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Land-change science has emerged as a foundational element of
global environment change and sustainability science. It seeks to
understand the human and environment dynamics that give rise to
changed land uses and covers, not only in terms of their type and
magnitude but their location as well. This focus requires the
integration of social, natural, and geographical information sci-
ences. Each of these broad research communities has developed
different ways to enter the land-change problem, each with
different means of treating the locational specificity of the critical
variables, such as linking the land manager to the parcel being
managed. The resulting integration encounters various data, meth-
odological, and analytical problems, especially those concerning
aggregation and inference, land-use pixel links, data and measure-
ment, and remote sensing analysis. Here, these integration prob-
lems, which hinder comprehensive understanding and theory de-
velopment, are addressed. Their recognition and resolution are
required for the sustained development of land-change science.

C
ontemporary concern with climate change, global en-
vironmental change, and sustainability has rejuvenated
research addressing the human impress on and inter-
actions with the terrestrial surface of the Earth.

Changes in land systems hold major consequences for climate
change (1, 2), biotic diversity and ecosystem services (3, 4), land
degradation (5), and the vulnerability of coupled human–
environment systems (6–8). Understanding the dynamics of
these changes requires attention to land cover (biophysical
conditions) and land use (human uses) as a coupled human–
environment system (9–12). The diverse community of research-
ers engaged in these efforts has spawned a de facto ‘‘land change
science’’ (LCS), identified elsewhere as integrated LCS (13, 14).

Consistent with the first phase of global environmental change
studies and their related international programs, LCS has sought
to improve understanding of land-use and land-cover patterns
and dynamics affecting the structure and function of the Earth
system.‡‡ It undertakes research at various spatiotemporal scales
of analysis to (i) document and monitor land-cover changes, (ii)
explain the coupled human-environment system dynamics that
generate these changes, and (iii) use this understanding to
improve spatially explicit, land-change models that are compat-
ible with Earth system models (12–21). The last two research
objectives require integrative approaches linking natural and
human subsystems. Such integration is necessary because it is the
interactions between the human and natural subsystems that
produce land-use and -cover change. Integration in LCS increas-
ingly involves multidisciplinary teams with members from di-
verse disciplines of the natural, social, and spatial sciences. A
series of methodological problems is encountered in mixing and
merging analytical traditions from each core research tradition.

These problems are enlarged by the locational variations in the
consequences of interactions between human and natural sub-
systems, heightening the need for spatially explicit analysis and
employment of geographic information science (GISc) (22). This
science integrates data, methods, practices, perspectives, and
theories that are linked through their common emphasis on
geographic location, and addresses a set of fundamental spatial

issues, including those of accuracy and uncertainty, space–time
scales, and links across people, place, and environment (23) that
are made more complex in LCS by its practice.

Challenges for LCS
LCS has been hampered by a range of data, methodological, and
analytical difficulties emerging from the complexity of integrat-
ing diverse phenomena, space–time patterns, and social-
biophysical processes, and the different disciplinary means of
addressing them (24–27). These difficulties are amplified by the
need to address not only why and how land-use and -cover
changes, but where and when it changes. Location and time
specificity generates special problems for land-change analysis,
especially that involving dynamic human aspects of land use
examined at the microscale (i.e., individual, household, commu-
nity, catena, patch, parcel, or pixel). A particular land parcel, for
example, may change ownership or tenure, be borrowed or
rented by distant households, have multiple users adhering to
different rules of use, or come under the jurisdiction of multiple
and changing ordinances, zoning regulations, and institutions.
Such dynamics affect the principal explanatory constructs used
by social scientists to address resource uses and land change: (i)
the behavior�decision making of the change agent and (ii) the
institutional and societal structures delimiting the agent’s
choices.

An array of land uses exists worldwide under highly diverse
social and biophysical conditions. The variations and fluidity in
tenure and resource institutions noted above are matched by
those in land-use systems and economy. Land may be put to any
number of production strategies (e.g., cultivation, agroforestry,
pastoral), including recreational and preservation�conservation
uses. The same land unit may serve multiple strategies simulta-
neously or intraannually. The nature of change trajectories of
land parcels may encourage subsequent uses and restrict others.
In addition, the spatial adjacencies of land uses may further
mediate decision making on the use of nearby parcels. The
behavior of land managers and the social structures affecting
them are, in turn, related to the degree to which the production�
use is geared for direct consumption (subsistence) or commerce
(market). In many parts of the world, households (as land
managers) are engaged simultaneously in subsistence and mar-
ket cultivation. Different parcels, of course, have different
biophysical qualities that affect decisions about their use, and
households or other decision-makers may have control over
multiple, spatially disconnected parcels. Feedback mechanisms
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with space–time lags further confound relationships and their
interpretation.

These many dimensions of land use and land systems amplify
a series of data, methodological, and analytical problems con-
fronting the search for comprehensive understanding of land
change.§§ Some of these issues have been addressed within the
various disciplines that contribute to LCS, but there has been
relatively little attention to problems that emerge as these
disciplines work collaboratively on an integrated LCS. Here, we
identify those problems that arise from interdisciplinary work
and are especially acute for the social science–GISc intersection
of the three axes of LCS in which research is focused largely on
in-depth case studies at the individual-to-community scale (mi-
crolevel). These problems include aggregation and inference
problems, land-use pixel links, data and measurement, and
remote sensing analysis. They are fundamental problems for
linking people, place, and environment. Established solutions
exist for some problems; others require major advances. It is the
integrative demands of working across the social, natural, and
spatial sciences that exacerbates these problems and confounds
their solutions.

Finally, the focus here is on integration problems emerging in
phase one LCS research devoted to understanding the constel-
lation of factors that drive land-use and land-cover change, and
not those inherent in the emerging phase two engaging decision
making and application directly. Nevertheless, phase one re-
search has included various modeling activities, including cellu-
lar automata, agent-based models, and neural network-based
models that lay the groundwork for the decision-making interests
of sustainability science (20, 21). An important next step in the
development of such models is empirically grounded rules about
relationships among social and biophysical variables. Confront-
ing and solving the issues raised in this paper helps these
modeling activities, especially those involving integrated projec-
tion models.

Aggregation and Inference
LCS runs the risk of committing an error that was common in
social–demographic analysis more than half a century ago, and
the underlying reason is similar: the level of aggregation by which
data are delivered to researchers. In the first half of the 20th
century, to protect the confidentiality of individuals and house-
holds, census data were aggregated to moderately large geo-
graphic units (i.e., counties or districts), and only then released
to researchers. Analysts would frequently look for patterns of
association among theoretically interesting variables and, in
some cases, make inferences about individual or household-level
behavior. In a now classic article, Robinson (28) demonstrated
that there is no necessary reason why relationships that exist at
an aggregated level (e.g., county or district) also exist at a
disaggregated level (e.g., household or individual). Demonstra-
tion of relationships at the household level requires household-
level data.

Today, to protect citizen’s confidentiality, almost all census
bureaus around the world only release spatially explicit data that
are aggregated to some level above the household. Because
high-quality, aggregated, spatially explicit census data are avail-
able for many parts of the globe, the temptation is strong to link
them to remotely sensed land-cover data. Such linkage and
analysis is fine so long as the variables of interest are appropri-
ately measured at this level of analysis. A Gini coefficient of
income distribution for the county or district would be an
example, as would be the net migration gain in the previous

decade. However, if the aggregate-level variable is meant to
proxy for an individual- or household-level variable, then there
is no necessary reason why the aggregate-level relationship
would hold at the individual or household level (28–30). The
problem can also exist in the other direction. Some studies use
household-level variables to explain the village- or regional-level
land cover, falling prey to imputing causes found at lower levels
(of scale or aggregation) to be the same as those operating at
higher levels (30).

From an abstract perspective, the solution to the aggregation
problem is disarmingly simple: the level of aggregation in
measurement needs to match the level of aggregation in the
theory or hypothesis being examined. Doing so successfully
requires methods that have been developed within the various
disciplines contributing to LCS. Unfortunately, doing so at the
individual or household level can involve expensive and chal-
lenging fieldwork, precisely that which some major funding
agencies supporting LCS view as beyond their research mission.

Issues of Linking Land Use to Pixels
An important component of LCS undertaken at the microlevel
is the one-to-one linkage of people to parcels; that is, linking the
land managers or decision makers to the land units they control
or affect. This linkage can be difficult for reasons summarized
elsewhere (31), many of which involve fundamental differences
between ways in which data on people and parcels are generated,
the spatiotemporal implications of the collection process, and
analytical problems inherent in combining them. Remote sens-
ing resolutions are involved in the process of defining landscape
attributes for parcels that are linked to households or other
decision-making units. Spatial resolution affects the size of the
land parcel that may be distinguished; temporal resolution (and
the depth of the archived image set) determines the dynamism
that can be observed; spectral resolution affects the discrimina-
tion of landscape states and conditions; and radiometric reso-
lution controls how precisely land-use and land-cover types can
be separated. A land parcel is stationary. Although the bound-
aries of the parcel may change, they rarely exceed the range or
extent of the remotely sensed image used to observe the land
cover in question. Land managers, be they individuals, house-
holds, or villages, can and do move, change in kind, and combine
in complex decision-making arrangements that affect land use.
Land parcels can be observed and monitored remotely without
permission of the land managers and tracked over time by their
geographical coordinates. With few exceptions, data-generating
observation of individuals, households, corporate units, and
villages requires permission and cooperation of the unit being
observed, and tracking the units longitudinally may require
complex identification strategies that account not only for their
movements but also for their reorganization.

Different research communities begin the linkage by focusing
on people or parcels. Either starting point poses problems when
used in integrated analysis. Beginning with a roster of village
members or households, the associated lands used or owned can
be identified and spatially referenced through a variety of
approaches (32). With few exceptions, starting with land man-
agers generates a patchwork distribution of discrete parcels on
the landscape, each linked to one or more land managers. The
land units within the area not controlled by people on the roster
of village members are not part of the sample, creating a
selection problem concerning the omitted land units (the same
applies whether the land managers on the initial roster are
individuals, households, villages, or various types of organiza-
tional entities). Longstanding research demonstrates that such
selectivities may lead to biased results (33). For example, the
village roster in question would likely not capture those parcels
controlled by absentee owners, corporate agents, nongovern-
mental organizations, or the state. Omitting the behavior and

§§Throughout, data problems refer to the attributes of the data relative to the theory,
model, or problem to which the data are employed, such as scalar mismatches, not the
issues of generating, archiving, and distributing data.
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decision-making of these managing or controlling agents pro-
vides incomplete understanding of the dynamics of the land
system and may lead to erroneous projections of land change. In
addition, the patchwork pattern of parcels generated in this
approach poses challenges for spatial analysis (see below).

Alternatively, beginning with a bounded geographic area, land
managers can be identified that have decision-making authority
over the units within it, providing a spatially continuous distri-
bution of parcels. Linking the complete (or near complete) array
of parcels to the managing or controlling agents would appear to
resolve the selectivity problem, but this is not necessarily the
case. For example, this linkage typically includes the agent that
retains control of the parcel institutionally (e.g., ownership and
usufruct) in an agricultural system, but may miss the actual land
user who rents or borrows the parcel. In addition, it may be
difficult to identify, locate, and interview all distant land man-
agers. Continuous parcel distributions do permit assessment of
neighborhood effects (in this case, the impact on a parcel or pixel
given the character of surrounding parcels or pixels), facilitate
the identification of cross parcel consequences (e.g., upstream
land-use decisions on downstream land cover), and enhance
computing spatial trends and variations in land change.

These and related problems have been treated in different
ways for specific studies of settled (i.e., permanent or near-
permanent) systems of land use. Successional (e.g., shifting)
cultivation, commons, and pastoral nomadic livestock systems in
which parcels may be difficult to identify or multiple users
partake of the same parcel at different times can be even more
problematic to study. The potential error produced by data
biases in comparative case-study analyses is not yet well under-
stood, an important vulnerability given that the LCS community
has begun to explore metaanalysis (comparison of disparate case
studies) as one means of providing insights about land-change
dynamics at the meso- and macroscales.

Given this vulnerability, several steps are possible. The re-
search community needs to clearly state in publications whether
linking procedures started with land or people samples. Among
the solutions to linking problems are the use of database
procedures that, for example, link parent–child relationships for
tracking land subdivisions over time, use land unit centroids in
place of polygons to reduce the complexity of handling land
parcels, and employ data aggregation techniques that associate
dynamic land units to static reporting units, such as county
boundaries or drainage basins. For existing data sets, the selec-
tivities generated by starting with people or land need to be
examined and statistically controlled if necessary (e.g., ref. 33).
Also, comparable analyses of data sets that start with people and
those that start with land should be conducted to determine
whether they reach similar or dissimilar conclusions.

Data Quality and Measurement Issues
Data Quality and Validation. The integration of GISc and social
sciences raises two sets of interrelated data issues: the validity
and accuracy of the link among the social science measures, land
units, and pixels in remotely sensed imagery; and the assemblage
of appropriate remote sensing, natural science, and social sci-
ence skills to address data quality and validation. To simplify,
consider the link between agricultural households and the land
they own�use. This link can be made in various ways (noted
above) by using administrative records, key informants, and
interviews with the households themselves, each with its asso-
ciated error structure. Administrative records may miss illegal
land users; surveys may miss households that rent or borrow
land; and treks to distant fields may miss smaller plots or parcels
under different successional vegetation. Parcels may also be
‘‘claimed’’ by multiple households when a one-parcel-to-many-
households link exists through kinship ties and informal land
tenure. Of course, various procedures can be used to rectify such

problems. Households can be asked who uses or controls the
parcels adjacent to theirs. Key informants can mark on maps
those areas where people in the village farm and who farms
which parcels, and such information can be linked. These
procedures, however, carry their own problems: confusion can
occur between formal names and nicknames provided by infor-
mants, and distant lands used by the households in question may
be missed.

The LCS community has yet to develop the error structure
associated with the various linking methods used. Perhaps even
more troubling, it has not yet worked out methods to check the
quality of various types of people-to-parcel linking methodolo-
gies. Rather, LCS relies on the expertise of diverse disciplines,
each of which has its own methods of quality control and data
verification [e.g., standards for surveys and estimating biases in
the social sciences (34–40) and accuracy assessment in GISc
(41–46)].

In short, much research undertaken within the umbrella of
LCS fails to report on various quality control and validation steps
that represent standard practice in the constituent sciences.
There are several reasons why this lacuna occurs, including the
expense of undertaking equally all parts of an LCS study.
Emphasis is often placed on one or two components of the study
(e.g., remote sensing and demography), rendering less attention
to the remaining components (e.g., ecology and spatial science).
The composition of science teams and the disciplines they
represent also influence practices and protocols followed.

Two steps need to be taken with respect to these issues. First,
data quality assessment and reporting standards established
within the various disciplines contributing to LCS need to be
used by interdisciplinary projects. For example, standard pro-
tocols have been established by the remote sensing community
to assess the accuracy of land-use and -cover classifications, but
not all LCS teams have sufficient expertise and�or resources to
employ these practices fully. As image change detections are
increasingly used to characterize land-use and -cover patterns
across time, validating historical data through a set of best
practices also is needed. Second, standards need to be developed
for reporting errors that arise from the integrative nature of
LCS: for example, those errors that arise from linking a house-
hold to its land parcel and then to a set of pixels in a remotely
sensed image.

Spatial–Temporal Mismatch. The spatial–temporal mismatch of the
various data sources poses yet further complications. The spa-
tial–temporal resolution of remote sensing data are set by sensor
specifications, as well as launch and orbital parameters, affecting
the ability of sensors to map land change. If the spatial and�or
temporal resolutions of sensor systems do not match the reso-
lutions of the social or biophysical data, the mismatch can result
in spatial or temporal ambiguity (47), creating fundamental
problems for their integration.

Various methods have been used to resolve this problem (e.g.,
refs. 48–51). One method is to tie cadastral information to a
longitudinal social survey by linking households organized in
nuclear settlements to their specific land parcels (31), even in
cases where parcels are relatively small in size and irregular
in shape. Remote sensing systems characterize land-cover pat-
terns within the land parcels; however, the grain size of the
sensor system is sometimes coarser than the size of the land
parcel. A one-to-one spatial correspondence, in such cases,
requires parcel aggregation, diminishing the household (survey)
to pixel link. A similar problem can follow in pastoral systems in
which herds move across the landscape. The need for a high
temporal periodicity to coincide with the temporal dynamics of
herding patterns could suggest the use of remote sensing systems
with high temporal but low spatial resolution (52). In such cases,
spatial mismatches may be readily apparent because the herding
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routes may be areally restricted, occupying only portions of
pixels. Conversely, remote sensing data that provide a finer
spatial resolution than the land parcel tend to encourage analysis
that decomposes the land parcel into arbitrary subunits that may
have little relevance to the decision-making unit (53).

The temporal depth of remote sensing imagery is also affected
by the quality of the image archive, reductions of landscape views
because of persistent cloud patterns, and changes in remote
sensing systems. The discrete and ‘‘patchy’’ nature of a remotely
sensed time series might not align well with a more continuous
time series from survey or administrative data. When a suitable
image time series is developed, images can be examined in a
pairwise fashion to denote change for specified ‘‘slices’’ of time,
‘‘from–to’’ changes of selected land cover types, and a panel or
trajectory of change that tracks ‘‘pixel histories’’ across the time
series.

Land change also addresses temporal processes, which create
data mismatches that can make seamless integration difficult,
even if the issue is limited to the last 25 years, when satellite
imagery has become abundant. The principal mechanism for
providing temporal depth in remotely sensed data is the ability
to access archived data, permitting, in principle, the assemblage
of a temporal panel that, more often than not, proves to be costly
and time-consuming, and at times impossible.¶¶

Time depth in the social sciences is typically provided by repeated
cross-sectional data collection or by panel studies. Panel studies are
preferred for LCS because the behavior of some land managers can
be observed over time. Unfortunately, for the large majority of
land-change issues, longitudinal data do not exist and must be
created. Although some behaviors can be straightforwardly recalled
(e.g., migration, child bearing, marriage, and marital dissolution),
many cannot, as is the case of the motivations for land-use decisions.
People tend not to remember accurately their prior motivations and
rarely maintain archival information from which they might be
deduced. Furthermore, if respondents used various land parcels,
and this set changes over time, there is no evidence that they can
accurately recall when they used�owned the various parcels beyond
the last few years or perhaps a decade in systems involving forest
fallow in which successional growth marks parcels. Some evidence,
however, suggests that showing respondents satellite images im-
proves the quality of information recalled (54). Imagery assessment
as well as other archival data can also be used to validate some
aspects of the information provided (55). Alternatively, a prospec-
tive data set explicitly tailored for land-change questions may be
developed. In other cases, it is possible to retrofit a longitudinal data
set that was started for other purposes (31, 51). In both of these
instances, the periodicity of the waves of panel data collection is
coarser than the periodicity of available remotely sensed data.

Even if the social data exist in a cross-sectional survey, a deep
image time series can be useful to characterize the environment
before, during, and after the survey. For instance, knowing that
a social survey was conducted the year after a flood or persistent
drought, at the beginning or end of a deforestation period, or
during a time of agricultural extensification in a frontier envi-
ronment would help understand the motivation and behavior of
respondents. These are other spatial–temporal matching issues
that are being addressed in various ways (31, 51, 56–59).

Remote Sensing Analysis Issues
Classification and Use of Ancillary Data. Remote sensing classifica-
tion is the process of identifying spectral similarities and differ-
ences in multidimensional spectral space, and then linking them
to land-cover categories. A large body of literature details
advances and issues in remote sensing techniques relevant to
land classification that are not covered in this paper. Rather, one
fundamental issue that follows from and affects the integration
of social, natural, and spatial sciences is addressed: the potential
bias that can arise when ancillary data used to improve a spectral
classification are also used to explain land class variability. The
usual goal of a classification exercise is to produce the best
possible categorization of land cover, typically used for some
descriptive purpose, such as defining changes in the percent in
some land-cover type or spatial patterns of that type. To achieve
this product, ancillary information is typically used in conjunc-
tion with raw satellite data to reduce spectral confusion across
cover types. Knowledge of habitats, environmental conditions,
topography, and site conditions that influence land uses or land
cover are frequently combined into the classification process as
additional inputs or used in a postclassification exercise where
landscapes are stratified according to ancillary data layers
(60–62).

The need for ancillary data is related to the information
demands of the classification scheme (i.e., level of detail), the
size of the pixel, and the spectral sensitivity of the sensor system.
Pixel values are an integrated response from all of the cover types
contained within a pixel’s area. As the size of the pixel increases,
the possibility for ground cover variation within the pixel in-
creases. Fine-grained data are less demanding in terms of
ancillary information, but they often have weak temporal reso-
lution, hindering assessment of environments with strong sea-
sonal variation.

Use of ancillary information is appropriate for the descriptive
purpose of classification. LCS agendas, however, call for assess-
ments of the causes and consequences of land change. In such
assessments, land-cover classifications become a critical compo-
nent of the explanatory and modeling exercises in which the
classification may serve as a dependent or independent variable.
Either way, if variables in the model were used as ancillary data
in the classifications, then the assumption of independence
behind standard statistical methods is violated.

Researchers need to consider the tradeoff between maintain-
ing the independence of variables and producing the best
possible land-cover classifications. This issue may be exacerbated
when the lineage and metadata for processed imagery previously
classified by team members or third parties is not thoroughly
documented. Its resolution among the LCS community resides
first in the explicit recognition of the independence of variables
and accounting for them in the research design. Second, meta-
data reporting protocols must be generated for each image and
image-based derivative that specifies the inherent and opera-
tional lineage followed in the production of a land classification.

Spatial Autocorrelation. Spatial autocorrelation is concerned with
the similarity in the location of spatial objects and their at-
tributes, and can be defined as the ordering of values as a
consequence of location. If spatial objects are similar in their
location and attributes, positive spatial autocorrelation exits.
Conversely, negative spatial autocorrelation occurs when nearby
spatial objects are more dissimilar in their attributes than objects
further apart. Spatial autocorrelation has long been a concern in
the statistical and geographic literatures. It has not yet been
routinely addressed as part of best practices in LCS (see ref. 27),
however, and clustered social or ecological surveys may contain
explicit biases as a result.

Survey designs can be adjusted to minimize the effects of

¶¶The ability to assemble temporal depth rests on the quality and coverage of the images
archived along with the maintenance of that archive. Unfortunately, aerial photos tend
not to be archived internationally, or even nationally, except for some countrywide
federal programs (e.g., the U.S. National High Altitude Program). In contrast, many
satellite systems have associated archives that can be searched for suitable images to
purchase. Problems exist, however, with retrieval equipment and archival maintenance,
the loss of ephemeris data and associated header files vital for image corrections by
international receiving stations, and omissions apparently abundant during the privat-
ization experiment of Landsat products.
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spatial autocorrelation by increasing the distance between re-
spondents or data collection points. For instance, using the
semivariogram to visualize the structure of spatial autocorrela-
tion (61, 63) and an a priori understanding of the spatial
autocorrelation structure among key variables in the study area
(from knowledge of the study area, from a previous study, or
from some other independent data source), a sampling scheme
can be designed that minimizes spatial autocorrelation between
the location of biophysical field samples and the position of social
survey respondents. By using Moran’s index of spatial autocor-
relation, it is possible to define the spatial lag distance between
sample units and the corresponding degree of spatial autocor-
relation. Alternatively, including autoregressive terms in the
model is another way of addressing spatial autocorrelation,
especially in random or clustered designs (64).

Accuracy Assessment of Land-Change Models. A major thrust of
most household–pixel linkages is to generate data that inform
and improve models of land change, which range from explan-
atory to integrated assessment models (20, 21, 65–67). Such
efforts confront the problem that the pixel of satellite imagery
is neither a landscape nor a social unit. It is convenient, however,
to treat the pixel as a unit of observation because data are often
organized around it and software packages are designed to
perform pixel analyses relatively easily. These image processing
packages tend to employ statistical methods that (i) treat each
observational unit as something meaningful to the phenomenon,
(ii) assume each pixel is independent of other units in the image,
and (iii) assume the contents of each pixel are largely indepen-
dent across space and time; put differently, the stationary or
Markovian assumption is often used.

These qualities create several problems when using house-
hold–pixel information to inform models of land change with the
primary goals of estimating the magnitude of change of each land
type, the location of those changes, and the temporal patterns
and trajectories of change. Software advances in object-oriented
models in remote sensing (and GISc) link pixels (and raster cells)
to land units and create additional object attributes for land
classifications (23). For instance, characteristics of a household
that uses or owns a specific land unit can be linked to its
corresponding spectral response pattern from remote sensing
systems along with the methods that describe an object’s behav-
ior; for example, the spatial relationships between land units and
the social ties between households of adjacent properties.

Many statistical approaches used to measure the accuracy of
these estimates fail to account for landscape persistence. This
issue is acute for landscapes in which large portions have no
change (e.g., small-holder cultivation in a tropical forest), be-
cause large tracts of ‘‘no-change forest’’ elevate the accuracy of
the simulation model results when, in fact, the accuracy for the
pixels that changed may be relatively low (68). The best way to
approach this is to include estimates focused only on the area or
specific land class of change, by comparing model results to those

that would be obtained with a null model that predicts only
persistence, or by further advances in measures (68–71).

Finally, scale is a fundamental issue in land-change models.
For instance, landscape greenness has been linked to variables
describing people and environment in Thailand measured at a
range of spatial scales (72, 73), and land use-preference weights
of agents has been found to be scale dependent in spatial models
of land-cover change in the Midwestern United States (66). The
scales of social and biophysical inputs and model outcomes
influence the patterns and processes of land-use and -cover
change and the approaches used in model validation.

Summary
The challenge to develop comprehensive understanding of land
change that couples biophysical and socioeconomic processes is
underway, perhaps building toward integrated theory. The chal-
lenge is daunting because of the complexity of integrating
diverse processes and the different disciplinary means of ad-
dressing them. This paper addressed data, methodological, and
analytical problems that are especially acute for the social
science–GISc intersection working at the individual-to-
community scale (microlevel). The various research communi-
ties involved maintain different standardized methods of data
collection and analysis that pose problems when integrated for
land-change study. These problems follow from different data
collection and linking methods, and generate problems for
validating the quality of these links, matching spatial and tem-
poral data from different sources, using ancillary data in clas-
sification, dealing with spatial autocorrelation, and assessing the
accuracy of land-change models.

The issues discussed here are substantial and flow from
various communities with different ties to land-change pro-
grams. It is noteworthy that LCS lags in establishing best and
customary practices that are accepted by its practitioners. At
present, this problem becomes crucial as the LCS community
explores metaanalysis as one means of providing insights about
land-change dynamics at the meso- and macroscales. A LCS in
which the environmental and human sciences and remote sens-
ing�GISc unite to solve various questions about land-use and
land-cover changes and the impacts of these changes on human-
kind and the environment is an important development. The
integrated character of LCS, however, is such that it is difficult
to achieve and invariably requires team-based approaches with
high labor costs, especially in those cases starting from ‘‘ground
zero’’ in terms of teams and data.

Most of our examples are drawn from comparative case study workshop
held in January, 2002, at the East–West Center (Honolulu, HI), which
was funded by the National Science Foundation (BCS-0083474) and the
National Aeronautic and Space Administration Land Cover and Land
Use Change initiative (13). We thank the participants for their contri-
butions that stimulated this paper and M. Goodchild for his observations
of our assessment.
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