
Update on Vernalization Pathways

Winter Memory throughout the Plant Kingdom: Different
Paths to Flowering1[OPEN]

Frédéric Bouché, Daniel P. Woods, and Richard M. Amasino*

Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (F.B., D.P.W., R.M.A.);
and United States Department of Energy Great Lakes Bioenergy Research Center, Madison, Wisconsin
53726 (D.P.W., R.M.A.)

ORCID IDs: 0000-0002-8017-0071 (F.B.); 0000-0002-1498-5707 (D.P.W.); 0000-0003-3068-5402 (R.M.A.).

Plants have evolved a variety of mechanisms to syn-
chronize flowering with their environment to optimize
reproductive success.Many species flower in springwhen
the photoperiod increases and the ambient tempera-
tures become warmer. Winter annuals and biennials have
evolved repressionmechanisms that prevent the transition
to reproductive development in the fall. These repressive
processes can be overcome by the prolonged cold of
winter through a process known as vernalization. The
memory of the past winter is sometimes stored by epige-
netic chromatin remodeling processes that provide com-
petence to flower, and plants usually require additional
inductive signals to flower in spring. The requirement
for vernalization is widespread within groups of plants
adapted to temperate climates; however, the genetic and
biochemical frameworks controlling the response are dis-
tinct in different groups of plants, suggesting independent
evolutionary origins. Here, we compare and contrast the
vernalization pathways in different families of plants.

The timing of flowering is an important adaptive trait
that often involves integrating multiple environmental
cues to ensure reproductive success. In many species,
the perception of daylength (photoperiod) is an essen-
tial environment cue as it provides reliable informa-
tion about seasonal shifts (e.g. Song et al., 2015; Shim
et al., 2017). In Arabidopsis (Arabidopsis thaliana), the
so-called photoperiodic pathway is coupled to the sens-
ing of ambient temperatures as warmer growth condi-
tions accelerate flowering (Balasubramanian et al.,
2006; Verhage et al., 2014). The perception of these
environmental signals is superimposed on an internal

developmental program that prevents flowering in young
seedlings and promotes the transition to reproductive de-
velopment in older plants (e.g. Yu et al., 2015). In many
species adapted to temperate climates, the perception
of seasonal changes also involves the acquisition of the
competence to flower in response to an extended cold
period, aprocess referred to as vernalization (e.g.Chouard,
1960; Preston and Sandve, 2013; Fig. 1A). In addition, some
species acquire floral competence when exposed to the
shorter photoperiod of winter (Purvis and Gregory, 1937;
Wellensiek, 1985), but the molecular mechanisms control-
ling the so-called “short-day vernalization” are still un-
known. Vernalization is adaptive in that it ensures that
flowering does not occur before the freezing temperatures
ofwinter, whichwould reduce reproductive success. After
vernalization, however, many plants still require subse-
quent exposure to additional inductive signals to initiate
reproductive development (e.g. Amasino, 2010).

Whether vernalization is required for flowering as
well as the duration of cold exposure required to ful-
fill the vernalization requirement varies considerably
among species and even within a species (Amasino,
2010; Duncan et al., 2015). Genotypes with a vernali-
zation requirement are typically referred to as either
winter annuals or biennials. There is not a sharp dis-
tinction between winter annuals and biennials, but the
difference often relates to the extent to which the plant
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develops before winter and/or whether there is an
obligate requirement for cold exposure to flower (e.g.
Salisbury and Ross, 1992). When there is variation
within a species for a vernalization requirement, the
vernalization-requiring genotypes are often classified
as winter annuals (or winter varieties), whereas the
genotypes without vernalization requirement are often
referred to as spring annuals or spring varieties because
they will readily flower when planted after winter in
the spring. These behavioral differences have a con-
siderable influence on agricultural practices and are key
to the adaptation of plant varieties to distinct climates.
Here, we review the recent progress made in our un-
derstanding of the molecular mechanisms controlling
vernalization with a focus on three different plant
groups, Brassicales, Caryophyllales, and Poales.

THE MEMORY OF WINTER IN ARABIDOPSIS

The first insights into the molecular mechanisms
controlling flowering were obtained in the model Bras-
sicaceae, Arabidopsis (e.g. Pajoro et al., 2014). We know
from studies in this model that the timing of flowering is
a complex process that involvesmany genes in networks
coordinating the initiation of flowering with environ-
mental cues and developmental programs (e.g. Bouché
et al., 2016). An essential downstream step of floral
induction involves the up-regulation of FLOWERING
LOCUS T (FT), a gene that encodes a small protein with
similarity to phosphatidylethanolamine-binding proteins

(Kobayashi et al., 1999). The FT protein, traditionally
called “florigen,” is produced in leaf vascular tissues and
moves through the phloem to the shoot apical meristem
(SAM), where it interacts with the bZIP transcription
factor FD and 14-3-3 proteins (Fig. 1B; Abe et al., 2005;
Wigge et al., 2005; Corbesier et al., 2007; Taoka et al.,
2011; Ho and Weigel, 2014). Together, these proteins
form a floral activator complex that triggers the expression
of several downstream targets, including SUPPRESSOR
OF OVEREXPRESSION OF CO1 (SOC1), resulting in
switching the fate of the SAM from initiating leaves to the
production of flowers (Moon et al., 2005; Yoo et al., 2005).
Pathways controlling flowering, including the vernali-
zation pathway in Arabidopsis, act primarily through
the modulation of the activity of the floral integrators
FT and SOC1.

In Arabidopsis, natural diversity of the vernalization
requirement is largely due to allelic variation at FRIGIDA
(FRI) and its downstream target FLOWERING LOCUS C
(FLC); winter accessions bear dominant (i.e. active) alleles
of both genes (Michaels and Amasino, 1999; Sheldon
et al., 1999; Johanson et al., 2000; Gazzani et al., 2003). FRI
is part of a complex involved in activating FLC, and FLC
encodes aMADS-box protein that represses flowering by
preventing the transcription of FT in leaves and SOC1 in
the SAM (Michaels and Amasino, 1999; Sheldon et al.,
2000; Hepworth et al., 2002; Helliwell et al., 2006; Searle
et al., 2006). Thus, FLC repressionof both leaf andmeristem
flowering pathways ensures a tight repression of flow-
ering prior to cold in winter accessions. Upon cold ex-
posure, the expression of FLC is stably repressed, thus

Figure 1. Vernalization pathways in different
plant groups. A, Phylogenetic tree of angio-
sperms (data from Jansen et al. [2007]) show-
ing, on the right, the vernalization-responsive
species mentioned in the main text. B to E,
Schematic representation of the mechanisms
governing vernalization in Arabidopsis (B),
A.alpina (C), sugarbeet (D), andcorePooideae (E).
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conferring a molecular “memory” of the past winter (e.g.
Amasino, 2010). Interestingly, the exposure to cold tem-
peratures triggers a rapid decrease in FLC expression
levels (i.e. within a few days), but only extended periods
of cold ensure stable repression upon return to warmer
growth temperatures (e.g. Finnegan, 2015). Although FLC
repression is maintained throughout the plant’s life cycle,
the repressed state of FLC is reset to an active state in the
following generation, resulting in the re-establishment
of the vernalization requirement (e.g. Schmitz and
Amasino, 2007).
How cold represses FLC has been a long-standing

question on which many studies have been focused.
These studies have revealed multiple components of
cold-mediated repression, including epigenetic modi-
fications and antisense transcription (e.g. Kim and
Sung, 2014), but the mechanisms controlling the initial
decrease in FLC levels are not yet fully understood
(Helliwell et al., 2015). The first vernalization-related,
cold-induced change identified to date is the peak of
expression of antisense FLC transcripts, collectively
called COOLAIR, which are conserved in Arabidopsis
relatives (Swiezewski et al., 2009; Castaings et al., 2014;
Marquardt et al., 2014). The experimental reduction
of COOLAIR expression prevents the vernalization-
induced decrease in some activating chromatin marks
at the FLC locus (Csorba et al., 2014), whereas the dis-
ruption of its promoter by T-DNA does not prevent the
overall repression of FLC by vernalization (Helliwell
et al., 2011). The peak of COOLAIR is followed by
the increase in the expression of a sense noncoding
RNA originating from the first intron of FLC, called
COLDAIR (Heo and Sung, 2011). Although COLDAIR
appears to be less evolutionary conserved than
COOLAIR in Arabidopsis relatives (Castaings et al.,
2014), the knock-down of its expression results in
an increase of FLC expression associated with late
flowering and reduced vernalization response (Heo
and Sung, 2011). Following the expression of these
noncoding RNAs, a key event is the cold-mediated
induction of the gene encoding VERNALIZATION-
INSENSITIVE3 (Sung and Amasino, 2004). This pro-
tein, which is necessary for the deposition ofH3K27me3
repressive marks at the FLC locus, participates in the
stable repression of FLC by the polycomb remodeling
complex PRC2, as extensively reviewed elsewhere (e.g.
Kim and Sung, 2014; Berry and Dean, 2015; Hepworth
and Dean, 2015). The mitotic stability of vernalization-
mediated FLC repression, as well as the subsequent re-
setting in the next generation, has provided a system to
explore multiple aspects of the epigenetic control of gene
expression. Other mechanisms have been postulated to
regulate FLC at a molecular level, such as alternative
splicing (Mahrez et al., 2016), and possibly posttransla-
tional protein stabilization (Kwak et al., 2016). However,
the extent to which these mechanisms participate in the
control of the vernalization response in natural conditions
is not well understood.
The repression of FLC has received much attention,

but the regulation of additional genes appears to also

contribute to the vernalization response in Arabidopsis
as the flowering time of an flc null mutant is still accel-
erated by exposure to prolonged cold temperatures
(Michaels and Amasino, 2001). Some obvious candidate
genes to fulfill such a role are the paralogs of FLC, called
FLOWERING LOCUSM (FLM) andMADSAFFECTING
FLOWERING2-5 (MAF2-5), which also control flowering
by repressing FT expression (Gu et al., 2013). Although
initial studies reported somewhat contradictory results
(Ratcliffe et al., 2001, 2003; Sung et al., 2006; Sheldon
et al., 2009), the thorough characterization of the ex-
pression of the FLC family genes showed that they all
respond to vernalizing treatments, albeit with different
kinetics (Kim and Sung, 2013): FLC expression decreases
rapidly upon cold exposure, whereas FLM and MAF2-3
expression only decreases after the cold period has
ended, and MAF4-5 expression peaks during cold. The
role of FLM and MAF2 in the vernalization response
seems to be marginal (Kim and Sung, 2013); instead,
these genes appear to be key to the repression of flow-
ering at low ambient temperatures (Posé et al., 2013; Lee
et al., 2013a; Rosloski et al., 2013; Airoldi et al., 2015;
Sureshkumar et al., 2016). The maf3 single mutant does
not show any phenotype, but the maf4 and maf5 single
mutants are induced to flower by shorter cold periods,
suggesting that MAF4 and MAF5 normally ensure that
vernalization is not achieved by suboptimal durations of
cold exposure (Kim and Sung, 2013). AGL19, another
MADS-box protein closely related to SOC1, might also
play a role in the vernalization pathway, as the agl19 and
flc mutations show additive impairment of the vernali-
zation response (Schönrock et al., 2006). AGL19 appears
to be a floral activator up-regulated upon cold exposure
through FLC-independent processes (Schönrock et al.,
2006; Kang et al., 2015). Although furtherwork is needed
to assess the role of these additional components in the
vernalization response, a recent study suggests that they
might participate in environmental adaptation as their
differential regulation is correlated with the flowering
time of different accessions originating from an altitu-
dinal gradient (Suter et al., 2014). In conclusion, there is
still much to learn about FLC-independent vernalization
events in Arabidopsis.

VERNALIZATION IN PERENNIAL BRASSICACEAE

In contrast to the annual habit of Arabidopsis, pe-
rennials live for many years and flower repeatedly
throughout their lives. Critical to this life history strat-
egy is that not all meristems are converted to inflores-
cences because some meristems must be reserved for
next season’s growth. Indeed, the perennial life history
of Arabis alpina, a close relative of Arabidopsis in the
Brassicaceae, relies on the transient floral competence
to ensure that not all meristems flower in a growing
season. Some meristems undergo the floral transition
in spring, while others remain vegetative to resume
growth the following year. InA. alpina, the repression of
flowering prior to vernalization is mediated by an FLC
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ortholog called PERPETUAL FLOWERING1 (PEP1),
and repression of PEP1 during vernalization leads to
increased expression of SOC1 and LEAFY, two essential
promoters of flowering (Fig. 1C; Wang et al., 2009b,
2011a). As the gene name suggests, pep1mutants flower
rapidly without vernalization, and allelic variation at
PEP1 contributes to the natural variation in flowering
responses that exists among different accessions of
A. alpina (Wang et al., 2009b; Albani et al., 2012). Unlike
FLC in Arabidopsis, the expression of PEP1 is only
transiently repressed by cold, and the meristems that
transition to flowering during cold become inflores-
cences, whereas meristems at an immature stage re-
main vegetative (Wang et al., 2009b). Although FLC
and PEP1 share several regulatory mechanisms, in-
cluding chromatin remodeling and antisense tran-
scription (Wang et al., 2009b; Castaings et al., 2014), the
repressive H3K27me3 marks at PEP1 return to their
original levels a few weeks after the end of the cold
period, correlating with its transient repression (Wang
et al., 2009b). Although it is not surprising that FLC and
orthologs such as PEP1 are the basis of vernalization
requirement in Brassicaceae, this difference in memory
at the AtFLC locus versus lack of memory at the PEP1
locus is likely to be crucial for the perennial nature of
A. alpina versus the annual habit of Arabidopsis.

The ability of a meristem to transition to flowering
is also controlled by an age-dependent pathway. In the
early stages of Arabidopsis development, the age-
regulated miR156 promotes juvenility and represses
flowering by posttranscriptionally down-regulating
the expressionof genes from theSQUAMOSAPROMOTER
BINDING PROTEIN-LIKE (SPLs) family, which are
positive regulators of flowering (Cardon et al., 1997).
As plants age, miR156 levels decrease, leading to an
up-regulation of SPLs, which in turn induce miR172
expression; the levels of miR172 are thus negatively
correlated with those of miR156 (Wu and Poethig, 2006;
Wang et al., 2009a). Although this balance is conserved
in many species, including rice, maize, and poplar
(Chuck et al., 2007; Wang et al., 2011b; Xie et al., 2012),
the levels of miR156 and miR172 are uncoupled in A.
alpina, and exposure to cold temperatures triggers
the expression of miR172 independently of miR156
(Bergonzi et al., 2013; Fig. 1C). PEP2, also identified
through the screening for perpetual-flowering mu-
tants, encodes a miR172-regulated APETALA2-like
transcription factor that positively regulates PEP1
expression, thus contributing to the maintenance of
the vegetative stage (Bergonzi et al., 2013). The cold-
mediated induction of miR172 thus leads to the repres-
sion of PEP2 and, concomitantly, a decrease of PEP1
levels. In young meristems, however, high levels of
miR156 block flowering, even in the absence of a PEP1-
repressing effect. As observed in Arabidopsis, miR156
levels decrease as meristems age (Bergonzi et al., 2013),
and only meristems with low miR156 levels can be in-
duced to flower by prolonged exposure to cold tem-
peratures. Interestingly, the decline in miR156 is blocked
by cold, ensuring that flowering occurs only in plants

that had previously grown rapidly under warmer am-
bient temperatures. In addition, TERMINAL FLOWER1
(TFL1), a paralog of FT, represses flowering in immature
meristems (Kobayashi et al., 1999; Wang et al., 2011a).
The experimental down-regulation of AaTFL1 allows
the vernalization-mediated floral induction of younger
meristems and a response to shorter periods of cold ex-
posure (Wang et al., 2011a). Such a role for TFL1 in the
repression of flowering in young meristems has been
observed in other perennial species, such as apple trees
(Kotoda et al., 2006). TFL1 appears to set a minimal
threshold of inductive signal that is required to trigger
flowering, and participates in the selective induction of
flowering in mature meristems only.

In another perennial Brassicaceae, Cardamine flexuosa,
the mechanisms involved in the age-dependent abil-
ity to become vernalized appear to be less com-
plex. As in Arabidopsis, the balance between miR156
and miR172 is maintained, and the age-driven decrease
of miR156 is associated with a concomitant increase
of miR172. In C. flexuosa, the prevention of flowering
in young nonvernalized plants is ensured by two
potent floral repressors, FLC and TARGET OF EAT1
(TOE1), an APETALA2-like transcription factor that is
posttranscriptionally regulated by miR172 (Zhou et al.,
2013). As the plants age, miR172 levels increase to re-
press TOE1, conferring to the meristem the competence
to flower when exposed to a vernalizing treatment that
transiently represses FLC expression (Zhou et al., 2013).
Hence, distinct mechanisms using a similar framework
evolved to confer perennial behavior in Brassicaceae.

VERNALIZATION SYSTEMS IN OTHER EUDICOTS

The key regulators of the vernalization pathway ap-
pear to be conserved within Brassicaceae; however,
there is no strong evidence that similar components
are involved in the vernalization systems of other
eudicot families. Although the heterologous expression
of FLC-like genes from different families is able to re-
press flowering in Arabidopsis flc mutants, their func-
tional relevance in the control of vernalization response
in their respective species is not clear (e.g. Reeves et al.,
2007; Périlleux et al., 2013). Moreover, in Medicago
truncatula, a legume with a vernalization response that
diverged 90 to 100 million years ago from Arabidopsis
(Zeng et al., 2014), neither FRI nor FLC orthologs have
been identified (Hecht et al., 2005). However, a mutation
of MtVERNALIZATION2 (MtVRN2), a member of the
Polycomb Group Repressive Complex (VRN2-PRC2)
responsible for the deposition of H3K27me3 repressive
marks at the FLC locus in Arabidopsis (De Lucia et al.,
2008), bypasses the vernalization requirement and leads
to early flowering (Jaudal et al., 2016). Under long-day
conditions, this phenotype requires a functional allele of
the florigen FTa1 (Jaudal et al., 2016). Interestingly, FTa1
is up-regulated in the Mtvrn2 mutant, but does not dis-
play H3K27me3 alterations, suggesting that MtVRN2
represses genes upstream of FTa1 (Jaudal et al., 2016).
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VRN2 thus plays distinct roles in the control offlowering
in different plant groups, acting as an essential compo-
nent of the cold-mediated acquisition of the competence
to flower in Arabidopsis and participating in the estab-
lishment of the vernalization requirement inM. truncatula.
To date, the best characterized vernalization system in

a eudicot family other than Brassicaceae comes from
sugar beet (Beta vulgaris), a Caryophyllales species that
diverged from Arabidopsis soon after the eudicot-
monocot split, about 110 million years ago (Zeng et al.,
2014). Cultivated sugar beet is a biennial root crop that
requires vernalization to flower, but manywild relatives
behave as annuals. Unlike in the Brassicaceae, the
ortholog of FLC from sugar beet plays at best a minor
role in vernalization (Vogt et al., 2014). The biennial
behavior of cultivated beet is associated with a recessive
allele at the bolting locus B. This locus encodes the
pseudo-response regulator (PRR) BOLTING TIME
CONTROL1 (BvBTC1), a protein related to AtPRR7 (Pin
et al., 2012), and the reduction of BvBTC1 activity by
RNAi is sufficient to convert annual varieties into bien-
nials. Recessive alleles of another bolting locus, called B2,
confer a biennial behavior to plants homozygous for the
annual allele BTC1 (Büttner et al., 2010). This locus en-
codes the DOUBLE B-BOX TYPE ZINC FINGER protein
BvBBX19, which is orthologous to an Arabidopsis pro-
tein that negatively influences the induction of FT (Dally
et al., 2014; Wang et al., 2014). Interestingly, the expres-
sion of both BvBBX19 and BvBTC1 is diurnally regulated
(Pin et al., 2012; Dally et al., 2014), and although the
functional relationship between these two proteins is
still unclear, they both participate in the regulation of
an antagonistic pair of FT-like proteins, BvFT1 and
BvFT2 (Fig. 1D; Pin et al., 2010, 2012;Dally et al., 2014). The
short-day-expressed BvFT1 represses floral transition and
negatively influences BvFT2 levels, whose expression is
promoted by long days (Pin et al., 2010). In biennial beets
that require vernalization, cold stably represses BvFT1 ex-
pression possibly through BvBTC1, relieving its repressive
effect on BvFT2; BvFT2, in turn, is able to trigger flowering
if plants are exposed to long days (Pin et al., 2010, 2012).
The pathway through which BvBBX19 and BvBTC1 reg-
ulate the expression of BvFT genes is not known. Tran-
scriptomic studies have provided some new candidate
genes possibly involved in the vernalization pathway
(Mutasa-Göttgens et al., 2012), and the publication of the
sugar beet genome will undoubtedly open new perspec-
tives for the dissection of the molecular mechanisms con-
trolling its floral induction (Dohm et al., 2014).

VERNALIZATION SYSTEMS IN MONOCOTS

Vernalization responsiveness is also common in differ-
ent species of monocots (Chouard, 1960; Brewster, 1987;
Preston and Sandve, 2013). A few years ago, some key
components of the system governing bulb formation and
floral induction in onion (Allium cepa), a biennial species
that belongs to theAsparagales order,were identified (Lee
et al., 2013b). In the model proposed by Lee et al. (2013b),

the initiation of bulbing and flowering are both controlled
by FT-like genes. After planting in spring, high AcFT4
activity inhibits bulb formation by repressing AcFT1.
Later in the season, inductive photoperiods down-
regulate AcFT4, allowing the induction of the bulb-
promoting AcFT1. During winter, vernalization leads
to the up-regulation of another FT-like gene, AcFT2,
which is necessary to promote flowering the next
summer (Lee et al., 2013b). Further experiments are
required to confirm and expand this model, but these
preliminary results suggest a mechanism distinct from
the vernalization system in Brassicales, Caryophyllales,
and, as discussed below, Pooideae.

In Pooideae (temperate grasses), a grass subfamily that
includes crown pooid crops such as wheat, oats, rye, and
barley, allelic variation and functional studies have ad-
vanced the understanding of the molecular basis of ver-
nalization. As in Arabidopsis, the timing of flowering is
an important trait that is tightly controlled by genetic
networks that integrate environmental cues, such as
photoperiod and vernalization. After the identification of
FLC in Arabidopsis, many efforts were directed toward
the identification of its ortholog in vernalization-sensitive
monocots, and a recent study identified ODDSOC2 as
an ortholog in cereals (Ruelens et al., 2013). Although
ODDSOC2 expression is suppressed by cold (Greenup
et al., 2010), its specific role in the vernalization response is
not clear. Instead, like in sugar beet, an FLC-independent
pathway appears to be the major contributor to the ver-
nalization requirement and response to prolonged cold
exposure in winter cereal varieties.

Our current understanding is that the core regulatory
mechanisms of vernalization in cereals includes three
genes called VRN1, VRN2, and VRN3 (Yan et al., 2003,
2004, 2006). VRN3 is an ortholog of FT that interacts
with an FD-like protein to trigger the expression of
downstream targets, including the AP1/FUL ortholog
VRN1 (Li and Dubcovsky, 2008; Li et al., 2015). VRN4,
which resulted from a duplication of VRN1, displays a
distinct expression pattern and appears to be associated
with a weaker vernalization requirement (Kippes et al.,
2015). As in Arabidopsis, the control of FT expression in
leaves is key to the acquisition of the competence to
flower in response to vernalization. Prior to cold, in
winter cereal varieties, VRN1 is expressed at low levels,
and the CONSTANS-like VRN2 gene plays a repressive
role on FT (Fig. 1E; Danyluk et al., 2003; Yan et al., 2004;
Chen and Dubcovsky, 2012). The role of VRN2 in con-
ferring the vernalization requirement is supported by
the fact that nonfunctional VRN2 alleles can confer a
spring habit in diploid wheat (Triticum aestivum) and
barley (Hordeum vulgare), and the development of a
triple VRN2 mutant in hexaploid wheat also results in
rapid flowering and a reduced vernalization response
(Kippes et al., 2016). In cereals, prolonged cold tem-
peratures cause the repression of VRN2 and a quanti-
tative induction ofVRN1, which directly binds to the FT
promoter to trigger its expression and also to VRN2 to
presumably repress its expression (Yan et al., 2004;
Shimada et al., 2009; Deng et al., 2015). The induction of
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VRN1 by cold is associated with removal of H3K27me3
repressive marks and deposition of H3K4me3 activating
marks (Oliver et al., 2009), and also possibly involves
posttranscriptional mechanisms (Xiao et al., 2014). The
initial down-regulation of VRN2 during the cold occurs
independently of VRN1, but VRN1 is critical for the
stable repression of VRN2 after cold exposure ends
(Chen and Dubcovsky, 2012). When induced, FT rein-
forces the expression of VRN1, thus creating a positive
feedback loop that ensures the transition to the repro-
ductive stage (Li and Dubcovsky, 2008). Hence, ver-
nalization results in decreased VRN2 expression and
increasedVRN1 expression, facilitating the induction of
FT expression upon extension of the photoperiod.

The photoperiodic activation of FT involves the PRR
PHOTOPERIOD1 (PPD1), which is responsible for a
large part of the natural variation in flowering observed
in wheat and barley; varieties with active PPD1 contain
high levels of FT andflower early,whereas ppd1 varieties
have low FT and flower late (Turner et al., 2005; Beales
et al., 2007; Kitagawa et al., 2012; Shaw et al., 2012). How
PPD1 controls FT expression in grasses is not known, but
it possibly acts through the transcriptional regulation of
CONSTANS (Turner et al., 2005; Shaw et al., 2012). More
recently, the light receptor for the photoperiodic path-
way was identified as PHYTOCHROME C (PHYC);
phyC mutants flower very late under inductive photo-
periods (Chen et al., 2014; Woods et al., 2014b).

Although there has been great progress in under-
standing vernalization at a molecular level from study-
ing wheat and barley, much remains to be learned,
including identifying additional components within the
vernalization pathway and the extent to which vernali-
zation pathways are conserved throughout the grasses.
Pooideae is a diverse grass subfamily comprising;3,800
species with a large geographical range, predominantly
in higher latitudes (Mannion, 1997; Grass Phylogeny
Working Group, 2001). Recently it has been shown that
vernalization responsiveness is widespread throughout
Pooideae, although there have been several independent
losses of a vernalization requirement (McKeown et al.,
2016; Woods et al., 2016). Furthermore, studies in the
small temperate grass model Brachypodium distachyon,
which is an early diverging pooid sister to the crown
pooid clade, have contributed to understanding the evo-
lution of vernalization systems in pooids (Woods and
Amasino, 2015). Like wheat and barley, B. distachyon is a
long-day plant that exhibits an extensive natural varia-
tion of flowering behavior across accessionswith respect
to photoperiod and vernalization responses (Ream et al.,
2014; Tyler et al., 2016) and has a “memory” of winter
(Woods et al., 2014a). Additionally, B. distachyon con-
tains orthologs of all of the VRN genes discovered in
wheat and barley, and these genes also likely contribute
to natural variation in flowering responses among dif-
ferent accessions of B. distachyon (Higgins et al., 2010;
Woods et al., 2016, 2017; Bettgenhaeuser et al., 2017).
Genetic and physiological characterizations carried out
in different Pooideae species, including B. distachyon,
confirms the conservation of VRN1 and VRN3/FT as

promoters and VRN2 as a repressor of flowering (Lv
et al., 2014; Ream et al., 2014; Woods et al., 2016).
However, the cold- and VRN1-mediated repression of
VRN2 is restricted to core Pooideae, such as wheat and
barley, suggesting that the establishment of the VRN1-
VRN2 loop occurred late in the diversification of temper-
ate grasses (Woods et al., 2016). In contrast, the induction
of VRN1 by cold evolved early in the diversification of
Pooideae, and VRN1 is induced following cold exposure
even under noninductive conditions (McKeown et al.,
2016). Hence, whereas the memory of winter in Arabi-
dopsis is controlled by the stable repression of the floral
inhibitor FLC, this memory appears to rely, in large part at
least, on the stable activation of the floral promoter VRN1
in Pooideae (Woods et al., 2014a).

CONCLUDING REMARKS

The exploration of the vernalization systems in dif-
ferent plant groups reveals distinct pathways that share
a common principle: in vernalization-responsive species,
there is a block to flowering (a vernalization require-
ment), and cold provides competence to flower (over-
comes the block to flowering), whether it is via the
suppression of a floral repressor (e.g. Arabidopsis) or the
activation of a floral promoter (e.g. Pooideae). Moreover,
the induction of flowering typically requires additional
inductive signals. In most vernalization-requiring species,
the transition to floral development upon perception of
these signals may occur long after return to warmer
growth temperatures, revealing a memory of the past
winter. Other species, such as the Brassicaceae A. alpina,
exhibit a transient response to cold temperatures, and this
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absence of winter memory is key to its perennial growth
habit because only meristems that are mature at the start
of the cold exposure will undergo floral transition, while
the othermeristems remain vegetative tomaintain growth
from year to year. Evolution of unique vernalization sys-
tems is key to the establishment of a species life history
strategy. Further dissection of the vernalization pathways
throughout angiosperm lineages is likely to uncover new
mechanisms establishing the memory of winter (see
“Outstanding Questions”) and shed light on the role of
vernalization in the diversification of plant groups.
Received August 23, 2016; accepted September 21, 2016; published October 18,
2016.
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