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ABSTRACT

The Comparative Toxicogenomics Database (CTD;
http://ctdbase.org/) provides information about inter-
actions between chemicals and gene products, and
their relationships to diseases. Core CTD content
(chemical-gene, chemical-disease and gene-disease
interactions manually curated from the literature) are
integrated with each other as well as with select ex-
ternal datasets to generate expanded networks and
predict novel associations. Today, core CTD includes
more than 30.5 million toxicogenomic connections
relating chemicals/drugs, genes/proteins, diseases,
taxa, Gene Ontology (GO) annotations, pathways,
and gene interaction modules. In this update, we re-
port a 33% increase in our core data content since
2015, describe our new exposure module (that har-
monizes exposure science information with core tox-
icogenomic data) and introduce a novel dataset of
GO-disease inferences (that identify common molec-
ular underpinnings for seemingly unrelated patholo-
gies). These advancements centralize and contex-
tualize real-world chemical exposures with molecu-
lar pathways to help scientists generate testable hy-
potheses in an effort to understand the etiology and
mechanisms underlying environmentally influenced
diseases.

INTRODUCTION

The Comparative Toxicogenomics Database (CTD; http:
/[ctdbase.org) is a public resource for toxicogenomic infor-
mation manually curated from the peer-reviewed scientific
literature, providing key information about the interactions
of environmental chemicals with gene products and their ef-
fect on human disease (1-4). CTD is curated by professional
biocurators who leverage controlled vocabularies, ontolo-

gies and structured notation to code a triad of core interac-
tions describing chemical-gene, chemical-disease and gene-
disease relationships (5), which are then internally inte-
grated to generate inferred chemical-gene-disease networks.
These data are further associated with external data sets to
establish novel, statistically ranked inferences between di-
verse types of information (6-7). Additionally, as part of
our continued, active engagement with the scientific com-
munity, CTD plays a significant role in advancing text-
mining methods for biomedical information as part of the
BioCreative consortium (8-12), facilitates the development
of semantic standards for the environmental health science
community (13), complies with reporting standards set by
the BioSharing Information Resources (14) and is a regis-
tered member (https://biosharing.org/biodbcore-000173) of
BioDBcore (15).

Here, we provide our biennial database update, most no-
tably highlighting our newly released exposure science mod-
ule, which harmonizes and integrates data on chemical ex-
posures into CTD’s broader biological framework (16). Ex-
posure science plays an important role in evaluating exper-
imental toxicity data, developing risk assessments and in-
forming public health policy (17). Centralization of human
exposure information is critical to assessing the ‘exposome’,
defined as the cumulative measure of an individual’s expo-
sure since birth (18). As well, the exposome complements
genome research by recording and measuring the environ-
mental component with which genes interact to determine
one’s phenotype (18). CTD’s new exposure science module
provides investigators with a centralized resource for mak-
ing connections between real-world environmental chem-
ical measurements and laboratory-derived toxicogenomic
data. This new feature, as well as other updates described
herein, further expands the utility of CTD for environmen-
tal health research.
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NEW FEATURES

Increased data content, dissemination and use by scientific
community

In July 2016, core CTD consisted of over 1.6 million man-
ually curated interactions (including 1 379 105 chemical-
gene, 202 085 chemical-disease and 33 583 gene-disease di-
rect interactions) for 14 672 chemicals, 42 761 genes and
6401 diseases coded from 117 866 peer-reviewed scientific
articles studied in 564 species (Table 1). This represents
a 33% increase in chemical-gene-disease interactions since
our last update (4). CTD also integrates manually curated
data to generate predictive inferences (6,7); for example, if
chemical A interacts with gene B, and independently gene
B is associated with disease C, then chemical A is inferred
to have a relationship with disease C (via gene B). Inter-
nal integration of core data generated more than 19.7 mil-
lion inferred gene-disease relationships and 1.8 million in-
ferred chemical-disease relationships, which are statistically
ranked (7). Finally, integration with external annotations
from GO (19), KEGG (20), Reactome (21) and BioGRID
(22) yields additional inferred relationships (Table 1). In to-
tal, more than 30.5 million toxicogenomic connections are
now freely available for analysis and hypothesis develop-
ment.

Aside from our own public web application (PWA), CTD
research and curated content is disseminated further into
the scientific community in a number of important ways.
First, at least 72 external resources now include and dis-
play CTD information as part of their own databases,
a 44% increase from the 50 sources since our last re-
port (http://ctdbase.org/about/publications/#use). Second,
in conjunction with Pfizer scientists, we developed ToxE-
valuator, a proprietary tool that integrates CTD chemical-
gene-disease relationships with other diverse (public and
private) datasets into a single, web-based platform to aid
Pfizer scientists in generating mechanistic toxicity-related
hypotheses (23). Finally, CTD continues its commitment
to spearhead and advance biomedical text-mining research
for the scientific community by teaming with the National
Center for Biotechnology Information (NCBI) to orga-
nize a BioCreative community challenge which focused on
developing tools to identify and extract specific disease
and chemical content (11). For this endeavor, we helped
develop a large corpus of manually curated annotations
for chemicals, diseases and their interactions from 1500
PubMed articles (12); this corpus is freely available (down-
load by clicking: http://sourceforge.net/projects/bioc/files/
CDR _Data.zip/download), as are many of the associated
text-mining tools developed by the 25 teams that partici-
pated.

New CTD exposure science module

Most notably, since our last update, CTD has released
a new exposure module (16). This component was devel-
oped in response to the community’s need for a centralized
database that curates and harmonizes the real-world mea-
surements and biological effects of environmental chemi-
cals (e.g. air pollutants, pesticides, heavy metals, polychlori-
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Figure 1. Integration of exposure data curation into CTD framework.
Core CTD is composed of interactions between chemicals, genes, diseases,
Gene Ontology (GO) terms and pathway annotations (colored circles in
top diagram). In March 2015, CTD released an exposure science mod-
ule (light orange circle in top diagram). For this paradigm, CTD manu-
ally curates exposure statements (bottom light blue box, with light orange
categories connected by black lines) describing how environmental stres-
sors interact with human receptors during an exposure event to result in
an exposure outcome. This curation paradigm uses many of the same con-
trolled vocabularies as those used in core CTD to allow seamless data inte-
gration and connectivity between the two projects: exposure stressors are
chemicals (blue arrow); exposure events report biomarker measurements
for chemicals (blue arrow) and proteins (green arrow); and exposure out-
comes can be either altered phenotypes (defined as GO terms, gray arrow)
or diseases (red arrow).

nated biphenyls, inter alia) and human biomarkers incurred
by such exposure.

Working with the exposure science community, CTD de-
veloped a novel manual curation paradigm (16) using the
exposure ontology as its foundation (24). In this module,
CTD biocurators annotate over 35 data fields to four main
categories that collectively form an exposure statement. A
statement relates how an exposure stressor interacts with a
human exposure receptor during an exposure event to re-
sult in an exposure outcome (Figure 1). An integral fea-
ture of this curation paradigm is that we use many of
the same controlled vocabularies when curating chemical-
gene-disease interactions for core CTD (5,16). Thus, chem-
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Table 1. Updated core CTD content (July 2016)

Source Data type Counts
Manual curation Scientific articles 117 866
Manual curation Chemicals 14 672
Manual curation Genes 42 761
Manual curation Diseases 6401
Manual curation Taxa 561
Manual curation Chemical-gene interactions 1379 105
Manual curation Gene-disease interactions 33583
Manual curation Chemical-disease interactions 202 085
Data integration Gene-disease inferences 19 720 041
Data integration Chemical-disease inferences 1 858 286
Data integration Chemical-GO inferences 4529 027
Data integration Chemical-pathway inferences 307 728
Data integration Disease-pathway inferences 59 863
Data integration Disease-GO inferences 795 845
Imported Gene-GO annotations 1201 527
Imported Gene-pathway annotations 63 863
Imported Gene-gene interactions 376 472
Total 30 527 425

icals described as an exposure stressor or event biomarker
are annotated with CTD’s chemical vocabulary; similarly,
protein biomarkers (e.g. serum proteins, cytokines, inter-
leukins) are coded using CTD’s gene vocabulary; and ex-
posure outcomes are annotated to either CTD’s MEDIC
disease vocabulary (25) or GO biological process (GO-BP)
terms for phenotypes, which we have previously defined
as ‘non-disease-term biological events’ (26). This curation
strategy provides three important advantages. First, it al-
lows heterogeneous exposure information from different ar-
ticles published by different laboratories in different jour-
nals over the decades to become standardized and central-
ized into a single repository, facilitating connections be-
tween unique studies. Second, it brings exposure science
data into the broader CTD framework, allowing both expo-
sure data to leverage CTD curated knowledge and also al-
lowing core CTD to help inform exposure analysis. Finally,
the use of controlled vocabularies transforms complex, in-
terdependent exposure incidents into modular data, allow-
ing exposure information to be sorted, filtered and viewed
from a variety of perspectives (such as geographical location
and receptor type).

The manually curated exposure data are displayed on
two new tabs on CTD’s PWA: ‘Exposure Studies’ (provid-
ing a summary of each exposure article) and ‘Exposure
Details’ (providing detailed biomarker measurements), on
all relevant Chemical, Gene, Disease, GO and Reference
pages. Additionally, investigators can use CTD’s new ex-
posure study query page (http://ctdbase.org/query.go?type=
expStudies) to quickly retrieve information aggregated at
the study (research article) level (Figure 2A) using param-
eters for a chemical stressor (e.g. ‘air pollutants’), the type
of human receptor studied (e.g. ‘study subjects’) and a geo-
graphic location (e.g. ‘United States’). Select terms (chemi-
cals, genes, diseases, GO and references) returned in the re-
sult page are hyperlinked to their corresponding pages in
CTD (Figure 2B), allowing users to seamlessly explore ad-
ditional associated information.

The real-world measurements of exposure biomarkers
are found under the ‘Details’ link on an ‘Exposure Stud-
ies’ page or can be viewed in toto on the ‘Exposure De-

tails’ data-tab for a chemical-of-interest (Figure 3). This lat-
ter option aggregates the data from the germane articles
in CTD, providing users with a landscape view of expo-
sure measurements and outcomes from the published lit-
erature. As well, an ‘Exposure Details’ query page is also
available (http://ctdbase.org/query.go?type=expDetails) to
retrieve records at the highly granular exposure statement
level.

In July 2016, CTD included more than 70 600 man-
ually curated exposure statements for 803 chemicals, 153
biomarker genes, 301 diseases and 181 phenotypes (GO-BP
terms) from over 1250 exposure scientific articles (Figure
2C). Exposure data is also freely available to users in down-
load files (http://ctdbase.org/downloads/#exposureevents).

New availability of GO-Disease inferences

Over the last decade (4), CTD has successfully generated
novel connections between different types of data by inte-
grating diverse information through a common intermedi-
ate (1,6,7). For example, if gene A is annotated to GO bi-
ological process term B (by GO annotators), and, indepen-
dently, gene A is also associated with disease C (by CTD
biocurators), then GO term B can be inferred to disease C
(via gene A) (Figure 4A). These GO-disease inferences help
users discover common molecular, biological and cellular
events shared among seemingly unrelated diseases (Figure
4B). The availability of this novel dataset (27) can be lever-
aged in numerous ways, including discovering potential co-
morbidities (especially in exposure science), possible new
treatment options by repositioning pharmaceutical drugs
or identifying possible side effects. CTD’s files for GO-
Disease-Gene Inference Networks are freely available (http:
/lctdbase.org/downloads/#godiseasegenes) and in July 2016
included more than 795 000 inferences between over 15 700
GO terms and 4200 diseases.

Disease mappings and link-outs

Since 2006, CTD has maintained and used MEDIC as a
practical vocabulary for curation of disease information
(25). MEDIC was created by merging disease terms from
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Figure 2. CTD’s new exposure curation content. (A) CTD’s new ‘Exposure Studies’ query page (http://ctdbase.org/query.go?type=expStudies) allows users
to retrieve study information using a variety of search parameters, including exposure chemical stressor (e.g. air pollutants, blue circle), receptor description
(e.g. study subjects) and countries (e.g. the USA) as the study location (blue arrows). (B) The results display curated exposure studies meeting the query
parameters (highlighted in yellow) with integrated links to any mentioned genes, chemicals, diseases, phenotypes (GO-BP terms) and source references
(blue dotted boxes with orange callout labels). The ‘Author’s Summary’ column provides the take-home point of each study, and the ‘Details’ link in the
‘Measurements’ column takes the user to the specific assay measurements. As well, all exposure content is reciprocally displayed on the aforementioned
pages (i.e. gene, chemical, disease, phenotype and source references), making the information seamlessly integrated into the broader biological context of
the CTD framework. (C) Data status for CTD exposure module as of July 2016 includes over 70 600 manually curated statements from more than 1250

references (updated monthly at: http://ctdbase.org/about/dataStatus.go).

the flat list of the OMIM resource (28) with two Medical
Subject Heading (MeSH) disease hierarchies (29) to pro-
duce an extensive, navigable vocabulary. While originally
intended to be only a placeholder until a more sophisti-
cated disease resource emerged, MEDIC has proven to be
remarkably successful, convenient and adaptable, and has
been incorporated by many systems (30-34). In 2015, CTD
began analyzing and comparing the disease terms and hi-
erarchical structure used in MEDIC against the newly es-
tablished Disease Ontology (DO) (35), in an effort to co-
ordinate MEDIC with this new resource. A single, robust,
community-accepted disease vocabulary would be valuable
for synchronizing the vast arrays of different biological
databases. Toward that end, CTD is coordinating with the
DO staff to find ways that MEDIC could help inform DO,
and vice versa. As a first step, CTD now provides direct web

links between 3,258 MEDIC disease terms to 2,943 equiv-
alent terms in DO, based upon common MeSH accession
identification numbers shared between the two vocabular-
ies. Ultimately, bidirectional cross-links between MEDIC
and DO will enable greater interoperability and data shar-
ing for the entire scientific community.

FUTURE DIRECTIONS

Since 2004, CTD has evolved from a fledgling database to
an extensive public resource with over 30.5 million toxi-
cogenomic relationships (Table 1). We will continue to ex-
pand our core and exposure curation modules with new
data content added every month (http://ctdbase.org/about/
dataStatus.go).
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Figure 3. Landscape view of real-world measurements and outcomes curated for exposure science. The ‘Exposure Details’ data-tab (red arrow) on CTD’s
chemical page for air pollutants lists 2591 results (red circle) for air pollution markers (e.g. particulate matter, sulfates and carbon), including the type
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users to easily navigate to other concepts. At the bottom of every CTD page, a link allows users to download the information onto a desktop in a variety

of formats.

Additionally, we plan to enhance and develop new visual-
ization and analytical tools to help users better explore our
curated exposure science data. Two goals include allowing
users to choose which data fields are displayed on a web
page and enriching query pages to allow greater specifica-
tion and filtering of returned data. We also plan to lever-
age web-based maps to view exposure chemicals, events
and outcomes from a geographical perspective. Currently
in CTD, we have exposure data for 109 countries and all 50
US states.

As well, we intend to release a new phenotype module,
which will include our manual curation of chemicals regu-
lating biological, cellular and physiological events in con-
junction with anatomical descriptors. This feature will help
associate and identify chemical-induced phenotypes that
precede the clinical manifestation of a disease. We previ-
ously released an initial deposit of this dataset using MeSH
terms as our phenotype descriptions (26); however, since
then, we have mapped those terms to the more versatile GO-

BP controlled vocabulary to reflect greater granularity and
broader coverage of biological concepts.

Finally, we plan to devise computational programs that
will systematically connect the spectrum of CTD cu-
rated content by linking chemical-gene initiating events,
chemical-phenotype and gene-GO key events, chemical-
disease events and exposure-level outcomes for populations.
Such computationally predicted adverse outcome pathways
(cpAOP) have been recently described for fatty liver disease
using rat data (36). We hope to systematically expand upon
this effort by leveraging CTD data to generate cpAOPs con-
necting chemicals to disease outcomes.

SUMMARY

e We increased CTD content by 33% to over 30.5 million
toxicogenomic relationships.
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e We introduced our exposure science module, containing
70 600 exposure statements for over 800 chemicals, 150
genes, 300 diseases and 180 phenotypes.

e We described our GO-disease inference dataset, connect-
ing functional, biological and cellular events between
seemingly unrelated diseases.

e We enhanced community database interoperability by
providing links from our MEDIC disease vocabulary to
DO terms.

CITING AND LINKING TO CTD

To cite CTD data, please see: http://ctdbase.org/about/
publications/#citing. If you are interested in establishing
links to CTD data, please notify us (http://ctdbase.org/help/
contact.go) and follow these instructions: http://ctdbase.
org/help/linking.jsp.
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