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We describe a model of neutral DNA evolution that allows substi-
tution rates at a site to depend on the two flanking nucleotides
(“context”), the branch of the phylogenetic tree, and position
within the sequence and implement it by using a flexible and
computationally efficient Bayesian Markov chain Monte Carlo
approach. We then apply this approach to characterize phyloge-
netic variation in context-dependent substitution patterns in a
1.7-megabase genomic region in 19 mammalian species. In contrast
to other substitution types, CpG transition substitutions have
accumulated in a relatively clock-like fashion. More broadly, our
results support the notion that context-dependent DNA replication
errors, cytosine deamination, and biased gene conversion are
major sources of naturally occurring mutations whose relative
contributions have varied in mammalian evolution as a result of
changes in generation times, effective population sizes, and re-
combination rates.

D espite their fundamental role in evolution and genetic disease,
relatively little is known about the causes of naturally occurring
mutations in mammalian genomes. Even basic questions, such as
the relative proportions attributable to replication errors or to
chemical or radiation damage, remain unresolved. Neutrally evolv-
ing genomic DNA in principle provides a faithful record of the
mutations occurring within it, and through its analysis, an increas-
ingly complex picture of the characteristics of the mutation process
is emerging. Studies of pseudogenes have found that transition
substitutions occur at higher rates than transversions and that
substitutions from S (G or C) to W (A or T) nucleotides generally
occur at a higher rate than those from W to S (1, 2). The nucleotides
that flank a site have a large (=50-fold) effect on substitution rate
(3, 4); the most dramatic instance is CpG dinucleotide “hotspots”
(5), where the elevated rate reflects deamination of methyl cyto-
sine, but there are significant (and as yet not understood) effects of
other flanking nucleotides as well. Such “context effects” are also
detected in studies of single-nucleotide polymorphisms (6) and
disease-causing mutations (7).

With the availability of large genomic datasets, more subtle
trends are being uncovered. Comparison of human and mouse
genomic sequences have revealed that substitution rates vary by
position on a large scale (8). Recombination rate is correlated
both with overall substitution rate (9) and with the ratio of W—S§
to S—W rates (10), the latter correlation probably reflecting
biased gene conversion (11-13). There is an asymmetry in the
substitution process within transcribed regions, with higher rates
of purine than of pyrimidine transitions on the nontranscribed
strand (14); this is hypothesized to result from an asymmetry in
DNA polymerase errors that is uncovered by transcription-
coupled repair.

Analysis of evolutionarily diverse, multispecies datasets, such
as those being developed by the NISC Comparative Sequencing
Program (15), provides increasing opportunity to gain insight
into the biological factors that may underlie these observations
by studying how trends vary across organisms and sequences. For
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this purpose, it is useful to have models of neutral evolution that
incorporate as many of the above complexities as possible. In
addition to illuminating the mutation process, such models
should improve our ability to detect functional features in the
genome as nonneutrally evolving regions, and they should help
increase the effectiveness of standard sequence analysis meth-
ods, such as alignment and phylogenetic reconstruction. Inade-
quate models not only reduce analysis power but can also lead
to misleading conclusions (16-18).

Of the mutational complexities mentioned above, the most
difficult to accommodate mathematically is context dependence
of rates. Several recent studies have developed evolutionary
models allowing for context dependence but in an approximate
or partial fashion. These models include a Markov chain Monte
Carlo (MCMC) approach for estimating CpG effects in pairwise
alignment (19); an approximate likelihood method that requires
fixing the ancestral sequence to deduce CpG effects along a star
topology (20, 21); and two studies that assume approximate
models of neighbor dependence along a tree to estimate context-
dependent rates (ref. 22 and research.microsoft.com/research/
pubs/view.aspx?tr_id=687).

In this paper, we describe a rigorous evolutionary model
incorporating context effects that are allowed to depend on
sequence position and lineage. We implement the model by
means of a flexible and computationally efficient Bayesian
MCMC approach that permits large numbers of model param-
eters to be estimated simultaneously and reliably and apply it to
analyze variation in substitution trends across a 19-species
mammalian phylogeny in a 1.7-megabase (Mb) genomic region.
We find that, in contrast to other context-dependent rates, CpG
transition substitutions have accumulated in a relatively clock-
like fashion; our analysis also helps illuminate factors that may
underlie failure of the molecular clock for other substitution
types. We find variation in the ratios of W—S to S—W rates and
CpG transitions to total rate, which appears to reflect varying
generation times, effective population sizes, and recombination
rates during mammalian evolution. We also gain further insight
into the transcription-associated substitution asymmetry.

Methods

Evolutionary Model. We assume we are given an alignment of
several homologous sequences, together with sequence annota-
tions indicating the presence of biological features, and a rooted
evolutionary tree indicating the ancestral relationships among
the sequences. The alignment is taken to imply which positions
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are homologous in the different sequences. Bases present in
some sequences but not others at a given position reflect
insertion or deletion events (indels), which we assume have been
assigned (e.g., by parsimony) to particular locations on the tree.
Conditional on the alignment and the assigned indel locations,
we seek to model neutral sequence evolution (base substitutions
and the composition of inserted segments) along the tree,
allowing substitution rates to depend on the two flanking bases
and on position within the sequence and within the tree.
Evolution is assumed to occur independently along each tree
branch.

To simplify computation, each branch is partitioned into two
or more small discrete time units (such that the average substi-
tution rate per time unit is =0.005), and, at most, one substitu-
tion at each sequence site is permitted per time unit. We index

the tree positions that separate time units as¢ = 0, . .., m, with
0 being the root, m — k + 1,..., m being the k leaves
(corresponding to the observed sequences), and 1,...,m — k

being the internal positions. For each ¢, let b, be the branch on
which 7 lies and (if t # 0) B, the tree position that immediately
precedes t. We assume the indexing is such that g, < r.

For bases x # z, let Y(Wxy—z) = Kporhon(wxy—z) be the
probability that, in one time unit of branch b = b,, the base x
at position i and time [(3; mutates to z at time #, given
neighboring bases w andy at time B,. The index o = o; specifies
the “region type” in which i falls; n = m, specifies a grouping
of branches; and 7 = ,,,_.. specifies the “substitution type” of
the context-dependent substitution wxy—z. We allow two
region types (transcribed and untranscribed). In an initial
analysis (see Results and Discussion), we assume a single 7 that
includes all context-dependent substitutions and allow varia-
tion among lineages by means of different n values for each of
the major clades. In subsequent analyses, we assume a single
7 and allow variation among lineages by means of different
values for each set of similarly behaved context-dependent
substitutions. We scale Ay, such that its weighted average for
each choice of o, m, and 71is 1, i.e.,

D fughen(Wxy—2) >

WXV, Z Tixy—z =T

fwxy = 15

WXV, 2 Twxy—z =T

where f,,., is the trinucleotide frequency in observed sequences;
hence, the product of the scaling factor k.. and the number of
time units in branch b approximates the expected number of
substitutions of type 7 for each target base per applicable o site
along the branch. The probability of no substitution is
Pip(wxy—x) = 1 — 2.+, p(wxy—z). For o corresponding to
untranscribed regions, we assume that complementary events
have equal rates: Ag,(Wxy—z) = Agy(Yxw—z¢), where x¢ de-
notes the complement of x. For notational convenience, we let
Yin (Wwxy—z) = 1ift = 0 orif w, x,y, or z = ¢ (the gap character).

We model the distribution of bases x that are at the root or that
are newly inserted as an inhomogeneous second-order Markov
chain with transition parameters ,(x|[v, w), where v and w are the
bases that immediately precede x. The index p = p; permits
different categories of sequence composition. If x is not a root
or a newly inserted base or if v or w = ¢, we let m,(x|v, w) = 1.
Second-order Markov chains have been found to roughly ap-
proximate short-term dependencies in DNA sequences (23). In
our analyses, we allow four distinct p values that reflect whether
the sequence position i is transcribed and whether it is within an
annotated repeat. No symmetry conditions are imposed on the
7 values.

Let X;; € {A, C, G, T, N, ¢} denote the base or gap at the
ith site of the sequence at tree position¢for1 =i =nand 0 =
t = m, where n is the number of alignment columns. Because
indel locations are assumed known, the set of X, assigned as
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gaps is fixed. We let X;; = Nifandonlyifm —k + 1 =t =
m and the corresponding position in the observed sequence
has an unspecified base. Let Xj; denote the nearest neighbor-
ing base (ignoring gaps) to the left of X in X.,; we set X;, =
N if X}, is the first base in the sequence. Similarly, X;, ~ denotes
the next-nearest neighboring base to the left of X;;, and Xj, the
neighboring base to the right. We think of X as the “complete
data,” composed of the observed data D (corresponding to Xj,
with m — k + 1 =t = m) and the “missing data” M
(corresponding to X;; with 0 =t = m — k).

Under our model, the X;; form a unilateral Markov random
field (24), and we define the probability of X, conditional on the
parameter values and indel locations, as

p(D, M|0) = p(X]6)

Il
:':
s

Tp, XX, Xi )i (Xig, Xig, X;Z;, — X)),

1t=0

-~
Il

i

where 6 = {A, 7, k} consists of the substitution rate parameters
Agn, the root and inserted sequence distribution parameters ,,
and the branch-scaling parameters k... Note that for a given i
and ¢, at least one of the two factors is 1. In the special case in
which the sequences are ungapped, A is small, and A is
independent of time, sequence position, and neighboring bases,
this discrete-time model closely approximates the continuous-
time model of DNA sequence evolution described in ref. 25.

Bayesian MCMC. We adopt the Bayesian approach to statistical
inference (26) and estimate the posterior parameter distribu-
tion p(0|D) implied by the observed data D. A prior distribu-
tion p(60) represents any known information regarding the
parameters before D is observed; we use uninformative priors
that assign equal probability density to all combinations of
parameter values satisfying A, k, > 0, 2x Kporhon(Wxy—2z) <
1, and 2+ 7,(x|v, w) < 1. With increasing length of sequence
data, p(6|D) approaches a normal distribution centered on the
maximum likelihood estimate of the parameters, indepen-
dently of the prior (27).

A powerful approach to Bayesian analysis of missing data
problems is MCMC sampling from p(6, M|D), the joint distri-
bution of the parameters and of the missing data given the
observed data (28). A Markov chain with stationary distribution
p(6, M|D) is used to generate the sample (61D, M), (6,
M®), ..., (669, M6Y) where each (60, M®) is some realization
of 6 and M.

At each step of this chain, we update either a single parameter
0; or a single missing data component M; = {X;[t =0,...,m —
k}. Each 6; is updated according to the distribution p(6;|0_;, M,
D), where 6_; denotes all parameters other than 6;, and M; is
updated according to p(M;|0, M_;, D). (Details regarding the
updating procedure and other implementation issues are avail-
able as Supporting Text, which is published as supporting infor-
mation on the PNAS web site). Total run time for analysis of our
dataset, with 0.84 billion updates, was ~36 hours on a single
1.2-GHz IBM POWER4+ processor.

After a large number of updates, the sample of realizations is
effectively drawn from p(6, M|D). To reduce the storage require-
ments, we record the parameter values only for a set of evenly
spaced realizations of 0, i.e., 6%, 90, . 96X for some k. The
posterior distribution p(6|D) is then approximated by the sample
distribution of 6%, 929 . . 069 and the sample mean 6; =
%E‘}Zlei@k) is an estimate of 6;.

The difference between 6; and the true value 6; may be
decomposed as 6; — 6; = (6; — &) — (6 — 6;), where &; is the
(unknown) maximum-likelihood estimate. There should be no
strong dependency between the two terms, and so V(6; — 6;) ~
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o —human Homo sapiens
3 ,_EL =chimp Pan troglodytes
.—-‘_ ———gorilla Gorilla gorilla
b‘J ————-=-pgrangutan Pongo pygmaeus

— _4 —baboon Papio anubis

8 _I I_S_L_E— macaque Macaca mulatta
———uyvervet Cercopithecus aethiops

L__r_————-—-lemur Lemur catta

———=—mouse lemur Microcebus murinus

==mouse Mus musculus

rat Rattus norvegicus

rabbit Oryctolagus cuniculus

12 _= = —dog Canis familiaris
_13 { L — —cat Felis catus
15 ] e e—a horse Equus caballus
LM _==——— cow Bos taurus

T 7L ———pig Susscrofa
hedgehog Atelerix albiventris
- = — = — — — — — armadillo Dasypus novemcinctus

Fig. 1.
malian species analyzed. (Depicted branch lengths are arbitrary.) The branch
shading patterns indicate a partitioning of the tree into five clades plus a
group of three ancestral branches that was assumed in initial analyses of rate
variation across the tree (see Results and Discussion). For reference in later
figures, internal branches are labeled by number and external branches are
referred to by species name.

Phylogenetic relationships (following ref. 31) among the 19 mam-

V(6; — 6;) + V(; — 6;). We estimate V(6; — 6;) by using the initial
monotone sequence estimator (29) and V(#; — 6;) as the sample
variance %Ele(éi — 099)2 [because maximum likelihood esti-
mates and- posterior distributions both have variances approximated
by the inverse Fisher information (30)]. As the number of samples
s increases, the estimate of V(8 — ) is approximately constant,
whereas V(6; — 6;) decreases at the rate 1/s (29). For our analysis
runs below, the estimated V(éi — @i) is =~3% of the estimated
V(0; — 6;), suggesting that most of the variance in the estimates
arises from the finite amount of data rather than the MCMC
approach.

By asymptotic normality of 8; (27), 95% confidence inter-
vals for O; are approximated by 6; * 1.96VV(6; — 6;). Es-
timates of functions of the parameters, such as averages of
substitution rates over contexts, are derived as f(0) = % -1
f(699) with variance and confidence intervals estimated as
above. Reliability of the variance estimates and of the normality
assumptions was checked by simulation (see below).

The software used in this analysis is available from www.phrap.
org.

Dataset. We analyzed sequences of the greater cystic fibrosis
transmembrane conductance regulator region from 19 mammals
(Fig. 1), generated by the NISC Comparative Sequencing Pro-
gram (15) and aligned by using TBA (32). (The dataset is available
at www.nisc.nih.gov/data.) This region spans ~1.7 Mb and
includes nine genes. Sequence positions present in at least three
species, including representatives from at least two of four major
clades (primates, rodents + rabbit, carnivores + horse + artio-
dactyls + hedgehog, and armadillo), along with segments <10
bases present in only one or two species, were retained; all other
positions were excluded. We also removed positions falling in
low-complexity regions, CpG islands, or known exons for any
species, because the substitution process for such regions is not
being modeled here. About 13% of the sequence was not present
in enough species, and a further 5.5% was filtered out by content,
leaving 746 kb of transcribed and 543 kb of untranscribed
sequence in human and a total of 8.9 Mb of transcribed and 5.2
Mb of untranscribed sequence in all 19 mammals (see Supporting
Text for filtering methods and Table 2, which is published as
supporting information on the PNAS web site, for lengths of
sequence available in each species). Although some of this
sequence may be under selection, nonexonic selected regions
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Fig. 2.  Error distribution for 1,800 estimated substitution rates and branch
lengths for the analysis with 14 substitution types (see Results and Discussion).
The MCMC approach was used to estimate parameters from a simulated
dataset, and the normalized errors were computed by dividing the difference
between the estimate and the value used for the simulation by the estimated
standard deviation. The error distribution is approximately standard normal
(shown by curve), indicating that the MCMC approach is able to reliably
estimate values and confidence intervals for a large number of parameters.

appear to comprise a small percentage (<4%) of the mammalian
genome (8) and should have minimal impact on our analyses.

Sequencing errors and misalignments may obscure true sub-
stitution events or incorrectly suggest their occurrence. Repeat-
ing the analyses with poorly aligned sequences removed (as
described in Supporting Text) did not yield qualitatively different
results, although it did decrease the branch lengths between
distantly related species.

Our analysis approach requires that the tree location of indels
be held fixed. At any sequence position where a gap occurs in the
alignment, indels were mapped to the tree so as to minimize the
total number of events. When more than one such mapping was
possible, we chose the one that maximized the number of tree
positions assigned as gaps so as to minimize the subsequent
computational burden. This choice has the effect of placing
insertion events at the last common ancestor of all sequences in
which the base is present and of placing deletions immediately
after internal nodes.

Reliability of Estimates. Several features of our approach (the
complexity of the model, the use of a discrete-time approxima-
tion, and issues regarding MCMC convergence and applicability
of asymptotic theoretical results) make it important to assess the
reliability of our parameter estimates and inferred distributions.
We performed this assessment by analyzing simulated datasets
that matched the real data in the amount of sequence of each
type and history of insertions and deletions. Evolution of the
sequences was simulated using a continuous-time version of the
model described above, with parameter values that had previ-
ously been estimated from the real data for a particular analysis.
Our Bayesian MCMC approach was then used to reestimate
these parameters from the simulated dataset. For the simulation
analysis, the error of each parameter estimate is known: It is the
difference between the estimate and the value used for the
simulation. If our variance estimates and normality assumptions
are correct, then this error divided by its estimated standard
deviation should follow a standard normal distribution. The
agreement is excellent for the branch length and rate parameters
(Fig. 2), suggesting that (provided our evolutionary model is
correct) the parameter values and confidence intervals estimated
from the real data by means of Bayesian MCMC are reliable.
Variances of the root and inserted sequence distribution param-
eters tended to be underestimated; however, these were not
directly considered in subsequent analyses and did not appear to
affect the reliability of other estimates. Note that this simulation
does not evaluate issues such as uncertainty in indel placement
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and the validity of the model, e.g., the assumption that rates
depend only on the immediately flanking nucleotides and fea-
ture type.

Results and Discussion

Our evolutionary model allows the substitution rate at each site
to depend on the two flanking nucleotides (“context”), the
branch of the phylogenetic tree, and the type of biological
feature in which the site is located. Parameter estimates and
confidence intervals are obtained by Bayesian MCMC analysis,
and their reliability is checked by using simulations (see Meth-
ods). To reveal substitutional trends during mammalian evolu-
tion, we analyzed a dataset consisting of orthologous sequences
from 19 mammals for a 1.7-Mb genomic region that was filtered
to remove exons and other sequences likely to be nonneutrally
evolving.

Variation of Context Effects Across Lineages. In an initial MCMC
analysis, we explored the broad pattern of rate variation across
the mammalian tree by estimating separate context-dependent
rate matrices for transcribed and untranscribed regions for each
of five clades (primates, rodents + rabbit, carnivores + artio-
dactyls + horse, hedgehog, and armadillo) and for a sixth group
comprising three ancestral branches (Fig. 1), a total of 12
matrices. Each matrix has 192 parameters representing the rates
of context-dependent substitution events wxy—z, where w and y
are the 5’ and 3’ neighbors of x and z is the base to which x
mutates (our model assumes the event affects a single nucleotide
at a time, so that w and y are unchanged). In untranscribed
regions (but not transcribed regions, cf. ref. 14), we assume that
rates of complementary events are equal, so the number of
potentially distinct matrix parameters reduces to 96. Branch-
specific scaling factors (again estimated separately for tran-
scribed and untranscribed regions) allow variation by branch
within a clade by means of a multiplicative factor applied
simultaneously to all context-dependent rates.

Comparison of the context-dependent rates across clades (Fig.
3) indicates that they are broadly similar but have some intrigu-
ing systematic differences. The differences appear primarily to
be shifts of groups of rates of similar types parallel to the
diagonal in log-log scale, implying that, within each group, a
single multiplicative factor relates the (untransformed) rates in
one clade to those in the other. This pattern suggests that the set
of context-dependent substitutions wxy—z can be partitioned
into subsets, which we call “types,” such that rate variation across
the tree is largely captured by lineage-specific multiplicative
shifts in the baseline rate for each type. Each specific context
within a type modifies the baseline rate for that type in a manner
that is largely independent of lineage.

Consequently, we adopt a model in which a single matrix of
context-dependent rates applies to all tree branches but is
modified by scaling factors that are specific for each branch
and substitution type. To determine the optimal partitioning
into types for this purpose in an objective and statistically
rigorous manner, we carried out a weighted ANOVA, taking
advantage of the fact that we have reliable variance and
covariance estimates for the parameter estimates from the
MCMC analysis. A partitioning into 14 types turns out to
capture most of the variation across the phylogeny (Table 1).
One of these types (NCG—T in our notation) corresponds to
CpG—TpG substitutions, which are thought to arise primarily
from deamination of methylated C (5). The remaining types
apparently lack such simple mechanistic interpretations. We
attempt below to gain some insight into the factors causing
type rates to vary differentially across the mammalian tree.

This model has somewhat fewer parameters while allowing
additional branch-specific variation within clades, and it captures
the major variation of context effects across the tree in the
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CTT—C
+ TTY=C, GTT—C
+ TTR=C, STM—C, ATY=C
ATA—C, VTG—C
+ TTD—A, CTA—A, ATN—A
* TTC—A, CTB—A, GTN—A
+ TTH—G, GTC—G
TTG—G, MTN—G, GTD—G
+ ACA—T
+ BCH—T, ACY—T
+ NCG—T
NCN—A
TCH—G, CCY—G, GCW—G
+ TCG—G, CCR—G, ACN—G, GC5—G
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Fig. 3. Comparison of context-dependent substitution rates in untran-
scribed regions in the rodent + rabbit and carnivore + artiodactyl + horse
clades. Each point represents the rates in the two clades for a particular
substitution wxy—z. Rates were normalized such that within a clade the
average rate, weighted by the observed frequencies of the trinucleotides wxy,
is 1. Horizontal and vertical bars indicate 95% confidence intervals. The rates
are broadly consistent between the clades, but groups of rates are shifted
approximately parallel to the diagonal in log-log scale, suggesting that a
multiplicative factor relates the rates within each group across clades. (If y =
mx, thenlogy = log x + log m.) Similar trends were seen for other comparisons
(see Fig. 10, which is published as supporting information on the PNAS web
site). The color scheme reflects a grouping of substitutions into 14 types that
explain much of the difference among clades (see Table 1).

variation of branch-scaling factors. We obtained new parameter
estimates by a MCMC analysis using this model, with 14 scaling
factors per branch in untranscribed regions and with 28 scaling
factors in transcribed regions to allow rate differences between
each substitution type and its complement.

The estimated context-dependent substitution rates for un-
transcribed regions are shown in Fig. 4. The trends are similar to
those noted in previous studies of human pseudogenes (3, 4). In
particular, NTN—N substitution rates tend to increase with the
number of flanking purines, and NCG—N rates are increased
compared with NCH— N rates, for both NCG—R transversions
and NCG—T transitions.

The Molecular Clock Hypothesis for Different Substitution Types. The
molecular clock hypothesis (33), which states that substitutions
accumulate at a rate proportional to clock time in all lineages,
is known to fail for neutral nucleotide substitutions in mam-
mals (34), with some lineages (e.g., rodents) showing greatly
elevated rates relative to others. Because our substitution types
capture crossphylogeny variation in relative rates, we were
interested in the possibility that they might differ in the degree
to which they deviate from clock-like behavior. To investigate
this possibility, we computed for each substitution type the
variance of the set of normalized root-to-leaf distances (Fig.
5). By this criterion, the types fall roughly into three groups:
NCG—T has a very low variance of 0.032; other NCN—N
types have intermediate variances in the range 0.08—0.10; and
NTN—N types have high variances in the range 0.10-0.18. In
particular, NCG—T substitutions apparently occur at close to
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Table 1. The 14 substitution types that best explain rate
differences in untranscribed sequences across clades

Type Substitutions
1 CTT—C
2 TTY—=C, GTT—C
3 TTR—C, STM—C, ATY—C
4 ATA—C, VTG—C
5 TTD—A, CTA—A, ATN—A
6 TTC—A, CTB—A, GTN—A
7 TTH—G, GTC—G
8 TTG—G, MTN—G, GTD—G
9 ACA—T
10 BCH—T, ACY—T
11 NCG—T
12 NCN—A
13 TCH—G, CCY—G, GCW—G
14 TCG—G, CCR—G, ACN—G, GCS—G

Each substitution type consists of a set of context-dependent substitutions
(M=AorGR=AorGW=AorT;S=CorG Y=CorT;V=A,CorGH=
A CorT,D=A,G,orT;B=C,G,orT;andN = A, C, G, or T). For untranscribed
regions, each type is also assumed to include the complementary substitutions
to those listed, whereas for transcribed regions, the complementary substi-
tutions are considered a separate type (resulting in a total of 28 types in
transcribed regions). Although the overall division into substitution types has
strong statistical support, support for this particular partitioning over other
similar ones is relatively weak in some cases, so the assignment of particular
contexts to types may be somewhat arbitrary. See Supporting Text for analysis
method.

clock-like rates, whereas NTN—N rates are the least clock-
like. These trends are corroborated by examination of tree
shape (Fig. 6).

Suggested explanations for deviation from clock-like behavior
include the “generation time” hypothesis (34, 35), which pro-
poses that organisms with shorter generation times (more pre-
cisely, having a higher average number of germline cell divisions
per year) have higher substitution rates as a result of DNA
replication errors; and the “metabolic rate” hypothesis (36),
which proposes that organisms with higher weight-specific met-
abolic rates have higher mutation rates as a result of oxidative
damage. Because generation time and metabolic rate are both
correlated with body size, these hypotheses have been difficult to
distinguish (36, 37). For example, the lineages having the great-
est excess over the mean branch length in our data (Fig. 6) are

(11 ¢ L L R
* NTN=C NCN—T
#« NTN=G & NCN—A
* NTN—A  « NCN—G
gm
=
5
E + Ty -‘:“-x+-= - g
1 = | | | [* | o 3
a " & = AR
>~ =|* ZFE= 2% =S
Fuia T==xIL I3 = o ¥
= = -

TC TT CT CC TG TA CG CA GT GC AT AC GG GA AG AA
Flanking nuclectide context

Fig. 4. Context-dependent substitution rates for untranscribed regions.
Each point corresponds to the rate of a particular substitution wxy—z, with
the flanking context w-y indicated on the horizontal axis and x—z indicated by
color. Because the rates may vary across the tree, each rate shown is the
average across the entire tree, scaled such that the average of all rates
(weighted according to the frequency of each trinucleotide in all sequences)
is 1. Vertical bars indicate 95% confidence intervals.
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Fig.5. Deviation from clock-like behavior by substitution type. For each type
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leaf distances (normalized so that the mean distance is 1 in each case). Vertical
bars indicate 95% confidence intervals.

rodent, rabbit, and hedgehog, which have both relatively short
generation times and relatively high metabolic rates.

Oxidative damage, however, is predicted to mainly induce
mutations of G or C to A or T (38). Our results indicate that the
most pronounced phylogenetic variation instead involves T—N
substitutions. Thus, varying rates of oxidative damage do not
appear to be a major direct cause of mammalian nuclear
substitution rate variation [they may be more relevant for
mitochondrial rates (38)]. On the other hand, armadillo and
horse, which have among the lowest metabolic rates of these
mammals (39, 40) but relatively short generation times, have the
shortest branch lengths for all substitution types (Fig. 6), which
suggests that metabolic rate may influence mutation rate by
mechanisms other than oxidation. One possible mechanism,
proposed in ref. 36, is error-prone repair of oxidatively damaged
DNA, which involves “replication error” in a more general sense
(not associated with cell division). This suggestion has the
appealing feature of allowing variation in substitution rates to be
attributed to a single mechanism, DNA replication. Further
support for the influence of replication errors on mutation rate
comes from the fact that males, which have more germline cell
divisions than females, also have higher mutation rates (41).

Our finding that NCG—T substitutions are relatively clock-
like presumably reflects the fact that most NCG—T mutations
arise from hydrolytic deamination of methylated C (5), which
should be relatively unaffected by DNA replication (note inci-
dentally that this chemical reaction does not involve oxidative
damage). Conversely, the fact that NTN—N types show the
greatest variation suggests that most of these mutations may be
DNA replication-associated. Because other NCN—N substitu-
tions show intermediate variation, they likely include both a
replication-dependent component and a more clock-like com-
ponent, the latter perhaps being deamination of (unmethylated)
cytosine (42). Of course, it is likely that there is some variation
in the accuracy and efficiency of replication and repair machin-
ery in these organisms as well (e.g., see refs. 43 and 44), which
may play a contributing role.

Given the relatively clock-like behavior of NCG—T rates, we
expect the branch-specific ratio of NCG—T rate to overall
substitution rate (plotted in Fig. 74) to correlate with those
factors (generation time or metabolic rate) that are responsible
for overall rate variation relative to clock time across the tree.
Note that there is a 2-fold variation in this ratio, from ~30 in
great apes to <15 in hedgehog. In general, the correlation
appears stronger with generation time than metabolic rate;
branches in Fig. 74 that correspond to extant species with shorter
generation times tend to have lower ratios. The ratios also
generally are lower in ancestral branches than descendant
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of the indicated types per pertinent site. Branch-length values with 95%
confidence intervals for each substitution type and for all types combined are
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(indicated by the vertical line) is the same for all trees. See Fig. 1 for species
labels.

branches: seven of the 17 ancestral branches have significantly
(P < 0.05) lower ratios than their descendants, whereas only one
has significantly higher ratio (Fig. 27, which is published as
supporting information on the PNAS web site). This finding
suggests generation times have tended to lengthen in several
lineages, which is consistent with paleontological evidence in-
dicating a trend of increasing body size (Cope’s rule) in many
mammalian lineages (45, 46).

The trend of increasing NCG—T/overall rate also provides
an alternative interpretation for observations in ref. 21. Arndt
et al. (21) conjecture, based on analyzing the rates of NCG—T
substitutions relative to other substitutions in human repeats,
that the NCG—T rate has been increasing since the time of the
mammalian radiation. We suggest instead that the NCG—T
rate has remained relatively constant, whereas the rate of
other, replication-dependent errors has decreased during pri-
mate evolution because of increasing generation times.
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S Versus W Substitution Bias. Bias in the relative rates of W—S and
S—W neutral substitutions is thought to be a major driver of
genome G + C content (47). Most eukaryotes have A + T rich
genomes, suggesting that there is a phylogenetically widespread
mutational pressure favoring S—W over W—S mutations. How-
ever, a strong circumstantial case has recently emerged (10-13)
that biased gene conversion, a tendency to repair W:S mis-
matches to C:G rather than T:A in DNA heteroduplexes formed
during recombination, acts as a significant counterbalancing
force that mitigates or reverses this mutational pressure by
increasing the frequency of W—S and decreasing the frequency
of S—W substitutions. The magnitude of the biased gene
conversion effect is predicted to be positively correlated with
conversion rate, effective population size, and the strength of the
repair asymmetry (48).

Examination of the W—S/S—W ratio by tree branch (Fig.
7B) reveals significant variation across the mammalian phy-
logeny. Assuming that this pattern reflects variation in the
effects of biased gene conversion and that the basic charac-
teristics of the recombination process have remained relatively
constant, we expect that higher values of W—S/S—W should
reflect higher effective population sizes (N.) and/or recom-
bination rates along certain branches, with N, likely dominat-
ing the trends because it is thought to vary over a greater range
than recombination rate among most mammals (an order of
magnitude or more versus a factor of two or three). In general,
N, does appear to explain much of the variation. For example,
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cated by number as in Table 1), we computed the fractional difference
between its rate and that of its complement in transcribed regions. Rates were
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tree. Vertical bars indicate 95% confidence intervals.

the rodent + rabbit clade has relatively high W—S/S—W
ratios compared with most other mammals, presumably re-
flecting their large N, [the average crossover rate in rodents is
only about half that in humans (49)]. Chimp has a significantly
higher ratio than human, consistent with its apparently larger
N¢ (50). Some of the variability in ratios may reflect recom-
bination rate differences, however; for example, the higher
ratio for rat relative to mouse, which has also been observed
on a genome-wide scale (51), is consistent with rat’s somewhat
higher recombination rate [for the rat and mouse chromo-
somes containing the cystic fibrosis transmembrane conduc-
tance regulator region, the crossover rates are 0.55 centimor-
gans per Mb and 0.45 centimorgans per Mb, respectively (49)].
The exceptionally high ratio for dog may arise from the fact
that dog tends to have shorter chromosomes and therefore
likely has a higher average recombination rate per megabase
(10) than other mammals (the cystic fibrosis transmembrane
conductance regulator region is on the 163-Mb chromosome 7
in human and the 72-Mb chromosome 14 in dog).

It is interesting to note that, just as Fig. 74 appears to provide
a window into variation of generation times across the mamma-
lian phylogeny, Fig. 7B may provide a window into variation of
effective population sizes and recombination rates.

Transcription-Associated Substitutional Asymmetry. We have previ-
ously found (14) that there is an asymmetry in substitution rates
in transcribed regions, with pyrimidine transitions (T—C and
C—T) occurring at higher rates on the transcribed strand than
purine transitions (note that in ref. 14, substitutions were read on
the coding, or nontranscribed, strand). We confirm that pattern
here (Fig. 8) and find that the degree of asymmetry varies by
neighboring context, with the ATA—C,VTG—C substitution
type having the strongest asymmetry. In addition, we find
significant asymmetry for four of the seven transversion substi-
tution types.

The degree of transcriptional asymmetry for each context is
correlated with the substitution rate in untranscribed regions for
NTN—N substitutions, whereas no strong correlation is clear for
NCN—N substitutions (Fig. 9). Moreover in general, there
appears to be little or no transcriptional asymmetry for the
contexts having the lowest substitution rates within each type.
These observations suggest that each NTN—N type has a
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baseline rate of substitutions that occur via a symmetric process,
and that contexts within a type act to increase the rate over the
baseline via a mechanism that is subject to the asymmetry. Under
the model proposed in ref. 14, the underlying asymmetry is at the
level of replication errors made by DNA polymerase, namely a
greater frequency of misinserted purines than of misinserted
pyrimidines. The fact that the correlation we see is strongest for
NTN—N substitutions is then consistent with the suggestion
above that those substitutions have the highest proportion of
replication-dependent errors.

Summary. Bayesian MCMC offers a powerful and flexible ap-
proach to the elucidation of molecular evolution trends and
should allow increasingly complex models of the mutation and
substitution process to be investigated. We have used it here to
characterize mammalian variation in context-dependent substi-
tution patterns in a 1.7-Mb genomic region. Our results appear
to support the hypotheses that context-dependent DNA repli-
cation errors, cytosine deamination, and biased gene conversion
are the major sources of naturally occurring point mutations and
that the relative contributions of these have varied in mammalian
evolution as a result of varying generation times, effective
population sizes, and recombination rates. In particular, CpG
transitions have accumulated in a relatively clock-like fashion, in
comparison with other context-dependent substitution types.
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