other disease–gene associations by enhanced t-test (see
Supplementary Methods) with restriction of P < 0.01 and
absolute difference of methylation > 0.2, which has been
integrated into the enhanced DNA methylation analysis
toolkit in this update. DiseaseMeth version 2.0 provides in-
formation about disease–gene associations, including dis-
ease name, disease ID, gene name, groups of the association,
evidence and origin.

UPDATE OF THE DISEASEMETH CORE

Updated toolkit for analyses of differential DNA methylation
and relationships between gene and disease

The differential DNA methylation analysis tool was up-
dated by integrating the Student’s t-test, Shannon entropy
and the edgeR (26), minfi (27) and samr (28) algorithms to
analyze differences across two or more groups of human
disease data in a case-control or disease–disease manner.
In order to recover the significantly differential methylated
genes/CpG sites, the measure of significant P-values and
absolute difference of the mean methylation levels have been
considered simultaneously in our method (see Supplemen-
tary Methods). In addition, differential methylation can be
performed in the seven RefSeq gene-related regions or the
CGI-related regions according to the interesting.

Disease–gene associations were defined as significantly
differential methylated genes among case-control groups of
a particular disease. For reference, the currently reported
disease–gene associations detected by experimental meth-
ods, computational methods or integrated strategies in-
ferred associations are listed in DiseaseMeth version 2.0.
Some basic information including mean methylation, P-
value, the gene expression regulation, disease progression
and the methylation type have been provided for future
studies. Disease–disease and gene–gene association analy-
ses were also integrated into the above analysis flow through
a correlation analysis strategy.

DisMethBrowser: newly developed disease methylome visual-
ization tool

We developed a new disease methylome browser called Dis-
MethBrowser to provide a user-friendly interface. We in-
creased the annotation tracks with transcriptional elements
from UCSC. In DisMethBrowser, the configuration of the
track option lists was further simplified so that users can
easily obtain the track data of interest through the search
engine by clicking the ‘Add Samples’ button.

NEW TOOLS FOR EXTENDED ANALYSIS OF DIFFER-
ENTIAL METHYLATED GENES

To explore the regulation mechanism of methylation caus-
ing disease, three new web tools were developed to uncover
information that may be hidden in the big data, including
cluster analysis, functional annotation and survival anal-
ysis. The cluster analysis tool exhibits the characteristics
of the methylation profile in disease samples within input
genes and provides a heatmap of the results. These results
can be used to directly visualize the methylation profile
and compare the methylation levels between cases and con-
trols. The extended functional annotation tool offers con-
venient access to the Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID) (29) and the Ge-
nomic Regions Enrichment of Annotations Tool (GREAT)
(30), which can be used to identify the functions of differ-
ential genes or regions. For genes or transcripts, a func-
tional analysis can be performed through the DAVID web
service, while, for genomic intervals, GREAT can be used
instead. Similarly, a gene of interest could be submitted to
PROGgene (31) for survival analysis of a chosen disease to
confirm whether or not a gene is related to the survival time
of patients with a specific cancer.

DATABASE USE AND ACCESS

Search tools provided by DiseaseMeth version 2.0

DiseaseMeth version 2.0 can be accessed freely at http:
//bioinfo.hrbmu.edu.cn/diseasemeth/. The search module in
DiseaseMeth version 2.0 provides three query types, Gene-
Search, DiseaseSearch and AdvanceSearch (Figure 1A). On
the GeneSearch page, users can specify a Gene symbol (gene
name/transcript ID) or Genomic position to obtain the
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Figure 1. Content and construction of DiseaseMeth version 2.0. (A) Search engine options: GeneSearch, DiseaseSearch and AdvanceSearch. (B) Search
results include information of Disease–Gene Association and Disease Methylome Overview, as well as a link to Extended Tools. (C) DisMethBrowser and
Data downloads. (D) Setting options for the Differential DNA Methylation Analysis Tool. (E) Seven tabs used for the analysis results. (F) DisMethBrowser
of DiseaseMeth version 2.0 for the visualization of methylation landscape of a specified region.

methylation levels of genes across disease samples. On the
DiseaseSearch page, users can select the Disease type to ob-
tain a heatmap of the methylation landscape for the selected
disease. The AdvanceSearch page allows users to specify a
more accurate query. By inputting Gene name/Transcript
ID or Genomic position, and selecting Disease type and
Technology platform, users can obtain a more specific data
set. In the result page, users can select samples for further
analyses like visualization and differential DNA methyla-
tion status analysis (Figure 1B). For the differential methy-
lation analysis, besides the Student′s t-test, a number of
other statistical methods have been built-in to DiseaseMeth
version 2.0, such as QDMR, a method for quantitative iden-
tification of differentially methylated region (32) based on
Shannon entropy, edgeR, minfi and samr. Following a dif-
ferential analysis, users can make use of the build-in tools
to analyze the results, including visualization of the results
in the genome browser, functional annotation and down-
loading the result information or the origin methylome data
(Figure 1C).

Online tools for differential methylation identification and
functional analysis

Users can input a group of gene symbols, transcript IDs, or
genomic intervals in the search table to analyze both their
associations with selected diseases and the functional cor-
relations between the input genomic regions (Figure 1D).
When gene symbols or transcript IDs are provided, the de-
fault analysis regions are the promoter regions defined as

from 2000 bp upstream of the transcription start site (TSS)
to 500 bp downstream of the TSS of RefSeq transcripts (-
2∼0.5 kb). Besides, four other definitions of the promoter
region, including -2, -1.3∼0.2, -1∼0.5 and -1.5∼0.5 kb, have
been provided for users to refer to. However, users can cus-
tomize the length of the promoter regions to be analyzed.
Differential DNA methylation status can also be performed
in other regions of the transcripts by selecting ‘Region of
Interest’ to access gene body, 5′UTR, 3′UTR, exon, intron,
down2kb and up2kb, or CpG region divide to access CpG
island, CpG island shore and CpG island shelves.

The results are divided into seven tabs (Figure 1E): Diff
Case-Control, Disease–Gene association, Methylation Pro-
file Cluster, Survival Analysis for Cancer, Functional An-
notation, Gene-Gene Association and Disease–Disease As-
sociation. The Diff Case-Control tab displays the result of
a differential DNA methylation status analysis using the
method selected by the users for each keyword between the
case and control for each selected disease. Users can ob-
tain a box plot for each keyword to visualize the results
of the differential analysis. The Disease-Gene association
tab detects stored associations between the input genomic
regions and the selected diseases. The Methylation Profile
Cluster tab provides a heatmap that displays the methyla-
tion profile of samples and the cluster results for each of
the selected diseases. The Survival Analysis for Cancer tab
provides a Kaplan-Meier curve for each selected gene. The
Functional Annotation tab provides the annotations of the
selected genes using DAVID v6.7. These analysis tools al-
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low users to mine large amounts of data to determine if a
given genomic region is related to the selected diseases.

DisMethBrowser of DiseaseMeth version 2.0

DisMethBrowser (Figure 1F) can be used to visualize the
methylation data of samples or the results of differential
methylation analysis. Methylation data in the various sam-
ples can be added via the search page and the annotation
tracks can be controlled in the DisMethBrowser. Genes
symbol, transcript ID or genomic interval can be submit-
ted to browse the methylation level and the annotation of a
given region. DisMethBrowser with the annotation tracks
allow users to easily browse and understand the methyla-
tion data and the results of differential analysis.

A case application of DiseaseMeth version 2.0 in a systematic
analysis for selected carcinomas

On the ‘AdvanceSearch’ page, we input NKAPL as the
Gene Symbol, selected Rectum adenocarcinoma[READ],
Liver hepatocellular carcinoma [LIHC], Prostate adenocar-
cinoma [PRAD] and Breast invasive carcinoma[BRCA] as
the Disease, and chose 450k (Illumina Infinium Human-
Methylation450 BeadChip) as the Technology Experimen-
tal Platform (Figure 2A). After clicking the ‘Search’ button
at the bottom of the page and further chose ‘promoter’ with
the default parameters ‘2000 bp upstream of TSS to 500 bp
downstream’ to continue, then we obtained the search re-
sult page (Figure 2B), which listed one entries of the asso-
ciation between disease and gene, and 2153 entries of DNA
methylomes that are stored in DiseaseMeth version 2.0. It
showed that NKAPL was significantly differential methy-
lated in BRCA (t-test, P < 0.01), the mean methylation
level in cancer samples was 0.621 and the mean methyla-
tion level in normal samples was 0.367. The methylation
profile indicated that it was hyper-methylated in breast can-
cer. By submitting an analysis request through the ‘Ex-
tended Tools’ on the bottom of the search result page or
through the Analyze menu options (Figure 2C), we per-
formed the differential methylation analysis for the four
selected carcinomas. Then it displayed the transcription
matching results for each gene symbol (OR2M3, PRDM14,
MIR663A, NKAPL and OR10K2) on the top of the page.
Here, we select the gene promoter by checking ‘2 kb up-
stream of TSS to 0.5 kb downstream’ as the ‘Region of In-
terest’ for the following analysis (Figure 2D). The results
given in the Diff Case-Control tab (Figure 2F) show that all
five input genes, MIR663A, OR10K2, NKAPL, PRDM14
and OR2M3, were significantly differential methylated in
BRCA. By clicking the ‘+/-’ button, a boxplot for the cor-
responding gene was displayed to visualize methylation lev-
els between case-control samples. The Disease–Gene Asso-
ciation tab (Figure 2G) listed 22 reported records, which
show that these five genes were also identified in other re-
searches. Clicking the Methylation Profile tab (Figure 2H)
displayed a heatmap view of the whole methylation land-
scape of the five genes in the specified disease. The heatmap
view could be switched by clicking the tab-button at the top
of the panel. The Survival Analysis tab (Figure 2I) provided
a Kaplan–Meier curve for the selected gene NKAPL, which

showed that the BRCA patients were divided into high-risk
and low-risk groups based on the expression of NKAPL and
the survival times of the two groups were significantly dif-
ferent (t-test, p = 0.0036). Through the functional annota-
tions (Figure 2J), we found that the five genes were signifi-
cantly enriched in the Olfactory transduction pathway. The
relationship analysis based on DNA methylation of the five
genes (Figure 2K) revealed that NKAPL was highly relevant
to the microRNA coding gene MIR663A and PRDM14,
and that PRADM14 was highly relevant to MIR663A. For
the Disease–Disease Relationship Analysis (Figure 2L), we
found that BRCA was highly related to READ and LIHC at
the methylation level of the five submitted genes. Finally, we
created the methylation landscape for NKAPL in the Dis-
MethBrowser (Figure 2M).

Comparison of DiseaseMeth version 2.0 with other databases

To highlight the current advantages of DiseaseMeth ver-
sion 2.0, we compared DiseaseMeth version 2.0 with other
related 15 databases based on a total of 44 sub-characters
about concerned 13 features. Detailed results of the com-
parisons are available in Supplementary Table S1. For ex-
ample, the data records in PubMeth (33), DDMGD (34)
and MeInfoText 2.0 (35) were automatically compiled via
text mining, only PubMeth processed a following man-
ual curation. Additionally, MeInfoText 2.0, MethDB (36),
MethyCancer, PubMeth, MENT (37), CMS (38), PCMdb
(39), PD NGSAtlas (40) and MethmiRbase (41) focused on
human cancers/disorders, while MethylomeDB (42) is fo-
cused on the brain tissues. MeT-DB (43) is a comprehen-
sive database for N6-methyladenosine (m6A) mammalian
methyltranscriptome. DiseaseMeth version 2.0 collected
nearly all existed kinds of methylation datasets from differ-
ent technology platforms. Totally, 32 701 high-throughput
DNA methylation profiles of 74 kinds of human diseases
have been assembly released in this updated version. Be-
sides, we included 2880 single-gene methylation appraisal
analysis by manual curation. The main differential of Dis-
easeMeth version 2.0 with other databases is the tools for
online identification and analysis of disease–gene associ-
ations based on high-throughput DNA methylation pro-
files. Most of those databases only included information on
methylated genes in the diseases. The online analysis tools
will help to provide more and more information about dis-
eases and genes. In summary, DiseaseMeth version 2 is a
synthetical platform gathering with the huge data storing
and analyzing of methylation profiles in human diseases.

FUTURE DEVELOPMENT

The importance of epigenetics now is widely recognized,
especially in the development and occurrence of diseases.
DiseaseMeth version 2.0 incorporates curated information
about methylation-associated disease genes and detailed
analyses of associations between diseases and genes using
high-through put methylation data. These improved tools
are convenient for users to query, analyze and understand
the analysis results without the need for any other exter-
nal tools. What is more, we will continuously enhance the
function of DiseaseMeth. To build a comprehensive DNA
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Figure 2. A case study showing the usage of DiseaseMeth version 2.0. (A) The AdvanceSearch page with NKAPL input as the Gene Symbol, READ,
LIHC, PRAD and BRCA selected as Disease, and 450k chosen as the Technology Experimental Platform. (B) Search results page. (C) The Analyze menu
options page. (D) Transcription matching results for each gene symbol on the top of the page. And the ‘Select Region of Interest’ option controller. (E)
The analysis results included in seven tabs. (F) The Diff Case-Control tab. (G) The Disease–Gene Association tab. (H) The Methylation Profile tab. (I) The
Survival Analysis tab. (J) The functional annotation results tab. (K) Relationship analysis based on DNA methylation of genes. (L) The Disease–Disease
Relationship Analysis tab. (M) Visualization of NKAPL in DisMethBrowser.
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methylation database of human diseases, data from dif-
ferent diseases and platforms will be added to keep Dis-
easeMeth up-to-date. Additional data from various omics
studies will also be incorporated to contribute to the com-
prehensive analysis of methylation data. Through our ef-
forts, we expect that DiseaseMeth will continue to con-
tribute to research into further understanding of epigenetic
regulation mechanisms and even toward the epigenetic di-
agnosis and treatment of human diseases.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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