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ABSTRACT
The packaging of genetic information in form of chromatin within the nucleus provides cells with
the ability to store and protect massive amounts of information within a compact space. Storing
information within chromatin allows selective access to specific DNA sequences by regulating the
various levels of chromatin structure from nucleosomes, to chromatin fibers, loops and topological
associating domains (TADs) using mechanisms that are being progressively unravelled. However, a
relatively unexplored aspect is the energetic cost of changing the chromatin configuration to gain
access to DNA information. Among the enzymes responsible for regulating chromatin access are
the ATP-dependent chromatin remodellers that act on nucleosomes and use the energy of ATP
hydrolysis to make chromatin DNA more accessible. It is assumed that the ATP used by these
enzymes is provided by the mitochondria or by cytoplasmic glycolysis. We hypothesize that though
this may be the case for cells in steady state, when gene expression has to be globally reprogramed
in response to externals signals or stress conditions, the cell directs energy production to the cell
nucleus, where rapid chromatin reorganization is needed for cell survival. We discovered that in
response to hormones a nuclear ATP synthesis mechanism is activated that utilizing ADP-ribose and
pyrophosphate as substrates.1 This extra view aims to put this process within its historical context,
to describe the enzymatic steps in detail, to propose a possible structure of the ATP synthesising
enzyme, and to shed light on how this may link to other reactions within the cell providing a
perspective for future lines of investigation.
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Chromatin structure and mechanism of
remodelling

The 4 m long DNA of our diploid cells needs to be
compacted over 10,000 fold in chromatin in order to
fit into the cell nucleus (5–10 £ 10¡6 m diameter)
while still enabling dynamic access to the genetic
information during the processes of transcription,
repair and replication. DNA is first wrapped 1.6-fold
around an octamer of the 4 core histones (H3, H4,
H2A & H2B) to form the nucleosome core particle.
The resulting beads-on-a-string chain of 11nm diame-
ter is further compacted by the linker histones of the
H1 family forming a nucleosome fiber of approxi-
mately 30 nm diameter. It is estimated that the
nucleus contains around 30 million nucleosomes
yielding in average one nucleosome every 200 base
pairs of DNA. Originally nucleosomes were consid-
ered to be randomly positioned and to act as

unspecific transcriptional repressors,2 but experiments
on a few specific genomic regions and the recent
availability of global nucleosome positioning informa-
tion have revealed that nucleosomes can be specifically
located relative to the DNA sequence and can even aid
transcriptional regulation.3,4 It is becoming clear that
not all nucleosomes are equal and that certain
posttranslational modifications of the core or linker
histones, as well the inclusion of histone variants,
influence their dynamics and the accessibility of the
underlying DNA sequences.5,6 The in depth descrip-
tion of this highly ordered first level of compaction is
out of the reach of this review, but other excellent
reviews have been recently published.7,8

The exact structure of the next level of chromatin
compaction is still under debate.9 Initially, the 30 nm
fiber was described as a solenoid with 6 nucleosomes
per turn and the linker histones in the center,10 but
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several studies describing different topologies, includ-
ing zigzag intermingling of 2 antiparallel strands have
been also proposed, all of which share stabilization by
nucleosome stacking,11,12 Recent cryo-EM images of
nucleosomes arrays have provided one of the best
models of the 30 nm fiber based on repeats of an inter-
mingled tetra-nucleosome unit.13

Irrespective of the intermediate structure, chroma-
tin fibers are further folded into chromatin loops,
often connecting regulatory sequences such as pro-
moters and enhancers, and these loops are compart-
mentalized into Topological Associating Domains
(TADs), which are largely conserved between different
cell types and insulated by ill-defined regions enriched
in CTCF and cohesion binding sites.14 TADs are char-
acterized by a high density of internal chromatin
interactions, isolated from adjacent TADs. They have
been shown to be epigenetic and functional domains
exhibiting coordinated regulation of their coding and
non-coding transcripts.15,16 Several TADs can aggre-
gate in the nuclear periphery to form Lamina Associ-
ated Domains (LADs), usually heterochromatic and
poorly transcribed. In some cases regulated genes can
change their position in the nucleus, leaving the
nuclear periphery when they are activated, or migrat-
ing to it when they are silenced (Review 17).

To access nucleosomes the chromatin fiber has to
be decondensed by poorly characterized mechanisms
that often required the ATP-consuming activity of
cohesins and condensins18 and modifications of linker
histones by parylation and/or phosphorylation.19 The
subsequent and continuous task of remodeling nucle-
osomes lies with multi-protein chromatin remodeling
machines, all of which share an ATPase subunit that
hydrolyses ATP.20 These chromatin remodelers use
the energy of ATP hydrolysis to break and rebuild
hundreds of interactions of core histones with DNA
ultimately leading to core particle sliding, histone dis-
placement or variant replacement. Posttranslational
modifications of histone tails also contribute to chro-
matin remodeling. The combination of these multiple
enzymatic activities results in a more open or closed
chromatin structure, dictating the accessibility for the
downstream effector proteins, but at very high ener-
getic price. These energy requirements added to the
energetic cost of maintaining transcription, RNA
processing and export, DNA repair and replication
during mitosis, make the nucleus a burdensome
energy consuming organelle.

Hormone induced gene expression

We have been studying the mechanisms of gene regu-
lation and chromatin remodelling events in the breast
cancer cell line T47D that express progesterone recep-
tor (PR) and estrogen receptor a (ERa). When T47D
cells are deprived of mitogens for 16 hours prior to
hormone exposure, growth slows down and cells accu-
mulate in the G1 phase of the cell cycle reaching an
almost quiescent state. This provides a synchronised
cell population for studying the response to the syn-
thetic progestin R5020 acting via PR.21 Before hor-
mone exposure, most of PR is maintained as an
inactive monomer complexed with the HSP90 and its
associated chaperones and distributed between the
cytoplasm and the cell nucleus. We assume that, ener-
getically, in this low activity basal state gene expres-
sion and chromatin remodelling are sustained via
diffusion of ATP from the mitochondria (Fig. 1).

Upon exposure to R5020, T47D cells rapidly respond
by activating both non-genomic and genomic path-
ways.22,23 The small fraction of PR attached to the cell
membrane activates the SRC/RAS/ERK and the CDK2
pathways, while the majority of soluble PR dissociates
from chaperones and forms active homodimers.
Activated ERK phosphorylates soluble PR at S294 and
activates MSK1 forming a trimeric complex with PR
that tethers the kinases to the its cognate Hormone
Responsive Elements (HREs) in chromatin, where
MSK1 modified histone H3 S1024 and CDK2 phosphor-
ylates histone H1. The activated kinase CDK2 phos-
phorylates and activates the poly-ADP-ribose
polymerase 1 (PARP1/ARDT1) resulting in an increase
in local poly-ADP-ribose (PAR) levels.23 This leads to a
rapid (1–5 min) displacement of histone H1 and of a
repressive complex,25 opening chromatin. During a sec-
ond phase (30 min) PR recruits histone modifiers and
chromatin remodellers resulting in the displacement of
histone H2A and H2B.26 Notably, not only activation of
gene transcription but also active repression by hor-
mone requires steroid receptors, kinases, chromatin
remodellers and PARP1.27

PAR and the nuclear synthesis of ATP

PAR was originally described as the “third nucleic
acid”28 and PARylation is a unique and abundant
posttranslational protein modification. The forma-
tion of large branched charged chains of ADPR
attached to proteins modifies protein-protein and
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protein-DNA interactions. Proteins containing a
PAR-binding domain (PBD), such as the macro
domain, can be modulated by PAR binding. More

recently it has been shown that the formation of
membrane-less organelles within the nucleus is
dependent on PARylation, which provides a local

Figure 1. Energy focused events following hormone exposure of breast cancer cells. Hormone induced changes are shown separated
into 3 phases. During the steady-state (before hormone) basic genome activity is maintained and the energy requirements are met by
diffusion of ATP from the mitochondria. Rapidly upon hormone exposure (1–5 minutes) ligand-bound PR in complex with kinases is
recruited to target genes. CDK2 phosphorylates PARP1 increasing its enzyme activity leading to local PARylation. Histone H1 phosphory-
lated by CDK2 and parylated is displaced. ATP consumed during this initial period is of mitochondrial origin and used by NMNAT1 to
make NAD for PARP1 and PPi. After 30 min of hormone exposure (Intermediate) the increase in PAR triggers PARG, leading to accumula-
tion of ADPR. NUDIX5 utilizes the increase in ADPR and PPi to generate ATP. ATP produced in the nucleus is used for stable displace-
ment of H1 and H2A/H2B opening the chromatin for access of transcriptional regulators leading to gene activation/repression and
ultimately to cell proliferation (late events).
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environment for the concentration of chromatin
factors and substrates (review 29).

We showed that rapid activation of PARP1 in
response to hormone is essential for the cellular
response in terms of chromatin remodelling, gene reg-
ulation and cell proliferation.23 The observation that
the increase in PAR levels in response to hormone is
transient peaking very early (5–10 min) and returning
to basal levels within 60 min led us to investigate PAR
degradation. PAR is hydrolysed by poly-ADP-ribose
glycohydrolase (PARG) to ADPR, and we showed that
specific inhibitors or siRNAs against PARG also com-
promised the hormonal gene regulation and subse-
quent cell proliferation. Thus, not only PAR synthesis
but also its degradation are essential for hormone
response, pointing to a possible role for accumulated
ADPR.1

It is generally assumed that the energy required for
nuclear functions in steady-state is provided by the
mitochondria and in some cases by cytoplasmic glycoly-
sis. We questioned whether this also applies to cells sub-
jected to acute and global reprogramming of genome in
response to external cues. There are indeed old findings
suggesting the possibility of energy generation in the cell
nucleus. Nearly 60 years ago Allfrey and Mirsky pro-
posed that ATP could be generated in isolated nuclei.30

It was suggested that the substrate for nuclear oxidative
phosphorylation originates in part from the ribose path-
way.31 In 1989 an enzyme activity named ADP-ribose
pyrophosphorylase was postulated in HeLa cell nuclei
that would catalyze the formation of ATP and Ribose-5-
phosphate (R-5-P) from ADP-ribose (ADPR) and
PPi.32 Moreover, ATP generation via ADPR catabolism
has been shown to be involved in DNA repair and repli-
cation.33 However, the enzymes catalyzing nuclear ATP
synthesis were never isolated and the direct relationship
to nuclear processes remained unproven. Given the rele-
vance of PAR synthesis and degradation for hormone
regulation we decided to address the potential synthesis
of the nuclear ATP in the context of hormonal activa-
tion of quiescent breast cancer cells in culture, a process
requiring changes in transcription activity of thousands
of genes within a short period of time.4 Could the accu-
mulation of ADPR be a source of local nuclear ATP?

In order to measure ATP levels in T47D cells follow-
ing hormone we used 2 methods; a FRET-based mea-
surement of the ATP/ADP ratio in cytoplasmic, nuclear
or mitochondrial compartments in individual living
cells, and a luciferase based method that allows high-

throughput population measurements. We found that
nuclear ATP levels increase rapidly (after 5 min) in cells
exposed to hormone reaching a maximum at 15–
20 min and returning to basal levels after 60–80 min.1

The increase of nuclear ATP was dependent on an ini-
tial pulse of ATP of mitochondrial origin, as inhibition
of mitochondrial ATP prior to hormone exposure pre-
vented nuclear ATP formation. However, inhibition of
mitochondrial ATP synthesis, shortly after hormone
addition (10 min) did not affect the increase in ATP,
indicating that subsequent nuclear ATP synthesis is
independent of mitochondria.

A mass spec screen of PAR interacting proteins iden-
tified a novel PAR target involved in ADPR metabolism,
namely Nucleotide Diphosphate linked to moiety X 5
(NUDIX5/NUDT5). We found that NUDIX5 interacts
with both PARG and PAR by co-immunoprecipitation
following hormone.1 In addition, using siRNA com-
bined with both global gene expression arrays and quan-
titative PCR we were able to demonstrate that the
presence of NUDIX5 is essential for hormone induced
gene expression changes and cell proliferation in both
T47D and MCF7 breast cancer cells. Prior to hormone
exposure NUDIX5 hydrolyses ADPR to AMP and R-5-
P, however following hormone, due to the local increase
in ADPR and PPi, NUDIX5 catalyzes not only the for-
mation of AMP but also the synthesis of ATP within
the cell nucleus. Recombinant NUDIX5 can catalyze
these 2 reactions in vitro, though hydrolysis to AMP is
the dominant reaction.

Using both FRET-based and luciferase-based sen-
sors we were able to show that nuclear ATP genera-
tion is dependent on the combined actions of PARP1,
PARG and NUDIX5. As discussed earlier, during the
very early events, (Fig. 1), PAR accumulates and par-
ticipates in general chromatin opening, perhaps gener-
ating a microenvironment by liquid demixing that
favors the concentration of effector proteins and sub-
strates.34 Such membrane-less organelles are transient
in nature, like PAR accumulation. Indeed, the elevated
nuclear ATP levels observed after 10–15 min inhibit
the activity of PARP1, ensuring that the nucleus can
return to a basal state.

In contrast chromatin remodelling measured by H1
and H2A displacement at later stages after PAR accu-
mulation and degradation (Fig. 1), is dependent on
PARP1, PARG and NUDIX5, and affects similarly
activated and repressed genes. We hypothesize that
this mechanism of nuclear energy generation is a
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“safety measure,” to avoid cell death by parthanato’s
characterized by detrimental decrease in both NADC

and ATP levels.35 Transient nuclear ATP generated
via the action of NUDIX5 ensures the coverage of the
energetic cost associated with massive rapid global
changes in chromatin induced by hormone.

Substrate sources and product accumulation

One of the open intriguing questions posed from this
work is the source of PPi. It is possible that PPi con-
centrations are sufficiently abundant within the cell
nucleus due to the basal reactions taking place, or per-
haps is locally generated during the process of tran-
scription, facilitating local ATP generation by
NUDIX5. This suggest that there may be no specific
mechanism in place to generate PPi at the chromatin.
However, nuclear ATP generation is not only depen-
dent on the combined actions of PARP, PARG and
NUDIX, but also on the generation of NADC by the
nuclear enzyme nicotinamide mono nucleotide
adenylyl transferase 1 (NMNAT1).

NMNAT1 uses NMN and ATP to generate NADC

and PPi within the nucleus and is the nuclear source
of NADC for PARP1. We hypothesis that NMNAT1
could also be a local source of PPi for NUDIX5 at the
regions of chromatin requiring extensive chromatin
remodelling. NMNAT1 interacts with PARP1 and
NUDIX5 and NMNAT1, PARP1 and PARG regulate
similar sets of genes and co-localize on specific regu-
lated regions of the genome.1,36 Measurement of total
cellular PPi levels is possible with commercial kits or
mass spec and the local measurement of nanomolar
concentration of PPi within cells was recently
described.37 This new methodology may provide the
required information to understand the nuclear source
of PPi following hormone exposure.

Irrespective of the source it is likely that the unfavour-
able energetics of the reaction (ADPR C PPi > ATP C
R-5-P) in vitro my improve due to the local increase in
both ADPR and PPi substrates or to alternative confor-
mations of the interacting enzymes in the cell nucleus.

A potential model for the ATP synthesising
machinery: NMNAT1/NUDIX5

A crystal structure of human NUDIX5/NUDT5
homodimer bound with one ADPR on each of the 2
active sites has been reported.38 This structure illus-
trates the hydrolysis of ADPR to AMP and R-5-P but

is not easily compatible with PPi binding. We postu-
lated that the homodimer is stabilized in the cell by
the phosphorylation of T45 that interacts with L28 of
the opposite monomer.1 Upon hormone exposure
T45 is dephosphorylated leading to destabilization of
the homodimer.1 We hypothesize that recombinant
NUDIX5 homodimer exists in equilibrium between
the dominant ADPR hydrolysing conformation and a
minor ATP synthesising conformation, in which the
relative orientation of the monomer flips yielding
more open active sites that can accommodate the
presence of PPi required for ATP synthesis (Fig. 2).
We also have experimental evidence for the formation
of a hexameric complex with recombinant NUDIX5.
Therefore, we tried to model a NUDIX5 hexamer, and
this was only possible with the flipped monomer con-
formation and not with the published conformation
of the dimer (Fig. 2). Phosphorylation of T45 is pre-
dicted to prevent the flipping of NUDIX5 monomers,
hindering the formation of the hexamer. Thus,
dephosphorylation of NUDIX5 may trigger the switch
to a conformational change that activates the energy
generating molecular machine.

Open questions

It has been recently proposed that the cell-specific
global 3D structure of eukaryotic genomes is gener-
ated and maintained by the mechanism of “loop
extrusion” that requires the ATP dependent activity of
cohesins in interphase and condensins in mitosis.39

We are now exploring whether this essential process
for gene regulation also depends on the nuclear gener-
ation of ATP.

Given the relevance of nuclear ATP synthesis for
chromatin remodelling and the importance of chroma-
tin reorganization in the DNA damage response, stress
response, cell differentiation during embryogenesis, cell
reprogramming to iPSC and their differentiation and
possibly DNA replication, we expect these processes to
require the pathway PARP1/PARG/NUDIX5, or other
pathways for nuclear ATP synthesis waiting to be dis-
covered. The possible existence of alternative pathways
comes from the wide conservation of NUDIX5 in
plants and animals with the exception of diptera.

PARP1, PARG and aberrant NADC metabolism
have received significant attention as drug targets for
the treatment of breast cancer and other types of can-
cers not limited to breast.40,41 NUDIX5 is the only
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NUDIX family overexpressed in breast cancer patient
samples, in correlation with elevated levels of PARP1.1

Given that stratifying patients based on NUDIX5
expression levels reveals a poorer outcome for patients
with high NUDIX5 levels. We believe that the unique
structure of the NUDIX5 may provide a target for
selective inhibition of ADPR-derived ATP synthesis
opening new avenues for combinatorial drug
discovery.
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