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Atherosclerosis and aneurysms are the leading causes of 
cardiovascular disease, the major source of mortality 

and morbidity worldwide.1 Unstable atherosclerotic plaques 
are characterized by a relative preponderance of inflammatory 
cells and heightened proteolytic activity.2,3 Clinically relevant 
abdominal aortic aneurysms (AAAs) are also associated with 
inflammation and matrix degradation.4 Subsets of proinflam-
matory macrophages are considered central to the pathogen-
esis of the above inflammatory cardiovascular diseases, in part, 
through augmented release of matrix-degrading proteases and 
by decreased expression of their inhibitors. However, other 
macrophage subsets may play beneficial roles, for example, 
by facilitating smooth muscle cell recruitment, regulating 

neovascularization, and promoting extracellular matrix (ECM) 
formation/deposition.5 Similarly, matrix metalloproteinases 
(MMPs), a group of proteases produced by macrophages and 
abundant in pathological cardiovascular tissues,6 may also play 
a dual role. MMP knockout mice and other transgenic mod-
els show clear effects of individual MMPs on vascular repair 
and fibrous cap formation on the one hand or ECM destruction 
and hence destabilization of atherosclerotic lesions and aneu-
rysm rupture on the other. These opposing effects of different 
MMPs probably underlie the disappointing results achieved 
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Rationale: Atherosclerosis and aneurysms are leading causes of mortality worldwide. MicroRNAs (miRs) are 
key determinants of gene and protein expression, and atypical miR expression has been associated with many 
cardiovascular diseases; although their contributory role to atherosclerotic plaque and abdominal aortic aneurysm 
stability are poorly understood.

Objective: To investigate whether miR-181b regulates tissue inhibitor of metalloproteinase-3 expression and affects 
atherosclerosis and aneurysms.

Methods and Results: Here, we demonstrate that miR-181b was overexpressed in symptomatic human atherosclerotic 
plaques and abdominal aortic aneurysms and correlated with decreased expression of predicted miR-181b targets, 
tissue inhibitor of metalloproteinase-3, and elastin. Using the well-characterized mouse atherosclerosis models of 
Apoe−/− and Ldlr−/−, we observed that in vivo administration of locked nucleic acid anti-miR-181b retarded both the 
development and the progression of atherosclerotic plaques. Systemic delivery of anti-miR-181b in angiotensin II–
infused Apoe−/− and Ldlr−/− mice attenuated aneurysm formation and progression within the ascending, thoracic, and 
abdominal aorta. Moreover, miR-181b inhibition greatly increased elastin and collagen expression, promoting a fibrotic 
response and subsequent stabilization of existing plaques and aneurysms. We determined that miR-181b negatively 
regulates macrophage tissue inhibitor of metalloproteinase-3 expression and vascular smooth muscle cell elastin 
production, both important factors in maintaining atherosclerotic plaque and aneurysm stability. Validation studies 
in Timp3−/− mice confirmed that the beneficial effects afforded by miR-181b inhibition are largely tissue inhibitor of 
metalloproteinase-3 dependent, while also revealing an additional protective effect through elevating elastin synthesis.

Conclusions: Our findings suggest that the management of miR-181b and its target genes provides therapeutic 
potential for limiting the progression of atherosclerosis and aneurysms and protecting them from rupture.    
(Circ Res. 2017;120:49-65. DOI: 10.1161/CIRCRESAHA.116.309321.)
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with broad-spectrum MMP inhibitors in these pathologies.7 
However, altering levels of tissue inhibitors of metalloprotein-
ases (TIMPs) have revealed more consistent protective effects 
against atherosclerosis and aneurysm formation.7 Hence, under-
standing and manipulating the factors that regulate TIMP pro-
duction in macrophages may provide new therapeutic avenues.

Previous studies from our laboratory identified a distinct 
subpopulation of macrophages with reduced TIMP-3 expres-
sion and a concomitant increase in MMP-14 protein level and 
activity and associated proteolysis.8 TIMP-3–negative macro-
phages are more invasive, more susceptible to apoptosis, and 
more proliferative compared with the TIMP-3–positive mac-
rophage subpopulation8 and are more abundant in unstable 
than stable plaques.9 Further analysis revealed that granulocyte 
macrophage colony-stimulating factor (GM-CSF) increased 
MMP-14 protein but not mRNA level by decreasing expres-
sion of microRNA (miR)-24, resulting in increased MMP-
14–dependent proteolytic activity.10 GM-CSF consequently 
promoted a more invasive and proapoptotic macrophage phe-
notype, which was associated with unstable atherosclerotic 
plaques.10 Some evidence suggested that macrophage TIMP-3 
expression may also be subjected to post-transcriptional regu-
lation.8,9 MiRs are a group of noncoding RNAs able to finely 
regulate the protein expression of their targets through degra-
dation of the mRNA or inhibition of protein translation. MiRs 
control several processes known to be involved with the initia-
tion and progression of numerous cardiovascular diseases, such 
as atherosclerosis11 and AAAs.12 In particular, miR-181b is a 
highly conserved miR able to directly target TIMP-3 mRNA 
and repress TIMP-3 protein expression in hepatocarcinoma 
cells.13 In addition, miR-181b is downregulated during macro-
phage colony-stimulating factor (M-CSF) maturation of mac-
rophages,10 whereas TIMP-3 protein and mRNA expression 
is enhanced.14 TIMP-3 has been identified in atherosclerotic 
plaque macrophages between the necrotic/lipid-rich core and 
the protective fibrous cap.14 Consequently, TIMP-3 may play a 
protective role against plaque rupture through suppressing local 
proteolysis. TIMP-3 mRNA levels are also increased in patients 
with ascending aortic aneurysms, whereas other TIMPs are not 
altered.15 Similarly, a significant association between polymor-
phisms of TIMP-3, but not TIMP-1 or TIMP-2, exists in pa-
tients with AAA and a positive family history of AAA.16 Also, 
aorta wall TIMP-3 expression is reduced in Marfan syndrome 
patients who experience an increased rate of aortic rupture.17

Hence, in the current study, we investigated whether miR-
181b regulates TIMP-3 protein expression in atherosclerosis 
and AAA and whether miR-181b inhibition can ameliorate 
plaque and aneurysm progression. Consequently, we demon-
strate for the first time that miR-181b inhibition promotes a 
stable plaque phenotype by restoring TIMP-3 expression in 
macrophages, which stabilizes AAAs by promoting collagen 
accumulation. Inhibition of miR-181b also directly enhances 
elastin deposition. This dual beneficial role of miR-181b in-
hibition provides substantial evidence for this approach as a 
therapeutic for atherosclerosis-related cardiovascular diseas-
es, including aneurysms.

Methods
Methods are available in the Online Data Supplement.

Results
MiR-181b Regulates Macrophage TIMP-3 
Expression and Associates With Cardiovascular 
Disease Progression in Humans
We first measured TIMP-3 levels in macrophages, differ-
entiated with M-CSF or GM-CSF, respectively.18 Although 
no difference in TIMP3 mRNA expression was detected 
(Figure  1A), protein levels were markedly reduced in GM-
CSF–differentiated macrophages (Figure  1B). Accordingly, 
the level of miR-181b was significantly increased after GM-
CSF macrophage differentiation compared with M-CSF mac-
rophages (Figure 1C), implying that it could be responsible 
for the fall in TIMP-3 protein. To confirm this, we deployed 
a loss of function strategy in GM-CSF macrophages, reveal-
ing that miR-181b inhibition restored TIMP-3 protein ex-
pression to comparable levels found in M-CSF macrophages 
(Figure  1D), whereas the mRNA level was significantly re-
duced (Figure  1E), implying restored TIMP3 translation. 
Hence, our findings confirm TIMP-3 as an miR-181b target13 
and demonstrate that miR-181b serves as an important inhibi-
tor of macrophage TIMP-3 protein expression, which is di-
vergently regulated by colony-stimulating factors. Moreover, 
these changes are independent of potential regulation by 
MMP-14 expression/activity, which we have previously 
shown to be upregulated in macrophages on GM-CSF stimu-
lation10 or through regulation of MMP-14 expression by miR-
181b or TIMP-3 (Online Figure I).

To validate our findings in human cardiovascular pa-
thologies, we investigated the expression of miR-181b and 
its putative target TIMP-3 in human coronary atherosclerotic 
plaques and AAAs. We observed a decreased proportion of 
TIMP-3–positive macrophages (CD68+ve cells) in human cor-
onary artery atherosclerotic plaques characterized as unstable 
compared with stable lesions (by 67%; P<0.01; Figure 1F), 
whereas no change in TIMP3 mRNA expression was detected 
(Online Figure II). Furthermore, miR-181b expression in ath-
erosclerotic plaques was inversely related to TIMP-3 protein 
expression because unstable plaques contained higher miR-
181b levels (as assessed by quantitative polymerase chain 
reaction) than stable plaques (28-fold; P<0.05; Figure  1G). 
Moreover, confirmatory in situ hybridization indicated that 
the proportion of macrophages expressing miR-181b was 
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Figure 1. MicroRNA (miR)-181b regulates macrophage tissue inhibitor of metalloproteinase (TIMP)-3 expression and associates 
with cardiovascular disease progression in humans. A, Quantitative polymerase chain reaction (QPCR) and (B) Western blot of TIMP3 
mRNA and protein expression, respectively, in human macrophages differentiated in the presence of macrophage colony-stimulating 
factor (M-CSF) or granulocyte/macrophage colony-stimulating factor (GM-CSF), n=6/group, ***P<0.001, 2-tailed Student t test.  
C, QPCR of miR-181b in human macrophages differentiated in the presence of M-CSF or GM-CSF, n=6/group, **P<0.01, 2-tailed Student 
t test. D, Western blot and (E) QPCR of TIMP3 in 7-day GM-CSF–differentiated macrophages after addition of an miR-181b inhibitor 
(miR-181bi) or a scrambled control (Ctrl), n=4/group, *P<0.05 and **P<0.05, 2-tailed Student t test. F, Representative images of CD68 
(macrophages) and TIMP-3 protein expression by immunohistochemistry (IHC) and quantification from human stable and unstable 
coronary atherosclerotic plaques, n=10/group, **P<0.01, 2-tailed Student t test. G, QPCR of miR-181b expression from stable and 
unstable coronary atherosclerotic plaques, n=10/group, *P<0.05, 2-tailed Student t test. H, Representative images and quantification 
of TIMP-3 protein expression by IHC and miR-181b by in situ hybridization (ISH) from stable and unstable coronary atherosclerotic 
plaques, n=10/group, *P<0.05, 2-tailed Student t test. I, Correlation of TIMP-3 and GM-CSF–positive macrophages in human coronary 
artery atherosclerotic plaques, n=16, Spearman correlation test. J, Representative images of CD68 (macrophages) and TIMP-3 protein 
expression by IHC and quantification from control human nonaneurysmal (NA) aorta and abdominal aortic aneurysm (AAA), n=10/group, 
***P<0.00315, 2-tailed Student t test. K, QPCR of TIMP-3 and miR-181b expression from control human NA aorta and AAA, n=10/group, 
**P<0.01, 2-tailed Student t test. In all cases, data represent the mean±SEM.
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significantly higher in unstable plaques compared with stable 
plaques (P<0.05; Figure 1H and Online Figure III) in direct 
contrast to TIMP-3 protein expression (Figure 1E). We previ-
ously showed that unstable human coronary plaques harbor 
a heightened proportion of GM-CSF than M-CSF–positive 
macrophage.10 We now show that the density of intraplaque 
TIMP-3–positive macrophages negatively correlated with 
the number of GM-CSF–positive macrophages in advanced 
plaques (r2=0.424; P=0.016; Figure 1I).

Similar findings were apparent in human aortic aneurysm 
tissues. Whereas the majority of macrophages (CD68+ve cells) 
in nonaneurysmal aortic tissue were TIMP-3 positive (91%; 
Figure 1J), only 23% of macrophages within abdominal aortic 
tissues expressed TIMP-3 (Figure 1J). These differences were 
independent of alterations in mRNA expression (Figure 1K), 
but consistent with the significant change in miR-181b levels 
we observed (Figure 1K). Accordingly, areas of macrophage 
infiltration in AAA tissues were associated with marked MMP 
activity (Online Figure IV). Furthermore, using the angioten-
sin II infusion model of AAA in 8-week-old high-fat–fed 
apolipoprotein E–deficient (Apoe−/−) mice, we investigated 
macrophage TIMP-3 expression within intact and ruptured 
abdominal aortas. As in human tissues, significantly more 
TIMP-3–positive macrophages (3-fold; P=0.00315) were 
present in intact abdominal aortic tissues compared with rup-
tured aneurysmal samples (Online Figure V). Taken together, 
our results imply that miR-181b is a critical regulator of mac-
rophage TIMP-3 expression during the progression of athero-
sclerosis and aortic aneurysms.

MiR-181b Inhibition Stabilizes Atherosclerotic 
Plaques in Hypercholesterolemic Apoe−/− Mice
Given the above, we hypothesized that miR-181b inhibition 
may restore macrophage TIMP-3 expression and prevent the 
progression of atherosclerosis. Therefore, mice with preex-
isting atherosclerotic lesions within their brachiocephalic 
arteries were treated with a locked nucleic acid–modified 
miR-181b inhibitor or a scrambled miR to serve as a con-
trol (n=6–8 per group; see Online Figure VI). Body weights 
were comparable between scrambled control (29.7±1.1 g) and 
miR-181b inhibitor-treated mice (30.2±1.3 g), indicating that 
locked nucleic acid–miR treatment was well tolerated, and 
no significant effect on lipid profiles was observed (Online 
Figure VII). Quantitative polymerase chain reaction analysis 
of atherosclerotic vessels demonstrated reduced miR-181b 
expression in mice treated with the locked nucleic acid–miR-
181b inhibitor controls (Online Figure VIII), inferring that 
the miR-181b inhibitor had pervaded the plaque/vessel wall. 
As expected, miR-181b inhibition resulted in a significant in-
crease in intraplaque TIMP-3–positive macrophages (by 90%; 
P<0.05; Figure 2A). As expected, proteolytic activity was ab-
rogated within plaques from miR-181b inhibitor-treated mice 
when compared with controls (by 70%; P<0.01; Figure 2B), 
as ascertained by in situ zymography, and comparable with 
the inhibitory effect achieved by addition of exogenous TIMP-
3 (Figure 2B). Furthermore, recombinant TIMP-3 displayed 
no additive inhibitory effect on proteolytic activity in plaques 
from miR-181b inhibitor-treated animals (Figure  2B), in-
dicating that the miR-181b inhibition-associated increase 

in TIMP-3 expression was responsible for the diminished 
proteolytic activity observed in plaques from treated mice. 
Hence, the TIMP-3–dependent reduction in proteolytic activ-
ity afforded through miR-181b inhibition translated into a re-
tardation of plaque progression when compared with control 
animals, as observed by a reduction in lesion area (by 45%; 
P<0.05; Figure 2C and 2D).

In addition, pathological characteristics associated with a 
more stable plaque phenotype were increased in treated mice 
compared with control animals; smooth muscle cell to mac-
rophage ratio (4.9-fold increase; P<0.01; Figure 2C and 2E), 
collagen content (59% increase; P<0.01; Figure 2C and 2F), 
and necrotic/lipid core size (42% decrease; P<0.05; Figure 2C 
and 2G). Moreover, and in line with our previous in vitro data,8 
intraplaque macrophage proliferation rates and apoptotic fre-
quencies were reduced (88% and 68%, respectively; P<0.01; 
Figure 2C, 2H, and 2I) in brachiocephalic plaques from miR-
181b inhibitor-treated mice compared with scrambled control 
animals. Collectively, miR-181b inhibition resulted in altera-
tions in plaque composition that have been previously taken as 
markers of increased plaque stability. Consistent with this, the 
lesion compositional changes translated to a decreased plaque 
vulnerability index19 in mice receiving miR-181b inhibition 
compared with scrambled control animals (by 73%; P<0.01; 
Figure 2C and 2J). Finally, miR-181b inhibition significant-
ly augmented elastin content within plaques compared with 
scrambled control animals (2.6-fold; P<0.01; Figure 2C and 
2K). Collectively, these results suggest that inhibition of miR-
181b dramatically increases macrophage TIMP-3 expression 
and thus retards plaque progression and promotes a more sta-
ble phenotype.

We also subjected 10-week high-fat–fed low-density li-
poprotein receptor knockout mice (Ldlr−/−), which have pre-
existing atherosclerotic lesions within their brachiocephalic 
arteries (Online Figure IX) to 4-week treatment with the 
locked nucleic acid–modified miR-181b inhibitor or a scram-
bled miR to serve as control animals, while being maintained 
on a high-fat diet (n=6–8 per group, see Online Figure IV). 
Similar to Apoe−/− mice, we observed a significant suppression 
in plaque progression as observed by a reduction in lesion area 
of miR-181b inhibitor-treated mice versus controls (by 67%; 
P<0.05; Online Figure IV), indicating that this effect is not 
exclusive to the Apoe−/− mouse model.

MiR-181b Inhibition Does Not Affect Plaque 
Progression in the Absence of TIMP-3
To assess whether miR-181b inhibition modulates atheroscle-
rotic plaque progression through TIMP-3, we measured plaque 
development in Apoe/Timp3 double knockout (Timp3−/−/Apoe−/−) 
mice and whether miR-181b inhibition retarded the progres-
sion of preexisting lesions, as observed in Apoe knockout 
mice. After 12 weeks of high-fat feeding and as expected, 
Timp3−/−/Apoe−/− mice displayed accelerated atherosclerosis 
compared with control Timp3+/+/Apoe−/− animals, as assessed 
by morphometric analyses of lesion area in cross-sections of 
the aortic root (2.5-fold; P<0.05; Figure 3A) and the brachio-
cephalic artery (5.7-fold; P<0.05; Figure 3B). In contrast to 
Apoe−/− mice (Figure 2D), miR-181b inhibition failed to retard  
plaque progression at either vascular site, in Timp3−/−/Apoe−/−  
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Figure 2. MicroRNA (miR)-181b inhibition stabilizes atherosclerotic plaques in hypercholesterolemic Apoe−/− mice. A, Representative 
images and quantification of macrophage tissue inhibitor of metalloproteinase (TIMP)-3 expression as assessed by immunofluorescence 
staining of brachiocephalic artery plaques from scrambled control and miR-181b inhibitor-treated Apoe−/− mice, n=6 to 8/group, *P<0.05, 
2-tailed Student t test, scale bar represents 50 μm and is applicable to both panels. B, Representative images and quantification of proteolytic 
activity as assessed by in situ zymography of brachiocephalic plaques from scrambled control and miR-181b inhibitor-treated Apoe−/− mice, 
incubated with substrate alone or plus 10 nmol/L recombinant TIMP-3, #P<0.05 and represents significant difference from substrate alone; 
n=6 to 8 per group, **P<0.01 and denotes significant difference from scrambled control mice, ANOVA, scale bar represents 50 μm and is 
applicable to all panels. C, Representative images and quantification of (D) plaque cross-sectional area in elastin van Gieson (EVG)–stained 
sections, (E) ratio of total lesional vascular smooth muscle cells (VSMC) and macrophages (Mac) assessed by immunohistochemistry, (F) 
lesional collagen content assessed by picrosirius red staining, (G) lesional necrotic core area, (H) lesional proliferation percentage determined 
by immunohistochemistry for proliferating cell nuclear antigen (PCNA), (I) lesional apoptosis percentage determined by immunohistochemistry 
for cleaved caspase-3 (CC3), (J) the plaque vulnerability index (necrotic core area+macrophage content/VSMC+collagen content), (K) lesional 
elastin content assessed by EVG staining, in brachiocephalic plaques from scrambled control and miR-181b inhibitor-treated Apoe−/− mice, 
n=6 to 8/group, *P<0.05 and **P<0.01 compared with scrambled control mice, 2-tailed Student t test, scale bar in ii represents 100 μm 
and is applicable to panels i and ii, scale bar in iii represents 100 μm and is applicable to panels iii–viii, scale bar in ix represents 50 μm 
and is applicable to panels ix–xii. Arrows in panel’s ix–xii indicate positive cells. In all cases, data represent the mean±SEM.
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Figure 3. MicroRNA (miR)-181b inhibition does not affect plaque progression in the absence of tissue inhibitor of 
metalloproteinase (TIMP)-3. Representative images and quantification of plaque cross-sectional area in elastin van Gieson (EVG)–
stained sections of plaques within (A) the aortic root or (B) the brachiocephalic artery of Timp3+/+ Apoe−/−, Timp3−/− Apoe−/−, and miR-
181b inhibitor-treated Timp3−/− Apoe−/− mice, n=6 to 8/group, *P<0.05 and **P<0.01 compared with Timp3+/+ Apoe−/− control animals, 
ANOVA, scale bar represents 100 μm and is applicable to all panels. Quantification of (C) smooth muscle cell (SMC), (D) macrophage, 
(E) collagen content, (F) necrotic core area, (G) plaque vulnerability index (necrotic core area+macrophage content/vascular smooth 
muscle cell+collagen content), and (H) elastin content, in brachiocephalic plaques from Timp3+/+ Apoe−/−, Timp3−/− Apoe−/−, and miR-181b 
inhibitor-treated Timp3−/− Apoe−/− mice, n=6 to 8/group, *P<0.05, ***P=0.00013, and ###P=0.00938 compared with Timp3+/+ Apoe−/− 
control animals and #P<0.05 compared with Timp3−/− Apoe−/− mice, ANOVA. I, Representative images and quantification of proteolytic 
activity as assessed by in situ zymography of brachiocephalic plaques from Timp3+/+ Apoe−/−, Timp3−/− Apoe−/−, and miR-181b inhibitor-
treated Timp3−/− Apoe−/− mice, n=6 to 8/group, *P<0.05 compared with Timp3+/+ Apoe−/− control animals, ANOVA, scale bar represents 
50 μm and is applicable to all panels. J, Representative images and quantification of elastin breaks assessed by EVG staining of 
brachiocephalic plaques from Timp3+/+ Apoe−/−, Timp3−/− Apoe−/−, and miR-181b inhibitor-treated Timp3−/− Apoe−/− mice, n=6 to 8/group, 
***P=0.0010 compared with Timp3+/+ Apoe−/− control animals and #P<0.05 compared with Timp3−/− Apoe−/− mice, ANOVA. Scale bar 
represents 25 μm and is applicable to all panels. In all cases, data represent the mean±SEM.
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mice (Figure 3A and 3B). Characterization of brachiocephal-
ic artery atherosclerotic plaques from Timp3−/−/Apoe−/− mice 
revealed that they contained fewer smooth muscle cells (by 
70%; P<0.05), but increased macrophage content (by 44%; 
P<0.05), than in plaques from Timp3+/+/Apoe−/− control mice 
(Figure  3C and 3D). Furthermore, whereas there was a re-
duction in plaque collagen content (by 52%; P<0.05), ne-
crotic core area was markedly increased (6.6-fold; P<0.01) in 
plaques from Timp3−/−/Apoe−/− mice compared with those from 
control animals (Figure 3E and 3F). Collectively, these find-
ings indicate that pathological markers indicative of increased 
plaque instability in humans are prominent in Timp3−/−/Apoe−/−  
mice plaques. Indeed, assessment of the vulnerability index 
showed that this indicator of instability is significantly greater 
in Timp3−/−/Apoe−/− mice (12-fold; P<0.05) compared with  
Timp3+/+/Apoe−/− control mice (Figure 3G). Consistent with a 
lack of effect on plaque area, miR-181b inhibition failed to 
modulate plaque components, such as smooth muscle cell, 
macrophage, and collagen content, or necrotic core size in  
Timp3−/−/Apoe−/− mice (Figure 3), in direct contrast to the ben-
eficial effects observed in miR-181b inhibitor-treated Apoe−/− 
mice (Figure  2). Accordingly, the vulnerability index was 
unaffected in Timp3−/−/Apoe−/− mice by miR-181b inhibition 
(Figure  3G). Surprisingly, although plaque elastin content 
was, as expected, decreased in Timp3−/−/Apoe−/− mice (by 
43%; P<0.05) compared with Timp3+/+/Apoe−/− control mice 
(Figure 3H), elastin content was restored to levels compara-
ble with control animals, by miR-181b inhibitor treatment of  
Timp3−/−/Apoe−/− mice (Figure 3H). In situ zymography dem-
onstrated that plaque proteolytic activity was significantly in-
creased in Timp3−/−/Apoe−/− mice (4.4-fold; P<0.05) compared 
with controls and was unaffected by miR-181b inhibition 
(Figure 3I), implying that the effect of miR-181b inhibition 
on plaque elastin was, in part, independent of altered proteoly-
sis. Moreover, whereas it was observed that elastin fragmenta-
tion was more prevalent within brachiocephalic arteries from  
Timp3−/−/Apoe−/− mice (6.8-fold; P<0.0010) compared with  
Timp3+/+/Apoe−/− control mice (Figure  3J), miR-181b inhibi-
tion reduced the number of elastin breaks in Timp3−/−/Apoe−/− 
mice (by 66%; P<0.05), although still significantly greater 
in number than Timp3+/+/Apoe−/− control mice (Figure  3J). 
Together, these data indicate that the majority of the benefi-
cial actions of miR-181b inhibition on existing atherosclerotic 
plaques are through restoring macrophage TIMP-3 expres-
sion, as most effects were abolished in mice with Timp3 de-
ficiency. However, modulation of plaque elastin content and 
fragmentation suggest TIMP-3–independent effects of miR-
181b inhibition, implying that miR-181b may regulate other 
targets during atherosclerosis that influence elastin content. 
Thus, miR-181b inhibition may have a protective role in other 
vascular pathologies, particularly aneurysms.

MiR Inhibition Stabilizes AAAs in Angiotensin 
II–Infused Apoe−/− Mice
Using the angiotensin II (Ang II)–induced model of AAA 
formation in Apoe−/− mice fed a high-fat diet,20 we investigat-
ed the potential beneficial effects of miR-181b inhibition on 
the progression of infrarenal atherosclerotic AAAs by using 
the protocol described in Online Figure X. Treatment with 

an miR-181b inhibitor did not alter mean arterial blood pres-
sure levels in response to Ang II infusion (Figure 4A) but sig-
nificantly reduced the occurrence of AAAs to 48% from 86% 
in scrambled inhibitor-infused, control mice (Figure  4B). 
Other differences noted included the following: decreased 
AAA severity (Figure  4C), lowered abdominal aortic miR-
181b expression by quantitative polymerase chain reaction 
(40%; Figure  4D), increased TIMP-3 protein expression 
(Figure  4E), significantly smaller mean maximal abdomi-
nal aortic diameters from histology (Figure 4F and 4G), and 
markedly more elastin (Figure 4G and 4H). Prominent breaks 
and fragmentation of the elastic lamellae, key features of 
AAAs, were abrogated in miR-181b inhibitor-treated com-
pared with control animals (Figure  4I) in association with 
increased collagen accumulation (by 88%; Figure  4J and 
4K). By polarimetry, accumulation of red collagen fibers was 
greater in AAA tissues from miR-181b inhibitor-treated than 
control mice, indicating thicker and larger collagen fibrils21 
(Figure 4K). Consistent with the findings in atherosclerotic 
mice and in line with previous in vitro data showing impaired 
migration,8 macrophage content was diminished in AAAs 
from miR-181b inhibitor-treated mice compared with scram-
bled control animals (Figure  4L and 4M), associated with 
marked suppression of macrophage proliferation rates and 
apoptotic frequencies (87% and 66% respectively; P<0.05; 
Figure 4L, 4N, and 4O). These results demonstrate that ad-
ministration of an miR-181b inhibitor augments TIMP-3 ex-
pression in AAAs, and this is associated with fewer and more 
stable aneurysms.

MiR-181b Inhibition Regulates Matrix Composition 
at Other Aneurysmal Sites and Is Protective in an 
Additional Mouse Model
Aortic aneurysms are subdivided anatomically into thoracic 
aortic aneurysms and AAAs, and although there are some 
differences in the underlying pathogenesis, both are char-
acterized by fragmented and diminished elastin fibers.22 We 
therefore investigated whether miR-181b inhibition prevents 
aneurysm formation within the ascending and descending 
thoracic aortae in our Ang II–infused, Apoe−/− mouse model. 
Mean maximal diameter of descending thoracic aortas in 
miR-181b inhibitor-treated mice was significantly smaller 
than those of controls (31%, P<0.05; Figure 5A and 5B). The 
elastin content was also increased together with a decreased 
number of elastin breaks (Figure  5C and 5D and Online 
Figure XI). Similar to AAAs, collagen accumulation, particu-
larly more mature collagen fibrils, was increased (Figure 5E). 
In the ascending thoracic aortas, miR-181b inhibitor-treated 
mice had decreased vessel expansion compared with controls 
(by 28%, P<0.05; Figure 5F and 5G), which was associated 
with increased elastin content and reduced elastin fragmenta-
tion (Figure 5H and 5I and Online Figure XI). Macrophages 
were rarely observed at these sites, and TIMP-3 expression 
was low. Furthermore, no differences in macrophage numbers 
or TIMP-3 expression were detected between groups (Online 
Figure XII). These findings show that miR-181b inhibition 
exerts protective effects on aneurysm formation/progression 
at multiple susceptible sites within the aorta, even in the ab-
sence of overt inflammation, implying additional beneficial 



56    Circulation Research    January 6, 2017

Figure 4. MicroRNA (miR) inhibition stabilizes abdominal aortic aneurysms (AAAs) in angiotensin II-infused Apoe−/− mice. A, miR-
181b inhibition did not alter blood pressure levels. B, Quantification of aneurysm incidence and (C) severity (increasing severity from stage 
I to stage IV as described by Raffort et al12) in both groups of mice, using Fisher exact test and 2-tailed Student t test, respectively, n=6 to 
8/group, *P<0.05. D, Quantification of miR-181b expression by quantitative polymerase chain reaction (Q-PCR) and (E) tissue inhibitor of 
metalloproteinase (TIMP)-3 protein expression by immunohistochemistry, n=6 to 8/group, **P<0.01 compared with scrambled control mice, 
2-tailed Student t test. F, Maximal abdominal aortic diameter (mm) within the indicated groups, n=6 to 8/group, **P<0.05 compared with 
scrambled control mice, 2-tailed Student t test. G, Representative images of elastin van Gieson–stained histological cross-sections of AAAs 
from scrambled control and miR-181b inhibitor-treated Apoe−/− mice, demonstrating the differences in vessel diameter and elastin content 
(black), scale bar in ii represents 100 μm and is applicable to panels i, ii, and iv–x. Scale bar in iii represents 200 μm and is applicable to 
panels iii and iv. H, Quantification of elastin content and (I) elastin breaks in elastin van Gieson–stained AAAs, n=6 to 8/group, *P<0.05 
compared with scrambled control mice, 2-tailed Student t test. J, Quantification of total collagen content in AAAs assessed by picrosirius 
red staining, n=6 to 8/group, *P<0.05 compared with scrambled control mice, 2-tailed Student t test. K, Representative picrosirius 
red staining viewed under white light and linearly polarized light to show fibrillar collagen in AAAs of scrambled control and miR-181b 
inhibitor-treated Apoe−/− mice (scale bar in i represents 200 μm and is applicable to all panels), and associated qualitative analysis of new 
(green) and old (red) fibrillar collagen fiber content, n=6 to 8/group, *P<0.001 compared with scrambled control mice, Fisher exact test. L, 
Representative images and quantification of (M) macrophage content (N) proliferation percentage determined by immunohistochemistry for 
proliferating cell nuclear antigen (PCNA), and (O) apoptosis percentage determined by immunohistochemistry for cleaved caspase-3 (CC3), 
in AAAs from scrambled control and miR-181b inhibitor-treated Apoe−/− mice, n=6 to 8/group, *P<0.05 compared with scrambled control 
mice, 2-tailed Student t test, scale bar in i represents 100 μm and is applicable to all panels. In all cases, data represent the mean±SEM.
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Figure 5. MicroRNA (miR)-181b inhibition regulates matrix composition at other aneurysmal sites and is protective in an additional 
mouse model. A, Representative images and quantification of elastin van Gieson–stained histological cross-sections of descending thoracic 
aortas (TAs) from scrambled control and miR-181b inhibitor-treated Apoe−/− mice demonstrating the differences in (B) vessel diameter and 
(C) elastin content (black), n=6 to 8/group, *P<0.05 compared with scrambled control mice, 2-tailed Student t test scale bar in i represents 
200 μm and is applicable to both panels. D, Quantification of elastin breaks in elastin van Gieson–stained descending TAs, n=6 to 8/group, 
**P<0.01 compared with scrambled control mice, 2-tailed Student t test, scale bar in i represents 25 μm and is applicable to both panels, 
arrows indicate areas of elastin fragmentation. E, Quantification of total collagen content and associated qualitative analysis of new (green) 
and old (red) fibrillar collagen fiber content in descending TAs assessed by picrosirius red staining, n=6 to 8/group, *P<0.05 compared with 
scrambled control mice, 2-tailed Student t test and Fisher exact test, respectively. F, Representative images and quantification of elastin 
van Gieson–stained histological cross-sections of ascending TAs from scrambled control and miR-181b inhibitor-treated Apoe−/− mice, 
demonstrating the differences in (G) vessel diameter and (H) elastin content (black), n=6 to 8/group, *P<0.05 compared with scrambled 
control mice, 2-tailed Student t test scale bar in i represents 200 μm and is applicable to both panels. I, Quantification of elastin breaks in 
elastin van Gieson–stained ascending TAs, n=6 to 8/group, **P<0.01 compared with scrambled control mice, 2-tailed Student t test, scale 
bar in i represents 25 μm and is applicable to both panels, arrows indicate areas of elastin fragmentation. J, Quantification and associated 
representative images of aneurysm severity (increasing severity from stage I to stage IV as described by Raffort et al12) in scrambled control 
and miR-181b inhibitor-treated Ldlr−/− mice, using Fisher exact test, n=6 to 8/group, *P<0.05.
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effects of miR-181b inhibition independent of increased 
TIMP-3 protein expression.

To investigate whether the beneficial effects of miR-181b 
inhibition extended beyond Apoe−/− mice, we assessed AAA 
formation in Ang II–infused, high-fat–fed Ldlr−/− mice. AAA 
severity was significantly reduced in miR-181b inhibitor-
treated mice (Figure  5J) compared with scrambled control 
animals, which exhibited marked aneurysm formation.

MiR-181b Inhibition Mitigates the Progression  
of Preexisting AAAs in Apoe−/− or Ldlr−/− Mice
To explore the therapeutic potential of miR-181b inhibi-
tion, we next investigated its ability to retard the progression 
of preexisting AAAs. Consequently, hypercholesterolemic 
male Apoe−/− or Ldlr−/− mice undergoing Ang II infusion were 
treated after development of AAAs, according to the protocol 
shown in Online Figure VA. AAAs from miR-181b inhibitor-
treated Apoe−/− mice were notably less dilated than those from 
controls (Figure 6A and 6B). Further expansion in the aver-
age baseline maximal diameter before miR-181b inhibition 
was significantly decreased by miR-181b inhibition compared 
with scrambled miR control mice (Figure  6C). Moreover, 
miR-181b inhibitor significantly increased elastin content, as 
(Figure 6D and Online Figure VI) and reduced the frequency 
of elastin fragmentation (Figure  6E and Online Figure VI). 
Similar favorable outcomes were observed in Ldlr−/− mice; 
aneurysm severity, aortic diameter, and associated vessel ex-
pansion were all reduced by miR-181b inhibitor treatment 
(Figure 6F–6H and Online Figure XI). Similarly, the elastin 
content of AAAs was increased, whereas elastin breaks were 
reduced relative to controls (Figure  6I and 6J and Online 
Figure XI). Hence, miR-181b inhibition can also prevent the 
progression of preexisting AAAs, while increasing the elastin 
content of advanced AAAs.

TIMP-3 Protects From Sudden Death Because  
of Aortic Dissection or Aneurysm Rupture  
in Apoe−/− Mice
To further investigate the role of TIMP-3 in AAA develop-
ment, Timp3−/−/Apoe−/− and Timp3+/+/Apoe−/− mice were com-
pared in the Ang II–infused high-fat–fed model. Interestingly, 
whereas 25% of Ang II–infused Timp3+/+/Apoe−/− mice expe-
rienced sudden death related to aortic rupture/dissection, the 
mortality rate of Timp3−/−/Apoe−/− mice was more than doubled 
(55%, P<0.01; Figure 7A). The majority (64%) of Timp3−/−/
Apoe−/− mice experienced aortic rupture–related sudden death 
after 4 to 6 days of Ang II infusion (Figure 7A). Histological 
examination of AAAs from surviving 28-day Ang II–infused 
animals revealed that AAA maximal diameter did not differ 
between groups (Figure 7B), although the average wall thick-
ness was significantly decreased in Timp3−/−/Apoe−/− mice com-
pared with Timp3+/+/Apoe−/− animals (Figure  7C and 7D). 
Timp3−/−/Apoe−/− mice exhibited decreased elastin content and 
a greater number of elastin breaks compared with Timp3+/+/ 
Apoe−/− mice (Figure  7D–7F). Moreover, elastin abundance 
surrounding the aneurysmal sac was less evident in AAAs 
from Timp3−/−/Apoe−/− mice (Figure  7D). Analysis of AAAs 
after 7 days Ang II infusion, when rupture and associated 
death was most prominent in Timp3−/−/Apoe−/− mice, revealed 

that the ratio of macrophages to smooth muscle cells and 
markers of apoptosis (p53 and Bax), both characteristics as-
sociated with advanced AAAs, were increased relative to  
Timp3+/+/Apoe−/− mice (Figure 7G–7I). These findings support 
a critical role for TIMP-3 in AAA rupture that is associated 
with elastin loss.

Inhibition of miR-181b Attenuates Mortality Rates 
in Timp3−/−/Apoe−/− Mice by Directly Stimulating 
Elastin Expression in VSMCs and AAAs
To test whether miR-181b inhibition protects from AAA pro-
gression through TIMP-3, we used Timp3−/−/Apoe−/− mice. 
Contrary to our expectations, inhibition of miR-181b sig-
nificantly reduced death rates (from 55% to 25%, P<0.01; 
Figure 8A) after >14 days of Ang II infusion. However, AAA 
severity and incidence were unaffected (Figure 8B), and no 
differences in AAA maximal diameter, collagen content, or 
number of elastin breaks were detected (Figure  8C–8E). 
Interestingly, elastin content was increased in AAAs of miR-
181b inhibitor-treated Timp3−/−/Apoe−/− mice (Figure  8F and 
8G), implying that miR-181b modulates elastin expression 
within AAAs, in part independently from TIMP-3. Using 
an online database (www.targetscan.org), we identified that 
mature miR-181b can target both mouse and human elastin 
mRNA at the 3ʹ-untranslated region (Figure  8H). Indeed, 
using a wild-type elastin-3ʹ-untranslated region reporter ex-
pression vector, we observed that the miR-181b inhibitor in-
creased promoter activity (P<0.01; Figure  8I). Considering 
that vessel wall vascular smooth muscle cells (VSMCs) are 
the predominant source of elastin production, the effect of 
miR-181b inhibition on this was assessed. Addition of an miR-
181b inhibitor to aortic VSMCs significantly increased elastin 
protein expression (2.6-fold, P<0.01; Figure 8J). Addition of 
Ang II to VSMCs in culture did not modulate miR-181b ex-
pression (Online Figure XIII), implying an indirect effect of 
Ang II, such as in response to hypertension. Taken together, 
these findings demonstrate that miR-181b inhibition exerts a 
dual protective role on AAA progression, through augmenting 
TIMP-3 expression and directly increasing elastin expression.

Discussion
The accumulation of macrophages, heightened proteolytic ac-
tivity, and loss of matrix proteins are considered pivotal events 
during the progression and rupture of atherosclerotic plaques 
and aneurysms. We demonstrate here, for the first time, that 
miR-181b exacerbates these processes and consequently pro-
motes inflammatory cardiovascular diseases. First, we show 
that miR-181b mediates the downregulation by GM-CSF of 
macrophage TIMP-3 protein expression. Second, macrophage 
TIMP-3 protein expression is reduced alongside increased 
miR-181b levels in both advanced human atherosclerotic 
plaques and AAAs. Third, miR-181b through TIMP-3 down-
regulation is a key regulator of numerous macrophage func-
tions involved in plaque and aneurysm progression, including 
increased MMP activity, macrophage invasion and accumu-
lation, proliferation, and apoptosis. Finally, and most impor-
tantly, miR-181b inhibition decreases atherosclerotic plaque 
formation in mouse models, primarily through upregulation 
of macrophage TIMP-3 expression, whereas in aneurysm 
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models there is an additional effect on elastin production from 
VSMC that is supported by in vitro studies. Concomitantly, 
the composition of atherosclerotic plaques and AAAs is fa-
vorably altered and exhibits characteristics associated with 
stable plaques23 and aneurysms4 in man. Taken together, these 
findings imply a dual beneficial effect of miR-181b inhibition 

during atherosclerosis and AAAs, namely increased macro-
phage TIMP-3 protein expression and heightened VSMC 
elastin production, which could eventually be exploited 
therapeutically.

The progression and rupture of atherosclerotic plaques 
and AAAs underlie the majority of cardiovascular-related 

Figure 6. MicroRNA (miR)-181b inhibition mitigates the progression of preexisting abdominal aortic aneurysms (AAAs) in 
Apoe−/− or Ldlr−/− mice. A, Quantification and associated representative images of aneurysm severity (increasing severity from stage I to 
stage IV as described by Raffort et al12) in scrambled control and miR-181b inhibitor-treated Apoe−/− mice with preexisting AAAs, using 
Fisher exact test, n=6 to 7/group. Quantification of (B) vessel diameter, (C) vessel expansion, (D) elastin content, and (E) elastin breaks 
in scrambled control and miR-181b inhibitor-treated Apoe−/− mice with preexisting AAAs, n=6 to 7/group, *P<0.05 and ***P=0.0007 
compared with scrambled control mice, 2-tailed Student t test. F, Quantification and associated representative images of aneurysm 
severity (increasing severity from stage I to stage IV as described by Raffort et al12) in scrambled control and miR-181b inhibitor-treated 
Ldlr−/− mice with preexisting AAAs, using Fisher exact test, n=6 to 7/group. Quantification of (G) vessel diameter, (H) vessel expansion, (I) 
elastin content, and (J) elastin breaks in scrambled control and miR-181b inhibitor-treated Ldlr−/− mice with preexisting AAAs, n=6 to 7/
group, *P<0.05 and **P<0.01 compared with scrambled control mice, 2-tailed Student t test.
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deaths. Elucidating novel pathogenetic factors, such as miR-
181b, is therefore paramount for the development of efficient 
new therapies. Human pathological observations suggest that 
ECM disruption caused by persistent inflammation drives 
the formation and progression of atherosclerotic plaques and 

AAAs, particularly the transition of asymptomatic plaques 
and small dilatations to clinically relevant plaques and large 
AAA ruptures.4,5 Furthermore, a wealth of mechanistic in-
vestigations and studies in relevant animal models have 
highlighted the critical role of MMPs in collagen and elastin 

Figure 7. Tissue inhibitor of metalloproteinase (TIMP)-3 protects from sudden death because of aortic dissection or aneurysm 
rupture in Apoe−/− mice. A, Kaplan–Meier curves of survival free from aneurysm rupture in 28 days Ang II–infused hypercholesterolemic 
Timp3+/+ Apoe−/− and Timp3−/− Apoe−/− mice, n=15 to 20/group. Quantification of (B) vessel diameter and (C) average wall thickness  
in Timp3+/+ Apoe−/− and Timp3−/− Apoe−/− mice, n=6 to 8/group. D, Representative elastin van Gieson–stained abdominal aortic aneurysms 
(AAAs; i and ii) and higher magnification monochrome images (iii and iv) from Timp3+/+ Apoe−/− and Timp3−/− Apoe−/− mice and associated 
quantification of elastin content (E) and fragmentation (F). Scale bars represent 200 μm, and red arrows depict external elastic lamellae. 
Quantification of (G) smooth muscle cell (acta2) to macrophage (CD68) ratio, (H) p53, and (I) Bax expression in Timp3+/+ Apoe−/− and 
Timp3−/− Apoe−/− mice with preexisting AAAs, n=6 to 8/group. Statistical comparisons were made using log-rank test (A) or 2-tailed 
Student t test (B–I), *P<0.05 and **P<0.01 compared with Timp3+/+ Apoe−/− mice. In all cases, data represent the mean±SEM.
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Figure 8. Inhibition of microRNA (miR)-181b attenuates mortality rates in Timp3−/−/Apoe−/− mice by directly stimulating elastin 
expression in vascular smooth muscle cells (VSMCs) and abdominal aortic aneurysms (AAAs). A, Kaplan–Meier curves of survival 
free from aneurysm rupture in control and miR-181b inhibitor-treated Ang II–infused hypercholesterolemic Timp3−/− Apoe−/− mice, n=10 to 
20/group. B, Quantification and associated representative images of aneurysm severity in control and miR-181b inhibitor-treated Timp3−/− 
Apoe−/− mice, n=6 to 7/group. Quantification of (C) vessel diameter, (D) collagen content, (E) elastin breaks, (F) elastin content, and (G) 
representative images of elastin van Gieson–stained AAAs from control and miR-181b inhibitor-treated Timp3−/− Apoe−/− mice, n=6 to 7/
group, scale bar in i represents 200 μm and is applicable to panels i and ii, scale bar in ii represents 100 μm and is applicable to panels 
iii and iv. H, Conserved miR-181b–binding sites of the 3′-untranslated region (3′-UTR) of human (hsa) and murine (mmu) elastin (ELN). PCT 
refers to the probability of preferentially conserved targeting, demonstrating miR-181b preferentially targets ELN in both species. I, 3′-UTR 
luciferase reporter activity of human ELN in HeLa cells treated with an miR-181b inhibitor or a scrambled control, n=6. J, Representative 
Western blot and quantification of elastin protein expression in human aortic smooth muscle cells after addition of an miR-181b inhibitor 
or a scrambled control, n=4. Statistical comparisons were made using log-rank test (A), Fisher exact test (B), or 2-tailed Student t test 
(C–J), *P<0.05, **P<0.01, and **P<0.01 compared with controls. In all cases, data represent the mean±SEM.
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degradation, culminating in atherosclerotic plaque destabi-
lization and medial destruction of the aneurysm wall.7,17,24–27 
Conversely, TIMPs, by limiting proteolytic activity against 
ECM and inflammation-related proteins, undoubtedly have 
protective roles in the progression of atherosclerosis and 
AAAs.5 Although both reduce atherosclerosis and aneurysm 
formation in mouse models,28 TIMP-2 seems to play a great-
er protective role than TIMP-1 in both atherosclerosis29 and 
aneurysm formation.30 The beneficial effect of TIMP-2 is in 
part through suppression of monocyte/macrophage MMP-14 
expression/activity, leading to reduced invasion and accumu-
lation.29 MMP-14 (also known as MT1 [membrane type I]-
MMP) is inhibited by TIMP-2 and also TIMP-3, but poorly 
by TIMP-1.31 Consistent with this, MMP-14–mediated mono-
cyte/macrophage transmigration across an endothelial mono-
layer in vitro is efficiently blocked by TIMP-2 and -3, whereas 
TIMP-1 is ineffective.32 TIMP-3 is distinct from TIMP-2 in 
2 important aspects; it binds tightly to the ECM, suggesting 
that it has a principal role in pericellular proteolysis, and it 
also targets several members of the ADAMs (disintegrin me-
talloproteinases) family. Previous studies described protective 
effects of TIMP-3 during atherogenesis and aortic dilatation 
in rabbits, as well as mice. Atherosclerotic lesion area at the 
aortic root was increased in Timp3−/−/Apoe−/− mice, alongside 
heightened inflammation and decreased collagen content.33 
Conversely, systemic or myeloid cell-specific overexpression 
of TIMP-3 diminished atherogenesis within an Apoe−/− mouse 
partial carotid artery ligation model34 or in the aortic root of 
Ldlr−/− mice.35 Deletion of Timp3 in C57Bl/6 mice infused with 
Ang II revealed that TIMP-3 reduces adverse remodeling.36 
Moreover, administration of a broad-spectrum MMP inhibitor 
rescued vessel enlargement in Timp3−/− mice, demonstrating 
that decreased metalloproteinase activity largely accounted 
for the protection afforded by TIMP-3.36 Our current data and 
supporting studies demonstrate that expression of TIMP-3 at 
the mRNA level increases dramatically during monocyte to 
macrophage differentiation, irrespective of whether this oc-
curs in the presence of M-CSF or GM-CSF.14 However, we 
demonstrated that a distinct subset of foam cell macrophages 
(which frequent human atherosclerotic plaques and AAAs) 
exhibit TIMP-3 downregulation (and concomitant increased 
MMP-14 protein levels).8 This unique macrophage phenotype 
is highly invasive and has increased proliferation and apopto-
sis rates, all properties expected to destabilize atherosclerotic 
plaques and AAAs.8 The aim of the present study was to eluci-
date the basis for post-translational regulation of TIMP-3 and 
investigate its impact during the evolution of inflammation-
associated atherosclerosis and AAAs, studies that led to the 
identification and characterization of miR181b.

In addition to arterial dilatation, AAAs are characterized 
by decreased medial elastin content and disruption or frag-
mentation of elastic lamellae,4 and MMPs, especially MMP-
12, clearly play an important role in this context.37–40 Indeed, 
elastin preservation in the CaCl

2
 experimental model was ob-

served in aortas of select Mmp-knockout mice38,41 and in mice 
treated systemically with a c-Jun N-terminal kinase inhibitor 
to hinder MMP production.42 Moreover, numerous studies 
have evaluated the effects of nonspecific MMP inhibitors in 

organ culture experiments or animal models of AAAs. Animal 
studies with doxycycline, a tetracycline analogue that reduc-
es the expression and activity of several MMPs, attenuated 
elastin fragmentation and loss in rodent AAA models.43–45 
Similarly, hydroxamate-based broad-spectrum MMP inhibi-
tors also suppressed elastin degeneration within experimental 
AAAs in murine models.46–48 Furthermore, manipulation of 
individual TIMPs has also demonstrated the ability of these 
endogenous inhibitors to preserve elastin within the aneu-
rysmal wall.30,36,49,50 TIMP-3 augmentation achieved through 
miR-181b inhibition undoubtedly suppresses the activity of 
MMPs that target elastin, including MMP-12. We demonstrate 
here that elastin stabilization is also achieved through a direct 
effect of miR-181b on elastin protein synthesis. Furthermore, 
increased elastin content associated with miR-181b inhibition 
was accompanied by a more stable composition of atheroscle-
rotic plaques and aneurysms, including greater collagen ac-
cumulation and enhanced smooth muscle cell to macrophage 
ratio. Similarly, stabilization and preservation of aortic elastin 
in the CaCl

2
 AAA model with pentagalloyl glucose prevented 

aortic dilatation during both development and progression.51 
Impairment of elastin structure through heterozygous or 
homozygous mutation of the fibrillin-1 (Fbn1) gene is also 
associated with accelerated atherosclerosis52 and aneurysm 
rupture.53 Malformation of mature elastin fibers through fibu-
lin-4 deficiency also results in aortic aneurysms.54 The above 
studies alongside our own findings show that elastin preserva-
tion is consistently associated with retardation of aneurysm 
and atherosclerosis progression. This indicates that elastin 
stabilization by either TIMP-3–directed MMP inhibition 
or increased elastin synthesis is both afforded by miR-181b 
inhibition.

Our previous findings8 and current results imply that 
regulation of both MMP-14 and TIMP-3 expression is both 
regulated by post-transcriptional mechanisms and that both 
are under the control of GM-CSF. GM-CSF increases mac-
rophage MMP-14 levels and activity by suppressing miR-24. 
Moreover, reduction of miR-24 drives advanced atheroscle-
rotic plaque progression.10 We show here that GM-CSF sus-
tains miR-181b expression during monocyte-to-macrophage 
differentiation, and TIMP-3 is therefore inhibited.10 GM-CSF 
also increases MMP-12 expression in macrophages, although 
this occurs at the level of transcription.55 GM-CSF expres-
sion is increased in unstable atherosclerotic plaques,10,56 and 
administration of GM-CSF to high-fat–fed Apoe−/− mice ac-
celerates atherogenesis.57 Similarly, GM-CSF is abundant in 
human and mouse aortic aneurysms.58 Furthermore, GM-CSF 
administration induced AAA development57 and caused aortic 
dissection59 in high-fat–fed Apoe−/− mice and CaCl

2
 applica-

tion/Ang II–infused C57Bl/6 mice, respectively. GM-CSF 
neutralization abrogated inflammatory aneurysm develop-
ment and matrix-degrading activity in a Smad3−/− mouse 
model.58 Clinically, a positive correlation between plasma 
concentrations of GM-CSF and intracranial aneurysms has 
been reported,60 and circulating levels of GM-CSF are also el-
evated in patients with acute aortic dissection.59 All of this evi-
dence supports the concept that GM-CSF plays a major part 
in atherosclerosis and AAAs, in part by sustaining miR-181b 
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levels. In future experiments beyond the present scope, it will 
be valuable to investigate these concepts further by manipulat-
ing the expression of GM-CSF.

We are aware that miR-181b has many additional pre-
dicted targets, which may be involved in the advantageous 
antiatherosclerotic and antianeurysm effects observed in vivo. 
However, our in vitro, in vivo, and human pathological experi-
ments demonstrate a dominant role of TIMP-3 in protecting 
from disease progression subsequent to miR-181b inhibition. 
It has recently been reported that miR-181b can regulate nu-
clear factor-κB–mediated activation of endothelial cells and 
ensuing vascular inflammation.61 However, effects on athero-
sclerosis and aneurysm were not assessed, although the authors 
did demonstrate that miR-181b overexpression in endothelial 
cells dramatically suppressed TIMP-3 expression.61 It is also 
plausible that other miRs can regulate TIMP-3 expression 
in atherosclerosis and aneurysms, affecting disease develop-
ment. Indeed, inhibition of miR-712 (or its human homologue 
miR-205) prevented endothelial inflammation and atheroscle-
rosis in a carotid ligation model34 and aortic dilatation, elastin 
fragmentation, and aortic rupture in Apoe−/− mice,62 potentially 
through post-transcriptional regulation of TIMP-3 and associ-
ated heightened MMP activity. In concert with our previous 
findings8–10 and the in situ zymography in the present study, 
we predict that the activity of select MMPs, such as MMP-
14, is retarded through miR-181b–dependent TIMP-3 upregu-
lation, although TIMP-3 can inhibit the activity of multiple 
MMPs, ADAMs, and aggrecanases (ADAMTS-4 and -5), 
the individual roles/activities of which were not determined 
in the current study. Nonetheless, our current findings dem-
onstrate that restoration of TIMP-3 levels achieved through 
miR-181b inhibition retards the progression of atherosclerotic 
plaques and aneurysms at multiple vascular beds and in dif-
ferent mouse strains. Furthermore, considering that TIMP-3 
has been validated as a target of miR-181b,13 our experiments 
conducted in Timp3–deficient mice strongly imply that the 
beneficial effects afforded by miR-181b inhibition are largely 
TIMP-3 dependent during atherosclerosis in Apoe−/− mice, 
although an additional protective effect is achieved through 
elevating elastin synthesis during formation of AAAs.

A further limitation of our study is the use of cell markers 
and plaque characteristics to infer the stability of atheroscle-
rotic lesions, considering the unproven assumptions inherent 
in such definitions. However, plaque composition defined by 
the content of VSMCs and collagen compared with macro-
phage and lipid is still referred to in the literature as delinea-
tors of plaque vulnerability.63 Moreover, it has recently been 
suggested that cells other than macrophages express CD68, 
which we used as a marker of macrophages in the present 
study, and subsequently, all mentions to macrophages are 
in fact CD68+ve cells. Finally, to ensure the reliability of our 
semiquantitative assessment of histological parameters, intra- 
and interobserver coefficients were nonsignificant demon-
strating that the difference between measurements was within 
the limits of agreement (Online Figure XIV).

We present here novel in vivo findings that miR-181b 
inhibition reduces the progression of established atheroscle-
rotic plaques and AAAs, mediated by increased expression 

of TIMP-3 in intraplaque and intra-aneurysm macrophages 
and elastin expression in VSMC. Inhibition of miR-181b 
favorably altered the composition of atherosclerotic plaques 
and AAAs consistent with improved stability. Furthermore, 
elevated miR-181b expression occurred in human plaques 
histologically characterized as stable and correlated with de-
creased macrophage TIMP-3 expression. Similar results were 
also observed in human AAA samples when compared with 
nonaneurysmal aortae. Collectively, these findings support the 
development of clinically applicable strategies to inhibit miR-
181b, thereby maintaining or elevating TIMP-3 and elastin ex-
pression, and reducing elastin degradation. Such inhibition of 
miR-181b could serve as a therapeutic approach in reversing 
the advancement of atherosclerosis and aortic aneurysms and 
avoiding the associated acute clinical syndromes.
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What Is Known?

•	 Rupture of atherosclerotic plaques and abdominal aortic aneurysms 
underlies most cardiovascular-related deaths.

•	 Progressive accumulation of macrophages contributes to the patho-
genesis of atherosclerosis and aneurysms.

•	 Macrophages at rupture-prone sites of plaques and aneurysms display 
increased expression and activity of several matrix metalloproteinases 
but decreased expression of tissue inhibitor of  matrix metalloprotein-
ases (TIMP)-3.

What New Information Does This Article Contribute?

•	 TIMP-3 is reduced in plaque and aneurysm macrophages during dis-
ease progression because of negative regulation by the proatherogenic 
and proaneurysmal microRNA (miR)-181b.

•	 Inhibition of miR-181b protects against atherosclerosis and aortic an-
eurysm through increasing expression levels of macrophage TIMP-3 
and vascular smooth muscle cell elastin.

•	 TIMP-3 deficiency promotes atherosclerosis and aortic aneurysm for-
mation and reduces the beneficial effects of miR-181b inhibition.

An imbalance between  matrix metalloproteinases and TIMPs, 
resulting in heightened proteolytic activity, occurs in advanced 
atherosclerotic plaques and abdominal aortic aneurysms. In ad-
dition, a macrophage phenotype defined by decreased expres-
sion of TIMP-3 is associated with increased matrix degradation. 
Consequently, novel methods to promote the expression of TIMP-
3 are desirable. In this study, we show that genetic deletion of 
TIMP-3 results in more advanced atherosclerotic plaques and 
aortic aneurysms. Moreover, we discover that miR-181b regu-
lates macrophage TIMP-3 expression and that while miR-181b 
increases during the progression of atherosclerotic plaques and 
aneurysms, TIMP-3 protein expression diminishes. Accordingly, 
inhibition of miR-181b in multiple mouse models exerts antiath-
erosclerotic and antianeurysmal effects, predominantly through 
increasing macrophage TIMP-3 expression and vascular smooth 
muscle cell elastin levels. These findings demonstrate that TIMP-3 
is protective toward atherosclerosis and aneurysm formation and 
that targeting miR-181b may provide a novel strategy for limiting 
the progression of atherosclerotic plaques and aortic aneurysms.

Novelty and Significance




