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Amino acids are essential for proper growth and development in plants. Amino acids serve as building blocks for proteins but
also are important for responses to stress and the biosynthesis of numerous essential compounds. In seed, the pool of free amino
acids (FAAs) also contributes to alternative energy, desiccation, and seed vigor; thus, manipulating FAA levels can significantly
impact a seed’s nutritional qualities. While genome-wide association studies (GWAS) on branched-chain amino acids have
identified some regulatory genes controlling seed FAAs, the genetic regulation of FAA levels, composition, and homeostasis
in seeds remains mostly unresolved. Hence, we performed GWAS on 18 FAAs from a 313-ecotype Arabidopsis (Arabidopsis
thaliana) association panel. Specifically, GWAS was performed on 98 traits derived from known amino acid metabolic pathways
(approach 1) and then on 92 traits generated from an unbiased correlation-based metabolic network analysis (approach 2), and
the results were compared. The latter approach facilitated the discovery of additional novel metabolic interactions and single-
nucleotide polymorphism-trait associations not identified by the former approach. The most prominent network-guided GWAS
signal was for a histidine (His)-related trait in a region containing two genes: a cationic amino acid transporter (CAT4) and a
polynucleotide phosphorylase resistant to inhibition with fosmidomycin. A reverse genetics approach confirmed CAT4 to be
responsible for the natural variation of His-related traits across the association panel. Given that His is a semiessential amino acid
and a potent metal chelator, CAT4 orthologs could be considered as candidate genes for seed quality biofortification in crop plants.

Free amino acids (FAAs) play a pivotal role in the
central metabolism of plants. FAAs serve as building
blocks for protein synthesis and also are precursors for
osmolytes, alternative energy, hormones, and key sec-
ondary metabolites (Rai, 2002; Araújo et al., 2010; Tzin
and Galili, 2010; Angelovici et al., 2011). Studies of both
developing and germinating seeds also have implicated
FAAs in proper seed development and germination

(Angelovici et al., 2010; Galili and Amir, 2013). Still, the
genetic control of FAA metabolism in seed remains
poorly understood. One reason is that FAAmetabolism
is tightly intertwinedwith essential cellular processes in
plants, and manipulating FAA levels can have strong
deleterious, pleiotropic effects on the entire system
(Guyer et al., 1995; Galili, 2011; Ingle, 2011; Pratelli and
Pilot, 2014). For example, increasing Lys and Thr inhibits
the activity of Asp kinase via a feedback inhibition loop
(Clark and Lu, 2015). At high concentrations, this inhi-
bition can lead to starvation of a downstream metabolic
product, Met, which inhibits plant growth (Bright et al.,
1982; Rognes et al., 1983; Heremans and Jacobs, 1995).
In addition, several amino acid catabolic products, such
as those emanating from branched-chain amino acids
(BCAAs) or Lys degradation pathways, can be chan-
neled toward cellular energy production under both
standard and stress growth conditions (Angelovici et al.,
2009, 2011; Araújo et al., 2010; Peng et al., 2015).

Reconstructions of seed metabolic networks in sev-
eral model species and tissues have offered important
insights into these underlying metabolic interactions
and regulation (Lu et al., 2008; Toubiana et al., 2013,
2015). For example, a correlation-basednetworkmetabolic
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reconstruction of FAA levels revealed that individual
FAAs are strongly correlated during seed development
compared with leaf or fruit development (Toubiana
et al., 2012), which suggests a much tighter interaction
of this metabolic network in seeds. Similarly, two
correlation-based network analyses of more than 50 pri-
mary metabolite profiles spanning late seed maturation
and desiccation demonstrated that FAAs form a highly
interconnected metabolic cluster with only positive cor-
relations (Angelovici et al., 2009; Toubiana et al., 2012).
Interestingly, studies also suggest that the latent dy-
namics of the metabolic network are strongly connected
to the underlying reaction pathway structure (Steuer
et al., 2003; Weckwerth, 2003). Weckwerth et al. (2004)
demonstrated that the correlation network properties of
metabolites better capture the systemic responses to ge-
netic alterations than do changes to metabolic levels
(Weckwerth et al., 2004). In addition, Gu et al. (2010)
found that knocking out mitochondrial isovaleryl-CoA
dehydrogenase, an enzyme in the Leu degradation
pathway, results in a significant increase in 12 FAAs in a
seed-specific manner (Gu et al., 2010). Taken together,
these findings suggest that the inherent coordination of
seed FAAs could be used as a tool to further unravel the
genetic basis of quantitative traits, such as amino acids.
Forward genetic approaches, such as linkage analy-

sis, have proven to be powerful for identifying quanti-
tative trait loci (QTLs) that control phenotypic variation
for phenological andmetabolic traits, such as flowering
time and levels of carotenoids, tocochromanols, and
amino acids in seed (Kowalski et al., 1994; Alonso-Blanco
et al., 1998; Yan et al., 2000; Wong et al., 2004; Wentzell
et al., 2007; Chander et al., 2008; Balasubramanian et al.,
2009; Vallabhaneni and Wurtzel, 2009; Gutiérrez-Rojas
et al., 2010;Maloney et al., 2010; Kochevenko and Fernie,
2011). Nevertheless, traditional linkage analysis to
identify QTLs in biparental recombinant inbred line
(RIL) populations has twomajor weaknesses: it captures
narrow levels of allelic diversity as a result of only two
parental lines, and it provides low mapping resolution
due to the overall limited number of recombination
events that occur while constructing the RIL population
(Yu and Buckler, 2006; Korte and Farlow, 2013). While
both the extent of allelic diversity and the density of re-
combination break points can be enhanced through the
construction of multiparent advanced generation inter-
cross populations (Balasubramanian et al., 2009; Kover
et al., 2009), the resulting mapping populations from
such a time-consuming effort would not reflect the fre-
quencies and combinations of alleles found in the natural
population (Weigel, 2012). In recent years, a number of
genome-wide association studies (GWAS) have exploited
historical recombination events in large association
panels of unrelated individuals assembled to capture the
phenotypic variability of a wide range of complex traits,
allowing it to offer higher mapping resolution of causal
loci (Atwell et al., 2010; Huang et al., 2011; Li et al., 2012;
Ramstein et al., 2015; Scossa et al., 2016). Although it
has its own set of limitations, such as possible spurious
associations due to cryptic population structure and

multiple levels of relatedness, GWAS often overcomes
the two major weaknesses inherent to QTL detection in
RIL populations (Pritchard and Donnelly, 2001; Yu and
Buckler, 2006; Platt et al., 2010a, 2010b; Trontin et al.,
2011; Korte and Farlow, 2013). As such, GWAS has been
employed successfully to better resolve the genetic basis
of many primary and secondary metabolites (e.g. ca-
rotenoids, tocochromanols, glucosinolates, and organic
acids) in several model systems, including rice (Oryza
sativa), maize (Zea mays), and Arabidopsis (Arabidopsis
thaliana; Chan et al., 2011; Riedelsheimer et al., 2012;
Gonzalez-Jorge et al., 2013, 2016; Lipka et al., 2013; Chen
et al., 2014; Owens et al., 2014; Verslues et al., 2014). In
several cases, GWAS has confirmed genes and their
orthologs identified viamutant screens, metabolic QTLs,
and other methods (Clarke et al., 1995;Wong et al., 2004;
Vallabhaneni and Wurtzel, 2009; Yan et al., 2010;
Wurtzel et al., 2012). Recently, several GWAS have
successfully identified genes involved in the regulation
of the absolute levels of BCAAs, Pro, Lys, and Tyr, in
both maize and Arabidopsis (Riedelsheimer et al., 2012;
Angelovici et al., 2013; Verslues et al., 2014). Although
effective at detecting large-effect genes, GWAS have
been less successful at identifying rare variants with
large effects ormany common variantswith small effects
(Trontin et al., 2011; Korte and Farlow, 2013). The latter is
often due to the low statistical power of most currently
available association panels (Aranzana et al., 2005;
Nordborg et al., 2005). Several approaches have been
developed to enhance the detection of small-effect genes,
including one that uses coexpression networks to pri-
oritize multiple GWAS candidates (Chan et al., 2011).

It was demonstrated previously that derived traits
generated from absolute levels of metabolites can pro-
vide unique insights into a metabolic network. These
traits include, for example, the sum of related metabo-
lites or the ratio of two related metabolites, such as
precursors or products (Sauer et al., 1999; Weckwerth
et al., 2004; Wentzell et al., 2007). With both linkage
analysis and GWAS, derived traits that represent ratios
based on metabolic pathways or known interactions
have generated more significant associations compared
with associations from absolute levels of metabolites
(Wentzell et al., 2007; Vallabhaneni and Wurtzel, 2009;
Wurtzel et al., 2012; Angelovici et al., 2013; Gonzalez-
Jorge et al., 2013; Lipka et al., 2013; Owens et al., 2014).
One explanation for this phenomenon could be the
higher heritability of metabolic ratios compared with
content traits (Wentzell et al., 2007). A recent GWAS of
Arabidopsis seed BCAA-related traits found that the
ratio of Ile versus the BCAA family (i.e., Ile, Leu, and
Val) or even Ile versus total amino acids has a stronger
association by several orders of magnitude compared
with absolute levels of Ile (Angelovici et al., 2013).
GWAS of the ratio of d-tocotrienol to the sum of g- and
a-tocotrienols in maize grain also found a more highly
significant association with a known tocochromanol
biosynthesis gene than any of the absolute tocotrienol
levels (Lipka et al., 2013). Lastly, a joint-linkage-assisted
GWAS of the ratio of two homoterpenes in the maize
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nested association mapping panel facilitated the iden-
tification of a new cytochrome 450 gene involved in the
pathway (Richter et al., 2016).

Here, we report and compare findings from GWAS
performed on a broad range of biochemically based and
network-derived FAA ratios calculated from a previous
quantification of 18 FAAs in an Arabidopsis association
panel (Angelovici et al., 2013). These metabolic
ratios integrate both the extensive biochemical knowl-
edge of amino acid pathways and the inherent coordi-
nated behaviors of FAAs in seeds as deduced from a
correlation-based network topology. This integrated
approach uncovered novel metabolic clusters and the
genes that regulate them. An in-depth molecular anal-
ysis of a significantly associated genomic region, pin-
pointed using this network-guided GWAS, facilitated
the identification of a seed-specific His regulator not
detected by GWAS either with the absolute levels of
FAA in dry seeds or with calculated metabolic ratios
based on biochemical affiliation. This study supports
the potential of the network-guidedGWAS approach to
elucidate the genetic basis of a complex coordinated
metabolic network, such as the FAA network.

RESULTS

Characterization of the Natural Variation of Free Amino
Acids and Their Relationships in Dry Seeds

We previously performed a comprehensive analysis
of 18 FAA levels quantified from three biological rep-
licates of a 313-accession Arabidopsis diversity panel
(Angelovici et al., 2013; Supplemental Data Set S1).
Across the diversity panel, Glu and Asp are the most
abundant amino acids, and Met and His are the least
abundant, with average relative compositions of 37%,
20%, 0.63%, and 0.96%, respectively (Table I). Met and
Ile vary the most across the panel (range greater than
4-fold), and Thr, Trp, Lys, and Glu vary the least (range
less than 2-fold; Table I). Broad-sense heritabilities of
the absolute levels of FAAs are 0.5 to 0.8 for most amino
acids except Thr and Trp, which are 0.11 and 0.24, re-
spectively (Table I). We performed a correlation-based
network analysis to evaluate the relationships among
the absolute levels of the 18 FAAs. Pairwise correlation
coefficients among the 18 FAAs’ back-transformed best
linear unbiased predictors (BLUPs) were calculated
using the Spearman’s rank correlation method, and the
results were visualized as a network of nodes and edges
(Fig. 1; Supplemental Table S1). Each node in the net-
work represents an amino acid, and each edge/line
represents a correlation-based significant relationship
between a pair of nodes (P , 0.001, rsp $ 0.6). The
network consists of 12 connected amino acids, and all
correlation coefficients are positive. Interestingly, the
connectivity of Glu is relatively low despite its abun-
dance. Ala, Phe, and Tyr also have low connectivity.
Asp, Thr, Met, Gly, Pro, and Trp are disconnected from
the network. The network topology also indicates
two highly interconnected groups. Group 1 includes

the BCAA family (i.e. Ile, Leu, and Val; Fig. 1), which is
consistentwith previous studies (Binder, 2010; Angelovici
et al., 2013). Group 2 is novel and includes six amino acids
from four amino acid families: Ser, Gln, Arg andHis, Val,
and Lys (Fig. 1). Val has the highest number of connec-
tions (nodal degree) and the highest hub score, followed
by His, Ser, and Lys, indicating its centrality to the net-
work (Supplemental Table S1B).

Approach 1: GWAS of Absolute and Relative FAA Levels
and Ratios Based on a Priori Biochemical Knowledge

To uncover potential regulators of FAAs in seeds, we
calculated 98 traits (Supplemental Table S2) using
known metabolic pathways and biochemical interac-
tions among the 18 FAAs. The traits fall into four cat-
egories: (1) the absolute levels of the quantified FAAs
(in nmol mg21 dry seeds); (2) the sum of amino acids
that constitute a biochemical family (e.g. the sum of all
FAAs that belong to the Asp family: Asp, Thr, Ile, and
Met); (3) the relative composition (i.e. each amino acid
as a percentage of the total FAA quantified; e.g. Ile/
total); and (4) the ratios based on the amino acid biosyn-
thetic and degradative pathways and known interactions
among their enzymes, such as competition between
pathways and feedback loops. Category 4 ratios include
a single FAA divided by the sum of its biochemical
family (e.g. Lys/Asp family), ratios of FAAs from com-
peting metabolic branches (e.g. Thr/Met; Galili, 1995),
and ratios of FAAs that can serve as precursors
to downstream products (e.g. Glu/Gln). The full list
of these biochemically based traits is presented in
Supplemental Table S2. Hereafter, we use the one-letter
code annotation of the amino acids to describe the FAA
traits; a string of one-letter codes describes the sum of
FAAs (e.g. ILV is the sum of Ile, Leu, and Val).

We conducted a GWAS on all 98 traits using the
methodology described by Angelovici et al. (2013).
Consistent with this previous study, we found several
BCAA-related traits to have significant associations,
including with BCAT2 (At1G10070; Supplemental Data
Set S2). However, beyond those already reported
(Angelovici et al., 2013), no major, novel GWAS signals
were discovered from this elaborated analysis of all
BCAA-related traits (21 traits in total, including all
traits with BCAAs in the denominator; Supplemental
Table S2). Therefore, these BCAA-related traits will not
be addressed further here and instead will be refer-
enced in subsequent sections for comparative purposes
only. GWAS on the remaining 77 non-BCAA-related
FAA traits produced only one significant single-
nucleotide polymorphism (SNP)-trait association at
the 5% false discovery rate (FDR) level. We found
SNP184159 to be significantly associated with the sum
of Gly and Ser absolute levels (GS), which, notably, are
two of the three members of the Ser family (Ser, Cys,
and Gly; Table II, region 1; Supplemental Data Set S2;
Supplemental Fig. S1). SNP184159 is located on chro-
mosome 5 at position 12,282,814 bp within At5G32623,
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which is annotated as a pseudogene/transposon. An
estimation of pairwise linkage disequilibrium (LD) be-
tween SNP184159 and SNPs located in the surrounding
620-kb genomic region found moderately strong LD
(r2 = 0.518) with an SNP at position 12,277,752 bp
(SNP184146). This nearly 5-kb upstream SNP is lo-
cated in a gene annotated as DEFENSIN-LIKE (DEFL
family protein; At5G32619), the closest functional
gene (located 4,723 bp upstream) to SNP184159
(Supplemental Fig. S1).

Approach 2: Network-Guided GWAS of Seed FAAs

The assessment of metabolic ratios based only on
current biochemical knowledge yielded few new insights
and is likely constrained by our limited understanding of
FAApathways and their interactions. Because the GWAS
of the 77 non-BCAA-related FAA traits yielded only one
new association (for the GS trait), we evaluated the use of
an unbiased approach based on a correlation network
topology for trait determination. The method is based on
the assumption that FAA correlations across the associ-
ation panel are driven, in part, by genetics. Hence, while
conceptually similar to approach 1, the metabolic ratios
generated via a network topology are based onmetabolic
cluster affiliation rather than on biochemical family affil-
iation. We calculated traits as a ratio of connected meta-
bolic pairs or as a ratio of a single amino acid to its fully
or partially connected metabolic group. Thirteen such
groups were so defined (Supplemental Table S3), with
most being partial versions of the two highly correlated
groups (group 1 or group 2) or the entire network (Fig. 1;
Supplemental Table S3). A total of 92 traits were derived
using this approach (Supplemental Table S3), several of
which overlap with the traits determined using approach

1 (marked with asterisks in Supplemental Table S3). As
with approach 1, no major novel genomic regions were
detected among the 31 BCAA-related network-derived
traits, and these traits will be addressed separately in a
comparison of the two approaches. GWAS performed on
the remaining 61 network-derived traits produced three
unique genomic regions with significant associations at
the 5% FDR level for five FAA-related ratios (Table II;
Supplemental Data Set S3): four ratios are His-related
traits, and one ratio is a Ser-related trait (Table II). Two
of the three identified genomic regions have highly
significant GWAS signals. A genomic region on chro-
mosome 5 is strongly associated with the S/LIVKHSQR
trait (Table II),while a second region on chromosome 3 is
strongly associatedwith four His-related traits (Table II).
The latter region has significant SNP-trait associa-
tions spanning 29 kb (positions 912,617–941,537 bp;
Supplemental Data Set S3).

Four SNPs on chromosome 5 are significantly asso-
ciated with the S/LIVKHSQR trait (Table II; Fig. 2).
Three of these SNPs (i.e. SNP212610, SNP212533, and
SNP212501) have similar rawP values and FDR-corrected
P values of 2.43E-02 to 3.92E-02 (Fig. 2C; Supplemental
Data Set S3) and explain 9.4%, 8.7%, and 8.3%, respec-
tively, of the total phenotypic variation. The three
SNPs are located relatively far from each other (at
positions 26,289,644, 26,258,036, and 26,246,837 bp,
respectively) and show weak LD with each other (r2 ,
0.26; Supplemental Fig. S2). All three SNPs also dem-
onstrate weak LD with SNPs within any of their
surrounding genes in a 200-kb region (r2 , 0.23;
Supplemental Fig. S2). However, no SNPs were called
within a gene located 6,609 bp upstream of SNP212610
and that is annotated as a Cys desulfurase (At5G65720;
NITROGEN FIXATION S-LIKE 1 [NFS1]). This is an

Table I. Mean, relative composition, mean range, and broad sense heritability of 18 FAA absolute levels in dry seeds

Trait

Back-Transformed BLUPs

Broad Sense Heritability SE
Mean SE Relative Composition SE

Mean Range

Minimum Maximum

nmol mg seed21 % of total nmol mg seed21

Met 0.08 0.001 0.63 0.01 0.04 0.18 0.80 0.02
His 0.13 0.001 0.96 0.01 0.08 0.26 0.60 0.04
Ile 0.15 0.002 1.17 0.01 0.07 0.33 0.76 0.02
Leu 0.16 0.002 1.23 0.01 0.10 0.27 0.66 0.03
Gln 0.18 0.002 1.41 0.01 0.12 0.31 0.49 0.05
Tyr 0.19 0.001 1.43 0.01 0.13 0.28 0.53 0.04
Pro 0.22 0.002 1.66 0.02 0.13 0.41 0.54 0.04
Lys 0.24 0.001 1.81 0.01 0.18 0.34 0.56 0.04
Val 0.37 0.003 2.83 0.02 0.21 0.63 0.71 0.03
Phe 0.39 0.004 2.98 0.02 0.24 0.64 0.71 0.03
Gly 0.43 0.004 3.31 0.02 0.26 0.71 0.43 0.05
Thr 0.51 0.001 3.85 0.03 0.43 0.58 0.11 0.09
Arg 0.57 0.005 4.38 0.03 0.40 1.02 0.53 0.05
Ala 0.62 0.006 4.78 0.04 0.43 1.13 0.60 0.04
Ser 0.71 0.006 5.44 0.04 0.47 1.10 0.64 0.03
Trp 0.72 0.003 5.58 0.04 0.56 0.89 0.24 0.06
Asp 2.61 0.029 19.93 0.18 1.58 5.16 0.77 0.02
Glu 4.76 0.030 36.63 0.13 3.51 6.55 0.64 0.03
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amino acid biosynthetic gene responsible for the con-
version of Cys toAla. Because Ser is the precursor of Cys,
this genewould seem a leading candidate as a regulator,
except that, as with many amino acid biosynthetic genes
that are not redundant, its knockout is lethal (Frazzon
et al., 2007). We also detected two of the three most
significant SNPs for the S/LIVKQHSR trait (i.e.
SNP212501 and SNP212610) among the top 20 SNPs
of the S/total GWAS (SNPs 2 and 16, respectively;
Supplemental Table S4), suggesting that the network-
guided approach increased our ability to identify sig-
nificant candidate genes. The four His-related traits are
H/KHR,H/KHSQR,H/KHSQRV, andH/LIVKHSQR,
and the top three associated SNPs for these traits are
SNP82066, SNP82058, and SNP82067, respectively, on
chromosome 3 (Figs. 3 and 4; Table II; Supplemental
Data Set S3). These three SNPs explain 9% to 11% of the
total phenotypic variation for the four His-related traits
(Supplemental Data Set S3). SNP82058 is located in a
gene annotated as a polyribonucleotide nucleotidyl-
transferase (RESISTANT TO INHIBITION WITH FSM
[RIF10]; At3G03710; Fig. 4B). SNP82066 is located in an
intragenic region upstream of RIF10 and downstream

of a gene annotated as CATIONIC AMINO ACID
TRANSPORTER4 (CAT4; At3G03720; Fig. 4B), and
SNP82067 is located within CAT4. In total, all the sig-
nificant SNPs across all four traits span a 28,920-bp re-
gion that contains nine open reading frames (Fig. 4B).
Pairwise LD estimates for the 6100-kb region centered
on the most significant SNP (i.e. SNP82058) indicate
strong LD among all these SNPs and patterns of long-
range LD in the region, which may account for the
multiple significant associations (Supplemental Fig. S3).
Interestingly, SNP82066, SNP82058, and SNP82067
are significantly associated with the four His network-
derived traits but not with any His-related traits de-
termined by approach 1, such as H/total or H/EHPRG
(Glu family). Nevertheless, these SNPs are among the
top three SNPs with the lowest P values for H/EHPRG
and among the fifth and sixth lowest P values for H/
total (Fig. 3, E and F; Supplemental Table S4). Beyond
chromosome 3, H/LIVKHSQR is the only trait with an
additional significant SNP-trait association, which oc-
curs for SNP32041 at position 19,661,134 bp on chro-
mosome 1 (Fig. 3D; Table II; Supplemental Data Set S3).
This SNP is located in a gene with unknown function
(At1G52780), although, the PANTHER classification
system (http://www.pantherdb.org/panther/family.do?
clsAccession=PTHR19241) records this gene as an ATP-
binding cassette transporter.

Comparison between GWAS of BCAA-Related Traits
Derived from Approaches 1 and 2

GWAS of BCAA traits had previously characterized
BCAT2 as an important gene for determining BCAA-
related traits in seeds. Our GWAS results from the
BCAA-related traits derived using both approaches
1 and 2 are consistent with this previous study
(Supplemental Data Sets S2 and S3; Supplemental Table
S5). Nevertheless, among all the BCAA-related traits
analyzed, the network-derived trait I/LIVKHSQRhas a
slightly elevated significant association (P value of
4.02E-08) with the previously characterized tagging
SNP5373 on chromosome 1, whose strongest associa-
tion from approach 1 is 5.27E-07 for the I/total trait.
SNP5373 explains 22% of the phenotypic variation of
the I/LIVKHSQR trait compared with 19% of the I/
total trait (Supplemental Data Sets S2 and S3). More
pronounced observations were obtained using linkage
analysis of dry seed FAAs from a Bayreuth-0 (Bay) 3
Shahdara (Sha) RIL population (Loudet et al., 2002;
Angelovici et al., 2013). This mapping population con-
tains significantly different haplotype pairs for the sig-
nificantly associated genomic region identified inGWAS
of BCAA on chromosome 1 (Angelovici et al., 2013) and
was used previously to independently confirm a GWAS
association.A linkage analysis of the samedata using the
network-derived BCAA traits (I, L, or V)/LIVKHSQR
and (I, L, or V)/LIVKHSQRYEFA was performed and
compared with the previous linkage analysis (Table III).
We again found that the large-effect QTL on chromosome

Figure 1. Correlation-based network of seed FAA relationships across
the Arabidopsis diversity panel. The Spearman’s rank correlation matrix
was calculated from the back-transformed BLUPs of the absolute levels.
The nodes represent FAA levels, and the edges represent correlations
between the different FAA levels. Network edge parameters are rsp$ 0.6
and P # 0.001. The node color denotes the amino acid family (red,
shikimic acid; orange, Ser; green, pyruvate and BCAA; blue, Glu; dark
blue, Asp); node size reflects nodal degree; and edge width reflects the
strength of the correlation. The Spearman’s rank correlation coefficient
is represented near each edge. The two highly connected groups are
circled in blue and red. Free His is includedwithin the red-circled group
together with Ser, Gln, Lys, Arg, and Val.
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1 detected using approach 1 shows a substantial
increase in significance for the I/LIVKHSQR and I/
LIVKHSQRYEFA network-derived traits (18.46 and

22.57 log of odds [LOD] scores, respectively) and
explains more of the total phenotypic variation (r2 =
41.8% and 48.4%, respectively). The strongest effect
QTL from the previous BCAA-related trait linkage
analysis yielded LOD scores that range from 6.06 to
9.3 and explain 16.7% to 25.55% of the total pheno-
typic variation (Table III; Angelovici et al., 2013).

Multiple-Locus Mixed Model and Haplotype Analysis of
the Significant His-Related SNP-Trait Associations

We chose the strong GWAS signal from the His-
related traits for further dissection and validation. To
resolve the complex signal on chromosome 3, we per-
formed a multiple-locus mixed model (MLMM) ap-
proach that uses stepwise selection (Segura et al., 2012)
in the vicinity of themost significant SNPs for each trait.
All SNPs with a minor allele frequency greater than or
equal to 0.05 in a 6100-kb region were considered
for inclusion in the final model (Supplemental Table
S5). The optimal models contain only one SNP for
each trait tested: SNP82058 for the H/KHSQR trait,
SNP82066 for the H/KHR trait, and SNP82067 for
the H/LIVKHSQR and H/KHSQRV traits (Fig. 4;
Supplemental Table S6). To validate the results, we
reran the GWAS using a unified mixed model that in-
cluded the respective optimal SNP as a covariate for
each trait. No significant associations were detected for
any traits with either SNP (Supplemental Fig. S4), in-
cluding the additional SNP-trait association detected on
chromosome 1 for the H/LIVKHSQR trait (Fig. 3D;
Table II). A haplotype analysis of the region spanning
all the significant SNPs on chromosome 3 (i.e. 912,617–
941,537 bp; Table II; Supplemental Data Set S3) identified

Table II. Summary of GWAS results for a genomic region that contains significant associations at the 5% FDR level identified by approach 1 and
three genomic regions that contain significant associations at the 5% FDR level identified by approach 2

NA, Not applicable.

Region

Identifier

Maximal

Chromosomal

Range for Locus

Trait

No. of

Significant SNPs

in the Region

Most

Significant

SNP

P Value

of the Most

Significant SNP after

FDR Correction

Gene
Gene

Annotation

Summary of significant associations determined/calculated by approach 1 (not including BCAA traits)
1 Chromosome

5, 12,282,814
GS 1 184,159 4.32E-02 At5G32619 Pseudogene

Summary of significant associations determined/calculated by approach 2 (not including BCAA traits)
2 Chromosome

1, 19,661,134
H/LIVKHSQR 1 32,041 4.97E-02 At1G52780 Protein of unknown

function (DUF2921)
3 Chromosome

3, 912,617–941,537
H/KHSQR 18 82,058 9.24E-04 At3G03710 Polyribonucleotide

nucleotidyltransferase,
putative

H/KHSQRV 13 82,067 1.26E-03 At3G03710 Polyribonucleotide
nucleotidyltransferase,
putative

H/LIVKHSQR 12 82,067 3.47E-03 At3G03710 Polyribonucleotide
nucleotidyltransferase,
putative

H/KHR 10 82,066 2.35E-02 NA
4 Chromosome

5, 26,246,837–26,289,644
S/LIVKHSQR 4 212,610 2.39E-02 NA

Figure 2. GWAS summary of S/LIVKHSQR. A and B, Scatterplots of the
association results from a unifiedmixedmodel analysis of S/LIVKHSQR (A)
and S/total (B) traits across the five Arabidopsis chromosomes. The negative
log10-transformed P values from the GWAS analysis are plotted against the
genomicphysical positions.P values for SNPs that are statistically significant
for a trait at 5% FDR are in red. The red box represents the corresponding
chromosomal region of this significant signal in the S/total Manhattan plot.
C, Graphical representation of the genes within the vicinity of SNP212501,
SNP212533, and SNP212610.Genes are represented by blackboxes, and a
pseudogene is represented by the white box. At5G65720 encodes a Cys
desulfurase (NFS1) that is the leading candidate gene for S/LIVKHSQR.
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five haploblocks (Supplemental Table S7), and the four
most significant SNPs trace back to haploblock
3 (chromosome 3, 919,927–929,830 bp). Haploblock
3 (9.903 kb; Fig. 4B) spans a large portion of both the
RIF10 (919,542–925,338 bp) and CAT4 (925,612–
930,974 bp) genes and contains 16 SNPs: nine in
RIF10, six in CAT4, and one between the two genes.
When unified mixed linear models were fitted, the
most significant contrasting haplotype pair found for
haploblock 3 was ACAAGTCACGATGTTA versus
ATTCATCTAAGTGCAT, with frequencies of 0.262 and
0.099, respectively (Supplemental Fig. S5A). These hap-
lotypes represent the low and high levels, respectively, of
the His-derived traits (Supplemental Fig. S5B). Although
the differences in the phenotype averages between the

ecotype groups harboring the two haplotypes are small
(7%–9%), they are highly significant (P values of 1.2E-05–
2.38E-07; Supplemental Fig. S5B).

Functional Characterization of CAT4 and RIF10

To further test whether CAT4 or RIF10 is a regulator/
effector of the His-related traits, we used quantitative
reverse transcription (RT)-PCR to determine the tran-
scription levels of each gene at four different stages of
seed development in the Columbia-0 (Col-0) back-
ground: early maturation (12 d after flowering [DAF]),
midmaturation (15 DAF), late maturation (18 DAF),
and complete desiccation (dry seeds; Supplemental Fig.
S6A). We found that CAT4 transcription levels increase
toward midmaturation and decrease moderately dur-
ing desiccation and that RIF10 transcript levels are low
and constant throughout maturation and desiccation.
According to the Arabidopsis eFP Browser (http://bbc.
botany.utoronto.ca/efp/cgi-bin/efpWeb.cgibin/efpWeb.
cgi; Winter et al., 2007), CAT4 expression levels are
relatively high in dry seeds compared with vegetative
tissues, and RIF10 is highly expressed in the vegetative
tissue and decreases greatly during seed development
(Supplemental Fig. S6, B and C).

Figure 4. GWAS of H/KHSQR. A, Scatterplot of the association results
from a unified mixed model analysis of H/KHSQR on chromosome
3 only. The negative log10-transformed P values from theGWAS analysis
are plotted against the genomic physical position. P values for SNPs that
are statistically significant for a trait at 5% FDR are in red. B, Graphical
representation of genes and haploblocks within the genomic region
spanning SNPs that have significant associations for H/KHSQR. Genes
are represented by black boxes, and a pseudogene is represented by the
white box. C, Haploblocks are represented by gray boxes. Haploblock
3 (shown in red) contains the four most significant SNPs for the GWAS-
assisted His-related traits.

Figure 3. GWAS for the His-related traits from the two approaches.
Scatterplots show the association results from a unified mixed model
analysis for H/KHR (A), H/KHSQR (B), H/KHSQRV (C), H/LIVKHQSR
(D), H/EHPRG (Glu family; E), and H/total (F) traits across the five
Arabidopsis chromosomes. The negative log10-transformed P values
from the GWAS analysis are plotted against the genomic physical po-
sition. P values for SNPs that are statistically significant for a trait at 5%
FDR are in red. Traits A through D share a similar significant GWAS
signal on chromosome 3. Red boxes represent the corresponding
chromosomal region of this signal for traits E and F.
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Based on results from the expression analysis and on
its annotation as a cationic amino acid transporter,
CAT4 seemed the most likely candidate gene respon-
sible for the natural variation in the His-related traits.
Hence, we employed a transgenic strategy to test the
effect of the null or knockdown mutants of both CAT4
and RIF10 on the FAA content of dry seeds. Since
T-DNA insertion lines for CAT4 were not available, we
used an RNA interference (RNAi) approach to knock
down the gene. We transformed the Agrikola construct
CATMAa02630 into the Col-0 background and used
an empty vector with similar antibiotic resistance as a
control. We recovered three homozygous lines with
reductions of more than 70% at the mRNA level
(Supplemental Fig. S7A) and then performed dry seed
and leaf FAA quantification analyses on these lines (Fig.
5). The results show a seed-specific significant increase
in absolute levels of His in all three independent RNAi
lines (Fig. 5; Supplemental Data Set S4); the seed-
specific increases in His absolute levels ranged from
4- to 6-fold (Fig. 5A), and a 2.5- to 4.5-fold increase in the
His-relative ratios is significantly associated with this
region (Fig. 5C). Interestingly, Lys levels have small but
significantly increased levels in all three RNAi lines
(fold increase, 1.4–2; P value, 0.03–0.00015; Fig. 5). We
isolated and characterized the rif10 alleles of the ho-
mozygous T-DNA insertion lines from the SALK
T-DNA collection (SALK_013306 and SALK_037353);
one allele (SALK_013306) has a severe growth phenotype
and therefore was excluded from the analysis. RT-PCR
using primers that flank the T-DNA insertion of rif10was
used to confirm that the line lacks the transcripts
(Supplemental Fig. S7B). An FAA quantification analysis
of the dry seeds from rif10 showed small but significant
effects on the absolute levels ofGln, Asp, Phe, and Trp but
not on His or any His-related ratios (Fig. 5, A and C).
Taken together, these results confirm that CAT4 signifi-
cantly affects the absolute and relative levels of His and is
the gene responsible for the natural variation.

DISCUSSION

Previous metabolic QTL mapping and GWAS on
both primary and secondary metabolite profiles have
demonstrated that analyses of metabolic ratios based

on known biochemical interactions yield stronger as-
sociations than GWAS performed on the corresponding
metabolites’ absolute levels (Wentzell et al., 2007;
Vallabhaneni and Wurtzel, 2009; Wurtzel et al., 2012;
Angelovici et al., 2013; Gonzalez-Jorge et al., 2013;
Lipka et al., 2013; Owens et al., 2014). Our study dem-
onstrates that a network-guided metabolite-based-
GWAS performed on unbiased ratios derived from a
correlation-based network topology improves the se-
lection of traits for downstream GWAS and can facili-
tate further identification of significant associations
among genomic regions that affect the natural variation
of a tight, interconnected FAAmetabolic network, such
as amino acids (Table II; Supplemental Table S5). Our
approach utilizes the metabomelic network analysis
differently than previous network-assisted GWAS. For
example, previous studiesmainly used gene coexpression
networks to either prioritize candidate genes retrieved
from GWAS performed on absolute metabolite levels
(Chan et al., 2011; Lee et al., 2011; Greene et al., 2015;
Matsuda et al., 2015) or to identify unknown metabolites
from combined metabolites and gene coexpression net-
works (Krumsiek et al., 2012). To date, interconnected
metabolic traits have been analyzed using multivariate
GWAS, factor analysis, or principal component analysis-
based GWAS (Shen et al., 2013; Brachi et al., 2015). Our
approach, which relies instead on single amino acids to a
single or a group of amino acids derived from the net-
work topology, may yield results whose biological rele-
vance is comparatively clearer. The correlation-based
network of the seed FAAs facilitated the visualization of
both characterized and uncharacterized metabolic inter-
actions (Fig. 1). The genetics that underlie the strong
correlation of group 1 (composed of all the BCAAs) is
most likely due to the four shared biosynthetic enzymes
and one shared catabolic gene, BCAT2, that is associated
with the natural variation of BCAA levels in seeds (Binder
et al., 2007; Binder, 2010; Angelovici et al., 2013). A second
metabolic cluster (group 2; Fig. 1), consisting of FAAs
from four amino acid families, is an uncharacterized
metabolic module. Interestingly, Val is the central hub
that connects the two parts of the network (Fig. 1).

This network is consistent with previous studies
showing that perturbations in BCAA pathway genes
induce multiple changes of amino acid levels in a

Table III. QTL analysis of the network-guided BCAA traits from the Bay 3 Sha mapping population

Only QTLs that overlap the approximately 6- to 12-centimorgan (cM) chromosome 1 interval previously detected by GWAS are shown. Parameters
were obtained from the Plant Breeding and Biology Quantitative Trait Loci (PLABQTL) software program using phenotypic and genotypic data from
158 RILs. Asterisks represent the most significant QTLs described by Angelovici et al. (2013); all traits are represented in one letter code.

Trait Chromosome Position Supporting Interval LOD High Parent r2 Allelic Effect Estimates

cM %
I/LIVKHSQR 1 8 6 12 18.46 Sha 41.8 20.52
I/LIVKHSQRYEFA 1 10 6 12 22.57 Sha 48.4 20.186
L/LIVKHSQR 1 8 4 12 6.06 Sha 16.4 20.321
L/ LIVKHSQRYEFA 1 8 6 12 10.89 Sha 27.8 20.16
I/IVL* 1 8 6 12 9.3 Sha 23.9 20.011
L/total* 1 8 6 14 9.91 Sha 25.5 20.119
I 1 8 4 14 6.06 Sha 16.7 20.021
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seed-specific manner (Gu et al., 2010; Angelovici et al.,
2013). The network-guidedmetabolite-based-GWASwe
performed on the FAAs of dry Arabidopsis seed iden-
tified two significantly associated genomic regions (Ta-
ble II, regions 3 and 4) that could not have been detected
otherwise. One region is significantly associated with a
Ser-related trait (S/LIVKHSQR), while the other region
is significantly associated with four His-related traits
(H/KHR, KHSQR, KHSQRV, and LIVKHSQR; Table II;
Figs. 2–4; Supplemental Data Sets S2 and S3). Interest-
ingly, the most significant SNPs (P , 0.05 after FDR
correction) detected for these five traits are among the
top 20 SNPs with the lowest P value for the corre-
sponding traits generated using approach 1: that is, S/
total, H/total, and H/EHPRG (representing the H/Glu
family; Table II; Supplemental Table S4). Nevertheless,
the P values (after FDR correction) for these traits are not
significant and range from 0.28 to 0.97. These results
suggest that the network-guided GWAS increased the

power of our analysis. It is arguable that an SNP
ranking approach may have extracted the same candi-
date genes; however, when testing nearly 100 traits (as
with approach 1), that approach could yield hundreds
of candidate genes and, therefore, might not be as
useful at prioritizing candidate genes for validation.
The linkage analysis of the unique network of BCAA-
related traits performed on dry seed FAAs measured
from the Bay3 Sha mapping population (Loudet et al.,
2002; Angelovici et al., 2013) further supports the in-
crease in our analysis power. A previous linkage anal-
ysis of the free BCAA-related traits in this population
identified a large-effect QTL on chromosome 1 (con-
taining the quantitative trait gene BCAT2) for L/total,
I/IVL, and I with LOD scores of 9.91, 9.3, and 6.06,
respectively, that explained 25.5%, 23.9%, and 16.7% of
the total phenotypic variation, respectively (Table III;
Angelovici et al., 2013). In contrast, linkage analysis of
this FAA data set with the unique network-guided

Figure 5. Seed and leaf FAA-related traits mea-
sured from three cat4 RNAi lines and rif10. Ab-
solute FAA levels were measured from dry seeds
(A) and leaves (B) harvested from 2-week-old
plants. Significant ratios were calculated from
both dry seeds (C) and leaves (D). Values represent
fold changes in FAA for the three CAT4 RNAi lines
(gray, black, and striped bars) and rif10 (white bars;
seeds only) relative to their respective controls
(wild type [WT] with an empty vector). Averages
and SE values were calculated from four measure-
ments. *, FAA traits that have a significant differ-
ence (P , 0.05, Student’s t test) between the wild
type and rif10; ***, FAA traits that have a signifi-
cant difference (P, 0.05, Student’s t test) between
the wild type and all three CAT4 RNAi lines. For
the FAA content, see Supplemental Data Set S4.
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BCAA-related traits found that the same QTLs for the
I/LIVKHSQRYEFA and I/LIVKHSQR traits have LOD
scores of 22 and 19, respectively, and explained 48%
and 42% of the total phenotypic variation (Table III).
Notably, the increase in significance is specific to the Ile-
related traits and not the Leu-related ratios, which
remained comparable throughout the analyses (Tables
II and III; Supplemental Table S5). These results suggest
that network-guided metabolic ratios are genetically less
complex and, therefore, aremore likely to be detected in a
GWAS on a relatively small population size (Korte and
Farlow, 2013). It is also possible that a metabolic ratio
approach reduces the inclusion of confounding effects,
such as seed size, which repeatedly colocalizes with sev-
eral amino acid levels (Joosen et al., 2013).
These results are consistent with observations of

linkage analysis of glucosinolate metabolic ratios, which
also have been shown to be highly useful for detecting
metabolic QTLs, perhaps due to their high heritability
(Wentzell et al., 2007). In addition, the metabolic network
was reconstructed from the relationship of amino acids
across a natural population of dry seeds; hence, it is
possible that these metabolic ratios represent a unique
interactionwith seeds comparedwith a generalmetabolic
ratio, whichmay ormay not be represented in the specific
tissue of interest. This possibility is of special importance
for metabolites, such as amino acids, that are known to be
differentially regulated in leaves and seeds (Toubiana
et al., 2012). However, the latter hypothesis, although
consistent with our findings, should be regarded with
caution because the network is constructed from a meta-
bolic data set derived from an association panel and,
therefore, captures correlative patterns influenced by the
metabolic network and genetic relatedness between ac-
cessions. This helps zoom in on the genetics but may
overestimate the physiological metabolic relationships.
Interestingly, all the network-guided traits with sig-

nificant SNP-trait associations belong to the five FAAs
traits with the highest network hub scores (Table II;
Supplemental Table S1B),which indicates the relevance of
the network properties for network-guided metabolome-
GWAS. This observation is of importance to cases of
metabolic networks that have many possible metabolic
ratio traits; instead of analyzing all possible ratios, one
could start by analyzing the ratios of metabolites with
the highest hub scores. It is also consistent with the
observation that network dynamics is strongly con-
nected to the underlying reaction pathway structure
(Steuer et al., 2003; Weckwerth, 2003) and is more
sensitive to genetic permutation than the metabolic
steady-state levels. For example, a correlation-based
network analysis of potato (Solanum tuberosum) leaves
with a Suc synthase antisense construct and the wild
type foundmore significant changes in correlations and
ratios of metabolites compared with metabolite abso-
lute levels, which had mostly small, nonsignificant
differences (Weckwerth et al., 2004). Similarly, a trans-
genic Arabidopsis plant with induced high Lys levels in
seeds (Angelovici et al., 2009) demonstrated wider and
more significant effects on the correlation network

properties compared with the absolute levels of the
metabolites.

The strongest GWAS signal from among all the
network-guided metabolic ratios was for four His-
related traits on chromosome 3 (Table II; Figs. 3 and
4). His plays an essential role in plant reproduction,
growth, chelation, and transport of metal ions. Blocking
His biosynthesis in Arabidopsis leaves, for example,
causes increased expression of several genes involved
in other amino acid synthesis pathways and affects the
levels of several FAAs (Guyer et al., 1995; Stepansky
and Leustek, 2006; Ingle, 2011). Nevertheless, the reg-
ulation of His metabolism as well as its entire catabolic
pathway remain unclear (Stepansky and Leustek, 2006;
Ingle, 2011). Our results shed light on the genetic reg-
ulation of freeHis in seeds and also provide a clue to the
localization of its catabolism. The GWAS signal for the
four His-related traits spans 18 significant SNPs that
comprise nine open reading frames on chromosome
3 (Fig. 4). Haploblock and MLMM analyses (Segura
et al., 2012) of the region indicate that the four most
significant SNPs for all four traits are located in
haploblock 3 (Fig. 4; Supplemental Tables S6 and S7).
The average difference for all four traits between the
two accession groups containing the most significantly
different haplotype pairs for haploblock 3 is highly
significant (Supplemental Fig. S5B). Together, these
findings suggest that the variation in all four His-
related traits is genetically driven by a polymorphism
in this haploblock, which spans only two genes, RIF10
and CAT4. The functional annotations and transcrip-
tion analyses of both RIF10 and CAT4 strongly indicate
that CAT4 is the causal gene (Supplemental Fig. S6).
CAT4 transcription levels are induced during seed
maturation, while RIF10 transcription is maintained at
very low absolute and relative levels (Supplemental
Fig. S7, A–C). Moreover, results from an amino acid
analysis demonstrated that only cat4 RNAi lines have a
significant effect on the absolute and relative levels of
His, thus confirming that CAT4 is the causal gene (Fig.
5). According to the FAA analysis, CAT4 is functional in
seed but not in leaves (Fig. 5, B and C), an observation
that is consistent with a previous study (Yang et al.,
2014b). CAT4 is localized primarily to the tonoplast, but
it has been detected in the endoplasmic reticulum. It
belongs to a gene family composed of nine genes that
are defined by their similarity to the mammalian CAT
gene (Su et al., 2004). While CAT8 and CAT9 are lo-
calized partially in the tonoplast, only CAT2 and CAT4
are localized primarily in the tonoplast (Carter et al.,
2004; Su et al., 2004; Yang et al., 2014a, 2015). Like
CAT4, CAT2 and CAT9 are involved in amino acid
metabolism, but these genes have a broad-spectrum
effect on FAA homeostasis in Arabidopsis leaves
(Yang et al., 2014a, 2015). Studies of other amino acid
transporters located on the plasma membrane (e.g.
Arabidopsis AMINO ACID PERMEASE1 [AAP1])
have demonstrated the importance of these proteins for
uptake by the embryo; for example, the aap1 null mu-
tant shows a reduction in storage proteins and seed
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yield (Sanders et al., 2009; Tegeder, 2014). Nevertheless,
no transporter, to date, displays such a specific effect on
any single amino acid in seed, let alone His. In general,
the functional role of FAAs’ preferential sequestering to
the vacuole and its regulation is not clear; vacuoles store a
large pool of FAAs, although at a much lower concen-
tration than the cytosol. For example, around 50% of the
FAA pool was found in illuminated barley (Hordeum
vulgare) protoplast vacuoles and shown to be diurnally
regulated, with increased loading of amino acids into the
vacuole at night (Dietz et al., 1990; Winter et al., 1994).
Moreover, a metabolic analysis of these protoplasts sug-
gests that some amino acids (e.g. His, Ala, Trp, Met, and
Ser) accumulate in the vacuole while all others are pref-
erentially found outside the vacuole (Tohge et al., 2011).

Our data demonstrate that, in vivo, CAT4 is a His
transporter, despite previous, unsuccessful attempts to
identify the activity of CAT4 (import/export) by het-
erologous expression in yeast and oocytes (Su et al.,
2004). In light of the accumulation of His only in the
seeds of the cat4 mutants, we hypothesize that CAT4 is
involved in His export from the vacuole to the cytosol
for downstream utilization in this tissue. However, in
contrast to leaf vacuoles, which are involved inmultiple
functions (e.g. turgor maintenance, protoplasmic ho-
meostasis, lysis, and metabolite sequestering and stor-
age), seed vacuoles mainly specialize in storage of
proteins (Höfte and Chrispeels, 1992; Paris et al., 1996;
Herman and Larkins, 1999; Marty, 1999). The direc-
tionality of the transporter (export or import from the
vacuoles) and its functional relevance in the unique
context of metabolic regulation during seed develop-
ment and filling and desiccation (Baud et al., 2002, 2008;
Fait et al., 2006) should be investigated further. Inter-
estingly, a GWAS conducted on free metabolite levels in
maize leaves revealed a significant association between
free Tyr and Lys levels and a cationic amino acid trans-
porter homolog (Riedelsheimer et al., 2012). This finding
implies an important role for CAT transporter family
members in the regulation of FAA levels in crops. Hence,
it is worthwhile to consider CAT transporters as poten-
tially beneficial for biofortification (since His is a semi-
essential amino acid) as well as useful in heavy metal
resistance in crops. Several studies have demonstrated
that increasing His by manipulating its biosynthetic
pathway leads to severe growth defects (Stepansky and
Leustek, 2006), likely a consequence of the interconnec-
tedness of its metabolic pathway with several essential
processes and its high energetic cost (Ingle et al., 2005).
Our results suggest that engineering CAT homologs
in crops may provide a method to increase His levels
while circumventing these pleiotropic effects in crops.

MATERIALS AND METHODS

Plant Growth and Seed Collection

All Arabidopsis (Arabidopsis thaliana) genotypes were grown at 18°C to 21°C
(night/day) under long-day conditions (16 h of light/8 h of dark). Plant growth
of the Arabidopsis diversity panel (Nordborg et al., 2005; Platt et al., 2010a;

Horton et al., 2012) is described by Angelovici et al. (2013). For the developing
seed analysis, flowers of Col-0 were marked at specific times (12 6 1, 15 6 1,
186 1, and 206 1 DAF), and seeds were collected and stored at280°C. For leaf
analysis, 2-week-old plants were collected and stored at 280°C.

Isolation of T-DNA Insertion Mutants and RNAi Lines

The T-DNA SALK_037353c (rif10-1) and SALK_013306 (rif10-2) insertion
lines were obtained from the Salk collection. Homozygous plants were isolated
bygenomicPCRusinggene-specificprimers in combinationwith theT-DNAleft
border primer. The lack of transcripts from RIF10 was validated by RT-PCR
using RNA isolated from seeds of the respective mutants and primers of the
coding region [At3G03710 cDNA LP, 59-ATGTTGACGAGTCCCAGTAAC-39;
At3G03710 Ins RP1, 59-GCCATTTGTTTATCACCAAGCGT-39; CAT4 (1) F, 59-
GTGCGAGTTTGTTGGGTTCC-39; CAT4 (1) R, 59-CCATGTCCCAGCTC-
CAATGT-39; PM ACT2 F, 59-CAGCATCATCACAAGCATCC-39; and PM
ACT2 R, 59-CCGTTGTCCTGAGGTTCTGT-39]. The RNAi construct was
designed and obtained from the Agrikola gene-specific tag collection (CAT-
MA3a02630; Hilson et al., 2004) using Gateway technology. The pDonor
(PN253177) containing the CAT4 identified gene-specific tag was transferred
into the pHellsgate vector and then transformed into Arabidopsis by Agro-
bacterium tumefaciens-mediated gene transfer using the floral dip method
(Clough and Bent, 1998). Homozygous lines with a single insertion and lines
segregating for multiple insertions were isolated by selection with the appro-
priate antibiotic. Knockdown lines were defined by a 70% reduction in CAT4
transcription.

RIF10 and CAT4 Transcript Analyses

Total RNA was isolated from dry seeds using the hot borate method (Birti�c
and Kranner, 2006) followed by DNase treatment using TURBO DNA-free
DNase (Ambion). First-strand cDNA was synthesized from 1 mg of total
RNAwith SuperScript II H2 reverse transcriptase (Invitrogen) and an oligo(dT)
primer. Transcript levels were determined by quantitative real-time PCR using
SYBR Green Master Mix (Applied Biosystems) with ACTIN2 (At3G18780)
mRNA as an internal control. Primers were as follows: qPCR CAT4 (3) F, 59-
GACACAAAGGAGGGTTTCTCTG-39; qPCR CAT4 (3) R, 59-AGATCATGCTT-
CCAATAAGTAGCC-39; ACTIN-RT-F, 59-CAGCATCATCACAAGCATCC-39;
ACTIN-RT-R, 59-CCGTTGTCCTGAGGTTCTGT-39; qPCR RIF10(3) F, 59-
AGGGCGAAAGCGATTATTAGT-39; and qPCR RIF10(3) R, 59-CTCCTACTTTA-
TAGGCATCCTCTG-39.

Plant Extraction and Analysis of Seed Amino Acids Using
Liquid Chromatography-Tandem Mass Spectrometry

FAA extraction for the liquid chromatography-tandem mass spectrometry
analysis was performed using a previously describedmethod (Angelovici et al.,
2013). The method was modified from Gu et al. (2007) to include selected ion
pairs for 11 additional heavy amino acid standards. Under these conditions,
Cys and Asn do not have reliable selected ion monitoring pairs and, therefore,
were excluded from the analyses.

Data Source and Analysis

Network Analysis

Seed FAAdata from the diversity panel were obtained fromAngelovici et al.
(2013). Briefly, 18 FAAs were quantified from three independent outgrowths
(biological replicates) of the Arabidopsis diversity panel (Atwell et al., 2010;
Platt et al., 2010a). Replicates were integrated into a single value using the BLUP
model and then reverse transformed. Spearman’s rank correlation was then
used to produce a correlation matrix. The threshold of the Spearman’s rank
correlation coefficient and the significance of correlation were used to describe
different network properties (i.e. average node degree, network density, and
diameter; Toubiana et al., 2013). Thus, a list of correlation matrices was created
using different r value thresholds from 0.1 to 0.9 with steps equal to 0.1. The
threshold of r $ 0.6 was chosen based on the stabilization of average node
degree and the network diameter calculated at each step. The P value that re-
flects significance of correlation did not strongly affect network density andwas
selected on a level equal to 0.001. The significant correlation matrix was created
using the freely distributed R software (version 3.0.1; www.r-project.org), and
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the network visualization and analysis was applied using Cytoscape, version
3.0 (Shannon et al., 2003), using a previously described method (Batushansky
et al., 2016). Each node represents a specific amino acid; the node properties
(color and size) reflect attributes of biochemical pathways and nodal degree,
respectively. Each edge represents a correlation between adjacent nodes, and
the edgewidth reflects the strength of correlation. The Cytoscape organic layout
was used for network graphical output. Additional network properties (i.e.
diameter and transitivity or clustering coefficient) were calculated using the
igraph R package (version 3.0.1; http://igraph.org/r/).

GWAS, LD, MLMM, and Haplotype Analyses

All traits including ratios were treated independently. Metabolic ratios were
derived prior to the calculation of BLUPs to minimize noise. For each trait, the
outlier removal, optimal transformation, and BLUP calculationwere performed
as described previously (Angelovici et al., 2013; Gonzalez-Jorge et al., 2013). The
BLUPs were used as phenotypic data for the GWAS and the haplotype analyses.
Variance component estimates from each fitted model were used to estimate the
broad-sense heritability of each trait (Holland et al., 2010;Hung et al., 2012), and SE

values for the heritability estimates were approximated using the delta method
(Holland et al., 2010). GWAS and MLMM analyses were conducted as described
previously (Angelovici et al., 2013).Haplotypeswere created using the confidence
interval method in Haploview version 4.2 (Barrett et al., 2005).

Linkage Analysis

The network-guided ratios were used as quantitative values in the identi-
fication of QTLs. The PLABQTL software package was used for composite in-
terval mapping (Utz andMelchinger, 1996). A permutation analysis (1,000) was
performed to calculate the critical LOD score (a = 0.05) of 3.11. Genotypic data
used for the analysis were obtained from Loudet et al. (2002; http://dbsgap.
versailles.inra.fr/vnat/Documentation/33/DOC.html). Cofactors used for cal-
culations were automatically chosen by PLABQTL.

Accession Numbers

Sequence data can be found in the Arabidopsis Genome Initiative or Gen-
Bank/EMBL databases under the following accession numbers: At3G03720,
CAT4; At3G03710, RIF10; At2G26190, calmodulin-binding family protein;
At5G2623, pseudogene; At5G32619, encodes a DEFL family protein; At3G28970,
AAR3; At3G28960, transmembrane amino acid transporter family protein;
At5G65700, BARELY ANY MERISTEM 1 (BAM1); At5G65710, HAESA-LIKE2;
At5G65720, ATNFS1; At5G65683, Waive phenotype 3 (WAV3) HOMOLOG2;
At5G65670, INDOLE-3-ACETIC ACID INDUCIBLE 9 (IAA9); At5G65660, Hyp-
rich glycoprotein family protein; At1G52780, DUF2921; At1G10090, ERD4; and
At1G10070, BCAT2.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. GWAS summary of the Gly and Ser absolute
sum.

Supplemental Figure S2. GWAS summary of S/LIVKHSQR.

Supplemental Figure S3. GWAS of H/KHSQR.

Supplemental Figure S4. Conditional GWAS of the four most significant
His-related traits.

Supplemental Figure S5. Haplotype analysis of haploblock 3.

Supplemental Figure S6. Expression levels of CAT4 and RIF10.

Supplemental Figure S7. CAT4 and RIF10 transcript levels in the mutant
lines.

Supplemental Table S1. Comparative analysis of the transitivity (cluster-
ing coefficient) of the Arabidopsis accessions’ metabolic networks and
equalized random networks and the weighted hub score of the network
nodes.

Supplemental Table S2. List of seed FAA traits calculated from the quan-
tification of 18 FAAs and known biochemical interactions.

Supplemental Table S3. List of seed FAA traits determined from the net-
work topology (approach 2).

Supplemental Table S4. GWAS results of the top 20 SNPs from the H/
total, H/EHPRG (Glu family), and S/total GWAS.

Supplemental Table S5. Summary of GWAS results on the BCAA-related
traits.

Supplemental Table S6. Summary of the MLMM analysis of the four His-
related traits with a GWAS signal on chromosome 3, using all SNPs
within 6100 kb of the most significant SNP in the region.

Supplemental Table S7. Haplotype analysis was performed using the
Haploview software program on the genomic region chromosome 3,
912,617 to 941,537, which had significant SNP associations with the
His-related traits.

Supplemental Data Set S1. The 313 accessions used in this study and the
back-transformed BLUPs of the FAA absolute levels quantified for each.

Supplemental Data Set S2. Summary of GWAS results of all SNPs with
significant associations at 5% FDR identified by approach 1, not includ-
ing BCAA-related traits and only BCAA-related traits.

Supplemental Data Set S3. Summary of GWAS results of all SNPs with
significant associations at 5% FDR for all the network-assisted derived
GWAS traits, not including BCAA-related traits and only BCAA-related
traits.

Supplemental Data Set S4. Seed free amino acid profiles of rif10, CAT4
RNAI-1, RNAI-2, and RNAI-3 and leaf free amino acid profiles of CAT4
RNAI-1, RNAI-2, and RNAI-3 along with their wild-type (Col-0) control.
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