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ABSTRACT: Gridded precipitation data sets are frequently used to evaluate climate models or to remove model output biases.
Although precipitation data are error prone due to the high spatio-temporal variability of precipitation and due to considerable
measurement errors, relatively few attempts have been made to account for observational uncertainty in model evaluation
or in bias correction studies. In this study, we compare three types of European daily data sets featuring two Pan-European
data sets and a set that combines eight very high-resolution station-based regional data sets. Furthermore, we investigate
seven widely used, larger scale global data sets. Our results demonstrate that the differences between these data sets have
the same magnitude as precipitation errors found in regional climate models. Therefore, including observational uncertainties
is essential for climate studies, climate model evaluation, and statistical post-processing. Following our results, we suggest
the following guidelines for regional precipitation assessments. (1) Include multiple observational data sets from different
sources (e.g. station, satellite, reanalysis based) to estimate observational uncertainties. (2) Use data sets with high station
densities to minimize the effect of precipitation undersampling (may induce about 60% error in data sparse regions). The
information content of a gridded data set is mainly related to its underlying station density and not to its grid spacing. (3)
Consider undercatch errors of up to 80% in high latitudes and mountainous regions. (4) Analyses of small-scale features and
extremes are especially uncertain in gridded data sets. For higher confidence, use climate-mean and larger scale statistics. In
conclusion, neglecting observational uncertainties potentially misguides climate model development and can severely affect

the results of climate change impact assessments.
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1. Introduction

Precipitation is a key parameter in the climate system and
it is important for ecosystems, agriculture, water supply, or
hydroelectric power production. Observing precipitation is
challenging because it is highly variable in space and time
Bacchi and Kottegoda (1995) and subject to substantial
measurement errors. The latter mainly depend on the type
and intensity of precipitation, the type of gauge employed,
and on wind speed (Sevruk and Hamon, 1984).

One error that can be dominant in high latitudes and
mountainous regions is precipitation undercatch. Under-
catch errors for rain typically are between 3 and 20%
and for snow they can be up to 40% or even 80% (in
the case of non-shielded gauges) (Fgrland and Institutt,
1996; Goodison et al., 1997) The application of under-
catch correction can modulate measured precipitation
trends if they are related to lower undercatch errors due
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to more liquid precipitation in warmer climates (Fgrland
and Hanssen-Bauer, 2000).

An additional error source is the sampling error that
mainly depends on the station density. For a given number
of stations, the sampling error depends on the spatial vari-
ability of precipitation that is influenced by the orography,
season, temporal resolution, and type of precipitation (con-
vective, stratiform) (e.g. Schneider et al., 2014). Rudolf
et al. (1994) estimated the sampling error of monthly pre-
cipitation in 2.5° grid boxes over different land regions
with high station coverage. Using 5 rain gauges per grid
cell lead to sampling error between +7 and 40% while
using 10 stations reduces the error to +5-20%.

While the interpolation of irregularly distributed
rain-gauge measurements onto regular grids is an addi-
tional error source, it also has several advantages. For
example: 1) climate models can then be evaluated more
directly since they represent spatial area averages rather
than point data, 2) averaging over regions is straight
forward, and 3) estimated data becomes available for
non-observed locations. However, interpolation tends to
introduce excessive smoothing of spatial variability and
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Table 1. List of daily observational data sets.

Data set Coverage and Period Spacing and Average Station
acronym frequency stations per ratio compared
25km X 25 km to E-OBS
E-OBS (v10.0) (Haylock et al., Europe 1950-2013  25km daily 0.2-2 1
2008)
HMR (Dahlgren et al., 2014) Europe 1989-2010  5km daily 0.1-4 2
EURO4M-APGD (v1.2) (Isotta European Alps (AL) 1971-2008  5km daily 11 5.5
etal.,2014)
REGNIE (DWD, 2009) Germany (GE) 1961-2015  1km daily 5 2
“PTHBYV (Johansson, 2002) Sweden (SW) 1961-2010 4 km daily 0.8
*KLIMAGRID (Mohr, 2009) Norway (NO) 1957-2013  1km daily 3 5
Spain011 (Herrera et al., 2012) Spain (SP) 1971-2011 12 km daily 34 27
CARPATCLIM (Spinoni et al., Carpathians (CA) 1961-2010  10km daily 0.8 5
2015)
UKCPO09 (Perry and Hollis, 2005)  United Kingdom (UK)  1910-2011  Skm daily 11.3 33
"SAFRAN (Quintana-Segui France (FR) 1958-2013 8 km hourly 4.5 44

et al., 2008; Vidal et al., 2010)

Corrected for observation losses. "Regional reanalysis.

may thus lead to an underestimation of extremes (Haylock
et al., 2008; Hofstra et al., 2010). Ly et al. (2011) inves-
tigated the influence of the gridding methods on the
generation of a daily, high-resolution gridded precipitation
data set in a catchment in Belgium. They found root mean
squared error (RMSE) differences of up to 10 mm day~!
when only few raingages were used for the interpolation.
When using more than one station per 300 km?, the RMSE
differences are typically bellow 0.5 mmday~'. Wagner
et al. (2012) did a similar analysis for a data scarce catch-
ment in India. They found that the gridding method lead
to differences in the annual mean catchment precipitation
of up to 50%. Furthermore, they showed the successful
integration and large potentials of using spatial pattern
from satellite derived precipitation products to generate
gridded data sets in data scarce regions. Contractor et al.
(2015) used different gridding methods to derive daily
precipitation data sets over Australia and compared them
with satellite derived products. They found that the data
sets agree well for low to moderate daily precipitation
amounts but start to diverge for values above 20 mm day~'.
Begueria et al. (2015) show that the spatial variance in
gridded observational data sets depend on the spatial
density of observations used for their construction. They
conclude that this can lead to erroneous estimates of cli-
mate variability and extremes because most data sets have
large temporal changes in the number of the underlying
stations.

Inhomogeneities in precipitation records primarily
impact analysis of climate change and trends. Effects
of inhomogeneities at individual stations are in gen-
eral reduced when the regional time series are analysed
that include the average over multiple stations (New
etal., 1999). Hofstra et al. (2009), however, show that
including a single inhomogeneous station may influ-
ence the homogeneity of a whole area in a gridded
data set.

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd
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Precipitation is not only difficult to observe, it is also
difficult to model because it encompasses processes that
occur on a wide range of scales (from the micro to the
synoptic-scale). Many of these processes, such as deep
convection or phase transitions, occur on sub-grid scales
and have to be parameterized in climate models. The
parameters therein are partly used to tune the simulated
precipitation with respect to the observations (Rotstayn,
2000; Raisdnen, 2007; Bellprat et al., 2012).

Even though it is widely known that observational data
sets contain errors (e.g. Klein Tank eral., 2002; Frei
et al., 2003; Hofstra et al., 2009; Rauthe efal., 2013;
Isotta et al., 2014, 2015; Schneider et al., 2014). it is
common practice to evaluate, statistically downscale, and
bias correct climate model output with single observa-
tional data sets without addressing uncertainties (e. g.,
Jacob et al., 2007; Kotlarski et al., 2014; Prein et al.,
2013a; Dosio and Paruolo, 2011; Hirschi et al., 2011).
Herold et al. (2015) show that comparing measurements
of the global average daily precipitation intensity over
land from rain gauges, remote sensing, and/or reanal-
yses data sets leads to a similar spread than found in
the Coupled Model Intercomparison Project Phase 5
(CMIPS) global climate model simulations. On a Euro-
pean scale, there are several studies that attempted to
investigate uncertainties in gridded precipitation data
sets. Klein Tank et al. (2002) and Hofstra et al. (2009)
found that the continental-scale European Observation
(E-OBS) data set shows inhomogeneities in time series
and RMSE differences of up to 5.8 mm day~' with respect
to regional data sets (RDs), exhibiting higher station
densities. Isotta et al. (2015) compared precipitation from
several European-scale regional reanalyses (including
the Hirlam Mesan Reanalysis (HMR) (Dahlgren et al.,
2014) and ERA-Interim (Dee et al., 2011); see Tables 1
and 2) with widely used observational data sets (E-OBS,
CRU (Harris et al., 2014), GPCC (Schneider et al., 2014),
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Table 2. List of monthly, low-resolution observational data sets.

Data set Coverage Time period  Spacing and frequency  Input data

U-DEL (Legates and Global land 1900-2010 0.5° monthly ~24 600 land stations from GHCN v2 and

Willmott, 1990) a few other sources

CRU (Harris et al., 2014) Global land ~ 1901-2012 0.5° monthly ~4000 station records primarily from
CLIMAT, Monthly Climatic Data from
the World, and World Weather Records

GPCC (Schneider et al., Global land 1900-2013 0.5° Monthly ~67 200 rain-gauge stations

2014)

4 Global 1979-2015 2.5° monthly 6500—-7000 rain-gauge stations, satellites,

GPCP (Adler et al., 2003) and sounding observations

PREC (Chen et al. (2002)  Global land 1948-2015 0.5° monthly ~17000 GHCN v2 gauge measurements

ERA-Interim (Dee et al., Global 1979-2015 ~79 km 3 hourly Most in situ and satellite data used in

2011) numerical weather forecasting, including
satellite radiances

a 60°S—60°N 1983-2015 0.25° daily Precipitation estimates derived from

PERSIANN-CDR
(Ashouri et al., 2015)

satellite infrared and microwave
measurements are bias corrected with the
GPCP monthly precipitation data set.

acorrected for observation losses.

and EURO4M-APGD which has a high station density
in the Alps (Isotta et al., 2014); see Tables 1 and 2).
They show strengths (e.g. spatial variations, correction
of unrealistic spatial features) and weaknesses (e.g.,
overestimate mean precipitation and wet day frequency)
of the regional reanalyses. They state that low station
density is a major error source and that observational
data sets tend to agree in regions where their station den-
sities are similarly high. Rauthe ef al. (2013) compared
the high-resolution gridded daily data set HYRAS with
precipitation from a station network in central Europe
and found mean absolute errors of about 2mmday~! and
also highlight the need of a high station network. Highest
differences to E-OBS and PRISM (Parameter-elevation
Regression on Independent Slope Model; Schwarb (2000)
and Schwarb et al. (2001)) were found in regions with
complex orography. Kidd efal. (2012) compared sev-
eral satellite-based precipitation products over northwest
Europe with ground stations. They found that the quality
of the satellite products is lowest during winter and that
they generally underestimate precipitation during all
seasons.

This study complements previous studies by expanding
the investigations of uncertainties in gridded observa-
tional data sets to most land areas in Europe (eight
subregions, see Figure 1(b)) within the period 1989-2008.
This became recently possible, because many regional
high-resolution precipitation data sets (see Table 1 except
for E-OBS and Figure 1(b)) have become available in the
last few years. We also include data sets with precipitation
undercatch correction which allows us to estimate the
uncertainty contribution from this frequently neglected
error source. Additionally, we include frequently used
European and global data sets to the analysis to provide
a holistic overview of the uncertainties in precipitation
estimates. Most importantly, we compare the derived
observational uncertainties with errors in simulated

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd
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precipitation from state-of-the-art high resolution (0.11°
horizontal grid spacing) regional climate model (RCM)
simulations. This is hoped to provide a guideline for future
studies focusing on model evaluation, model selection,
model development, empirical-statistical bias correction,
and statistical downscaling of model results.

This study is structured as follows. In Section 2, we intro-
duce the investigated observational and model data sets. In
Section 3, we focus on daily precipitation from three sets
of observational data sets and investigate the sources of
differences in their precipitation estimates. In Section 4,
we analyse monthly precipitation and additionally include
seven global precipitation data sets that are based on sur-
face stations, satellite observations, and reanalysis models.
Section 5 shows the comparison between observational
uncertainties and errors in modelled precipitation and
highlights the importance of a multi observational data set
approach for the evaluation of climate models. In Section
6, the results are discussed and Section 7 closes with
conclusions.

2. Observational data sets and RCMs

We collected an ensemble of RDs, which provide
high-resolution (<12-km grid spacing) daily precipitation
observations for eight regions in Europe (see Table 1). For
the daily precipitation analysis, we additionally include
the E-OBS version 10 (Haylock efal., 2008) data set
(25-km grid spacing) and the recently established HMR
(Dahlgren et al., 2014) regional reanalysis (5-km grid
spacing). Figure 1(b) shows the approximate number of
stations that are included in each of the RDs and com-
pares them to the number of stations that are included in
the same region in E-OBS (Figure 1(a)) and the HMR
(Figure 1(c)). The station density in the RDs and the other
two data sets is similar in Sweden. The RDs and the HMR
have a similar station density in France while E-OBS has

Int. J. Climatol. 37: 305-327 (2017)
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Figure 1. Stations contained in different regions of E-OBS (panel a), the RDs, (panel b), and the HMR (panel c) data set and areal coverage of the
eight RDs (panel b). The numbers in the panels give the approximate number of stations used to create the gridded data set in different regions. Only
stations that cover more than 80% of the time period (1989-2008) are considered.

approximately 40 times less stations. In the UK, Spain,
Germany, and the Carpathians the station densities in the
RDs are between 2 and 27 times higher than in the other
two data sets (see Figure 1 and Table 1 right column).

The HMR and the RD of France (SAFRAN) differ from
the other RDs and the E-OBS because they are down-
scaled regional reanalyses. This means, the HMR and
SAFRAN includes additional information from dynami-
cal high-resolution limited area models (Sass et al., 2002;
Quintana-Segui et al., 2008; Vidal et al., 2010; Dahlgren
etal., 2014). The HIRLAM reanalysis is downscaling
ERA-Interim data to a 22 km grid. Surface data are assim-
ilated from ERA-Interim and atmospheric data are assim-
ilated from the ECMWF archives. In a second step, the
MESAN analysis system is applied to downscale the
HIRLAM reanalysis to a Skm grid. For the downscal-
ing of precipitation, data from the Swedish Meteorological
and Hydrological Institute (SMHI), the Météo-France, and
the ECA&D database (Klein Tank et al., 2002) are used.
In contrast, E-OBS only includes data from the ECA&D
database.

In addition to the daily E-OBS, HMR, and RDs data
sets, seven more coarsely resolved global observational
data sets are included (see Table 2). The University of
Delaware (U-DEL; Legates and Willmott (1990)), Cli-
matic Research Unit (CRU; Harris et al. (2014)); Global
Precipitation Climatology Centre (GPCC; Schneider et al.
(2014)), and Precipitation Reconstruction Land (PREC;
Chen et al. (2002)) data sets are based on different sets of
station observations and provide monthly precipitation on
a0.5° grid for all land areas of the world. In the Global Pre-
cipitation Climatology Project (GPCP; Adler et al. (2003))
data set, stations, satellites, and sounding observations are
combined for monthly precipitation estimations on a 2.5°
grid. The Precipitation Estimation from Remote Sensing
Information using Artificial Neural Network — Climate
Data Record (PERSIANN-CDR; Ashouri et al. (2015)) is
based on satellite observations that are bias corrected with
the GPCP precipitation. PERSIANN-CDR provides daily
precipitation estimates for the region 60°S—60°N on a 0.25°

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd
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grid. We did not include PERSIANN-CDR in the daily
analysis because it does only include the southernmost part
of Sweden and Norway and it has large differences to the
other observational data sets (except GPCP). Finally, the
European Centre for Medium-Range Weather Forecasts
Interim reanalysis (ERA-Interim; Dee ef al. (2011)) pre-
cipitation is also included.

Several of the observational data sets are corrected for
precipitation undercatch. The applied correction meth-
ods, however, are different. In the Norwegian RDs the
method of Fgrland and Institutt (1996) is applied in which
an exposure class is assigned to every station (see Mohr
(2009)). For solid precipitation (e.g. snow) and extremely
sheltered stations, the correction factor is 1.05 while for
extremely exposed stations the correction factor is 1.8 (i.e.
adding 80% more precipitation to the measured value).
For rain, the correction factors are between 1.02 and
1.14. These values are derived for the Nordic gauges with
wind shields. In the Swedish data set, all station are clas-
sified according to wind speed. The applied correction
factors are lower than those used in Norway and vary
between 1.015/1.04 and 1.12/1.36 for liquid/solid precipi-
tation.

Undercatch correction is more challenging for global
data sets because important information such as error char-
acteristics of the gauges, their exposure, or the phase
of precipitation are often not available (Schneider ef al.,
2014). Frequently, bulk correction factors for monthly cli-
matological conditions are applied to global data sets such
as GPCP and respectively PERSIAN-CDR (Legates, 1987;
Sevruk, 1989; Legates and Willmott, 1990). Those fac-
tors are provided on a climatological mean basis for each
calendar month (Legates and Willmott, 1990) and vary
between 1.0 and 3.0. (Legates and Willmott, 1990) and
vary between 1.0 and 3.0. Fuchs ez al. (2001) developed
an improved correction method that takes the weather con-
ditions (wind, temperature, relative humidity, precipitation
phase, and intensity) into account. Schneider et al. (2014)
state that this refined correction method leads to correction
factors that are approximately 15% smaller than the bulk

Int. J. Climatol. 37: 305-327 (2017)
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correction factors from factors from Legates and Willmott
(1990). For the evaluation of modelled precipitation, the
output from eight high resolution (0.11°, approximately
12.5-km horizontal grid spacing) RCM simulations from
the European branch of the Coordinated Regional Cli-
mate Downscaling Experiment (EURO-CORDEX) (Jacob
etal., 2013) are used. The RCMs are forced by the
ERA-Interim reanalysis (Dee ef al., 2011) on their lateral
boundaries, and cover the period 1989-2008. A descrip-
tion of the included models and their basic setup can be
found in Table 3.

All analyses are performed on common grids. The daily
precipitation analyses in Section 3 are performed on the
0.25° regular grid of E-OBS while the large scale, monthly
and model analyses are done on a 0.5° regular grid. A con-
servative remapping routine is used, which takes weighted
averages of the precipitation on the source grid to cal-
culate precipitation on the target grid (e.g. Jones, 1999).
The weights are proportional to the area of a target grid
cell covered by a source grid cell. The benefit of using a
conservative remapping method compared to, e.g. bilinear
interpolation, is that the former conserves the integral of
precipitation over any domain. We decided to upscale the
high-resolution data sets to coarser grids to not penalize
the coarser resolved data sets due to missing small-scale
features. Furthermore, the observational data sets and the
model simulations typically have an effective resolution
(actual information content) of more than four times their
grid spacing (Skamarock, 2004; Prein et al., 2013b; Isotta
et al., 2015).

3. Comparison of daily precipitation data sets

In this Section, we investigate the differences between the
daily precipitation from the RDs, the HMR, and E-OBS
data set and assign them to different error sources.

Average winter (December, January, February;
DJF) precipitation is highest in mountainous regions
(Figure 2(a)—(c)). During summer (June, July, and
August; JJA; Figure 2(d)—(f)), the Mediterranean region
is drier than in DJF while the European Alpine area and
the Carpathians are wetter due to the frequent occurrence
of thunderstorms.

While these larger scale patterns are similar in all data
sets, regional patterns can be very different. For example,
there is a well-observed precipitation minimum in the inner
Alpine region during JJA (e.g. Cebon et al., 1998)which
is captured by the RDs and the HMR but missed in the
E-OBS data set (compare Figure 2(d) with Figure 2(e) and
(f)) (c¢f Isotta et al., 2015). Other examples are the JJA
precipitation in the Carpathians (spatially homogeneous
in E-OBS, distinct peaks over the mountains in the RDs
and the HMR) or the Eastward extend of high precipitation
amounts on the Atlantic Coast and the Pyrenees in Spain
during DJF.

The observational data sets do not only disagree in the
regional spatial patterns, but also in the amount of sea-
sonal average precipitation (Figure 3). Most striking are

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd
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the differences in Norway. While E-OBS is on average
similar to HMR, the RD shows ~2mmday~! (~60%)
more precipitation during DJF and ~1 mm day~! (~40%)
more during JJA. Grid cell differences reach up to ~13 mm
day~! (~80%). Averaged over the investigated regions, the
RDs feature more precipitation than the HMR and E-OBS,
even though there are small areas where they are drier (e.g.
parts of the Iberian Peninsula, the inner Alpine region,
or the East coast of the UK). Remarkable is the differ-
ence between the RDs and the HMR during JJA along
the French boarders to Italy, Switzerland, and Spain (panel
e). There are only minor differences between the two data
sets in France but differences are getting large across the
boarders. This is not dependent on orography since the
Pyrenees and the Alps do well extend into France, but
is rather related to changes in the station density of the
HMR (see Figure 1(c)), which is supported by findings of
Isotta et al. (2015) for the Alpine area. This result demon-
strates the importance of a high station density network
for the accurate estimation of precipitation. Furthermore, it
indicates that missing information in regions with low sta-
tion densities cannot easily be provided by state-of-the-art
reanalyses with dynamical models, such as attempted in
the HMR.

The reasons for the large differences between the obser-
vational data sets may be manifold, but two major aspects
can be easily identified. The first one is gauge undercatch
correction. Norway and Sweden exhibit a relatively high
station density in all data sets, thus the station density
is not the primary reason for differences. However, the
RDs are corrected for gauge undercatch in these regions,
which is probably the dominant source for differences.
In the Norwegian data set, correction factors of up to
14%/80% for liquid/solid precipitation (Mohr, 2009) are
applied to extremely unshielded locations (Fgrland and
Institutt, 1996). This explains the maximum differences of
80% during DJF in Norway since in this season precip-
itation falls predominantly as snow. In Sweden, the dif-
ferences are smaller because of less exposure of the rain
gauges to wind (smaller correction factors) and the lower
precipitation amounts falling in DJF (see Figure 2). In the
other RDs, in E-OBS, and in the HMR, no undercatch
correction is applied, implying that other aspects must be
responsible for further differences.

Station density (sampling errors) appears to be the sec-
ond major source of differences between the data sets.
Figure 4 depicts the Spearman rank correlation coefficient
for daily time series on grid-cell basis comparing E-OBS
and the RDs (panels a and c¢) and the HMR and the RDs
(panels b and d) in DJF and JJA, respectively. We assume
that in grid cells where a data set has no stations, it is likely
that precipitation events observed in other data sets are
missed or underestimated. This leads to a reduced tempo-
ral correlation. Temporal correlation is barely affected by
undercatch correction, since it is rather insensitive to the
scaling of the time series. Figure 4 reveals low correlation
coefficients for areas where at least one of the compared
data sets has a low station density meaning that daily pre-
cipitation time series at these locations differ strongly.

Int. J. Climatol. 37: 305-327 (2017)
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Figure 2. Seasonal average precipitation in DJF (left) and JJA (right) for E-OBS (first row), the RDs (second row), and the HMR (third row). Shown
beside the regions is the mean, minimum, and maximum seasonal average precipitation of the grid cell values in the region. The Alpine data set
applies to the red hatched areas in Figure 1(b)) while in Norway results from the Norwegian data set are shown.
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Figure 3. Same as in Figure 2 but for differences between E-OBS and the RDs (first row), HMR and E-OBS (second row), and E-OBS and HMR

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd
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Figure 4. Temporal Spearman rank correlation coefficients of daily grid cell precipitation between E-OBS and the RDs (first row) and HMR and
RDs (second row) for DJF (left) and JJA (right). UK is not shown because the RD contains only monthly data. The numbers in the panels are as in
Figure 2 but for correlation coefficients.

In general, correlation coefficients are higher in DJF than
in JJA due to the predominant convective character of pre-
cipitation and its therefore high spatio-temporal variabil-
ity in JJA. This means that a high station density is even
more important in JJA than in DJF. In the Alpine region,
for example, E-OBS has on average 2.0 stations per grid
cell. However, the density is varying in different countries.
Therefore, in Austria (0.1 stations per grid cell) we find low
correlation coefficients, whereas in Slovenia (6.5 stations)
high correlation coefficients are present. For the same rea-
son, a similarly strong spatial gradient is shown between
very high correlation coefficients in France and low ones in
Spain and North-Western Italy when the HMR is compared
to the RDs in JJA (panel d). The correlation coefficients
between the HMR and the E-OBS data (not shown) are
generally higher than the coefficients from the comparison
to the RDs in all regions except France because these data
sets use a similar station basis (except in France and Swe-
den; in E-OBS, the station density is also high in Sweden).

Similar to the temporal correlation coefficients, also
the daily variability, measured as temporal standard devi-
ation (Figure 5), shows highest differences in regions
where the station density varies between the different data
sets. Additionally, undercatch correction tends to increase
the temporal variability because of the amplification of

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd

on behalf of the Royal Meteorological Society.

precipitation events. Except for some small-scale areas,
E-OBS has lower temporal variability than the regional
data sets. The only exception is a continuous strip of higher
variability on the southern side of the Alpine ridge during
DJFE. The regions with the most similar variabilities are
Germany and Sweden during JJA. Temporal variabilities
are more similar between the HMR and the RDs during
DJF (especially in France where both have a high sta-
tion density). Remarkable is the increased variability in the
HMR compared to E-OBS in Spain during JJA because
the same set of stations (except in the Pyrenees) is used
in both data sets. The additional information from the
HIRLAM reanalysis might be responsible for the differ-
ences between E-OBS and the HMR. A similar feature can
also be seen in the Carpathians.

A further source of uncertainties in gridded observa-
tional data sets arises by interpolating point measure-
ments to a grid. Thereby, extreme precipitation is affected
most (Haylock et al., 2008) This is a well-known prob-
lem in E-OBS (Haylock et al., 2008; Hofstra et al., 2009,
2010). Figure 6(a) depicts the daily empirical quantile
functions for Norway during DJF. The difference between
the two lines (E-OBS minus KLIMAGRID) is shown
in Figure 6(b) together with differences observed in the
other RDs and the HMRs. All RDs and the HMRs have

Int. J. Climatol. 37: 305-327 (2017)
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Figure 5. Standard deviations of daily grid cell precipitation of the E-OBS/HMR data set (first/second row) divided by the standard deviations of the
RDs for DJF (left) and JJA (right). The numbers in the panels are as in Figure 2 but for standard deviations.

higher extreme precipitation values than E-OBS. The
lower extreme precipitation intensities in E-OBS are likely
caused by its coarser grid spacing (25 km) compared to
the RDs and the HMRs (<12 and 5km, respectively).
Typically the effective resolution of gridded observational
data sets is several times larger than their grid spacing.
For example, Isotta et al. (2014) estimated that the effec-
tive resolution of the EURO4M-APGD data set is between
10 and 25km (typical station spacing) compared to its
5-km grid spacing. On larger scales (coarser grids), the
evaluation results might therefore be more similar. The
comparable grid spacing is probably also one reason why
extremes are more similar in the HMR and RDs. The
HIRLAM reanalysis appears to add information to the
HMR as E-OBS strongly underestimates extreme pre-
cipitation in Spain which is corrected in the HMR even
though both data sets have the same station basis (com-
pare blue line in Figure 6(b) with (c)). Highest differ-
ences are shown for Norway where the RD has much
higher precipitation values because of the applied under-
catch correction.

Certain technical specifications employed in the gen-
eration of gridded data sets also introduce uncertainties.
For example, in E-OBS, the threshold for rain days is

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd

on behalf of the Royal Meteorological Society.

defined as more than 0.5 mmday~! observed at a station.
Therefore, the gridded data set only contains very few pre-
cipitation values between 0 and 0.5 mmday~'. Instead,
E-OBS typically has 50% more dry days than the RDs
or the HMR, which employ no such threshold. This gives
rise to negative differences for low percentiles. The per-
centiles up to which E-OBS has zero precipitation can be
seen at the location of the local minimum in the lines in
Figure 6(b)) (e.g. grey-dotted line at 45% for Norway).
Comparing the RDs to the HMR (Figure 6(c)) does not
show such a feature.

Facing these uncertainties, how large are the regional
scale differences in the observational data sets? Figure 7(a)
shows median absolute differences between the data sets
(for precipitation > 1 mm day~ ') dependent on the number
of E-OBS stations within an area of 3 X 3 grid cells. In case
of zero stations, median differences are between 40 and
60% while they are between 10 and 30% for more than ~9
stations (except for France and the Carpathians). The RDs
composite has slightly higher differences to E-OBS than
the HMR but both data sets show a very similar relation to
the station density. Differences are increasing for grid cells
in complex orography (Figure 7(b)). There is a linear rela-
tionship between the absolute difference of precipitation

Int. J. Climatol. 37: 305-327 (2017)
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Figure 6. Empirical quantile functions of daily precipitation from E-OBS and the KLIMAGRID data set in Norway during DJF (panel a). Differences
between the quantile functions (E-OBS minus RDs) in all regions during DJF are shown in panel b. The grey dotted line depicts the percentile below
which E-OBS has zero precipitation in Norway. Differences between the quantile functions of the HMR and the RDs are shown in panel c.

at a grid cell and the absolute median elevation difference
to its eight adjacent grid cells between ~2.5% per 100 m
in Germany, Norway, and the Carpathians, ~5% in the
Alps, Spain, and France, and ~10% in Sweden. The RDs
composite and the HMR have similar slopes of about 6%
per 100 m. This is related to the high spatial heterogeneity
of precipitation in complex terrain, the usually low sta-
tion density in mountainous areas, and the higher fraction
of solid precipitation. Furthermore, differences depend on
2 m temperature (taken from E-OBS; Figure 7(c)) and are
lowest between 0 and 12°C and increase for higher (e.g.
convective precipitation) and lower (e.g. snow undercatch)
temperatures. The RDs composite and the HMR show the
same kind of behavior with a steep increase in differences
above 13 °C and a slight increase below zero. However, the
differences tend to decrease again for temperatures below

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd

on behalf of the Royal Meteorological Society.

—5°C and reach their minimum at —20 °C. The investiga-
tion of this unexpected behavior is beyond the scope of this
study because the amount of data points in this temperature
range is small and therefore barely influences the overall
statistics.

The dependence of the temporal standard deviation of
E-OBS divided by the standard deviation of the RDs and
the HMR is shown as a function of E-OBS station density
in (Figure 7(d)). In areas with no E-OBS stations, the
standard deviation is approximately 20% smaller (except
for Norway where it is 45% smaller). This difference
decreases with increasing station density but stays slightly
negative, except for the RD of France and the HMR.
Standard deviation differences stay constant (—25%) in the
RDs composite for areas with less than six grid cells and
quickly decreases afterwards. Finally, temporal Spearman

Int. J. Climatol. 37: 305-327 (2017)
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Figure 7. Median absolute differences in daily precipitation are shown dependent on the E-OBS station density in the eight adjacent grid cells around
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the median (over grid cells) temporal standard deviation of daily precipitation from the data sets divided by the standard deviation of E-OBS as a
function of E-OBS station density. Panel e shows the same for the Spearman rank correlation coefficients.

rank correlation coefficients (Figure 7(e)) are more similar
inregions with high station densities of E-OBS (above 0.83
in regions with >9 stations) than in data sparse regions
(0.77-0.86 in regions with no stations; except for Spain).
The HMR has higher correlation coefficients than the RDs
composite in regions with <15 stations.

It should be noted that the analysis in Figure 7 depends
on the number of included grid points. Nine grid cells are
reasonable because the spatial interdependence between
two precipitation time series is strongly degrading with
increasing distance Ly et al., 2011; Prein et al., 2013b).

4. Comparison of coarser resolution monthly
precipitation

In addition to the RDs, the HMR, and the E-OBS data set,
we include seven more large-scale precipitation data sets to
our analysis in this Section (see Table 2 for an overview).
All data sets are conservatively remapped to a regular
0.5° grid, which is larger or equal to the grid spacing of
the data sets (except for the GPCP and the ERA-Interim

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd
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reanalysis; see Tab. 2), and averaged to monthly mean
values. The mean of all observational data sets (excluding
PERSIANN-CDR) is used as reference for the evaluations
shown in Figures 8,9, and 11. This is beneficial because we
can directly see how the individual data sets are performing
with respect to their average, outliers get easily visible, and
we do not have to subjectively select a single reference
data set.

Figure 8(a) shows the observation ensemble mean pre-
cipitation in DJF. Compared to the higher resolution evalu-
ation, many details got lost because of the spatial upscaling
and the averaging over multiple data sets (cf Figure 2).
Compared to the ensemble mean, the RDs (panel b) are
predominantly wetter, which is most pronounced in Scan-
dinavia due to the undercatch correction. Largest differ-
ences appear in the GPCP data set (panel h), which shows
much more precipitation than all the other data sets (except
the RDs in Norway) probably because of the applied
undercatch correction. Since GPCP is used for the bias cor-
rection of PERSIANN-CDR (panel k), both data sets show
very similar seasonal average precipitation. Predominantly

Int. J. Climatol. 37: 305-327 (2017)
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Figure 8. Mean DJF precipitation from the average of the observational data sets (excluding PERSIAN-CDR) (panel a). The differences between
the mean DJF precipitation in the individual observational data sets and the observational data sets average is shown in panels b—k.

drier than the ensemble mean are the U-DEL and PREC
precipitation values (panels e and i). The former is espe-
cially dry in Norway while the later is driest in South-
eastern France and Southern Germany. Most similar to the
ensemble mean is the GPCC precipitation (panel g). Also
the ERA-Interim reanalysis precipitation (panel j) is close
to the mean except for the coast of Norway, Northern UK,
and the Alps. It should be mentioned that ERA-Interim has
no undercatch issues because precipitation is a simulated
variable in the reanalysis.

In JJA (Figure 9), the spread between the different
observations is smaller than in DJF but the basic pat-
terns in the differences between the individual data sets
are similar. Again, the RDs (panel b) have predominantly
more precipitation than the ensemble mean with largest
differences in mountainous regions. Compared to DJF,
the positive difference is less pronounced in the GPCP
and PERSIAN-CDR precipitation (panels h and k) but
in JJA, they show distinctly less precipitation over the
Alps. U-DEL and PREC (panels e and i) show again
below-average precipitation and have largest differences in
the Alps and the Carpathians. ERA-Interim precipitation

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd
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(panel j) shows distinct positive differences in the Alps,
the Carpathians, and the Scandinavian Mountains.

5. Influences on climate model evaluation

In this section, we show how uncertainties in grid-
ded observational precipitation data sets compare to
biases in state-of-the-art climate models and affect their
evaluation.

Comparing the multi-model mean precipitation with the
observational ensemble mean shows a predominant wet
bias, which is most pronounced over mountain regions
in DJF (Figure 10(a)). To understand if these biases are
significant compared to the observational uncertainties,
we investigate the differences between the multi-model
mean precipitation and the minimum/maximum pre-
cipitation in the observation ensemble (panel b/c). We
consider a dry/wet bias as significant if the simulated pre-
cipitation is smaller/larger than the minimum/maximum
precipitation in the observation ensemble. A signif-
icant dry bias only occurs in the Southern parts of
Spain, while significant wet biases are found along

Int. J. Climatol. 37: 305-327 (2017)
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Figure 9. Same as Figure 8 but for JJA precipitation.

the main Alpine Crest, the Carpathians, and the Pyre-
nees. Figure 10(d) shows the multi-model mean minus
the maximum precipitation excluding the observations
with undercatch correction. In this case, significant
wet biases are additionally found in Northern France,
Northern Germany, Southeast England, and large parts of
Scandinavia.

During JJA, mean modelled precipitation is smaller than
the mean observed precipitation Southward of the Alps,
the Southwest of France, and Southeast Europe (except the
Carpathian Mountains, Figure 10(e)). More precipitation is
modelled along all major mountain ranges, Germany, the
Northern UK, and Scandinavia. Significant is the dry bias
in Southeastern Europe, the Po Valley, and a small area
North of the Pyrenees (panel f) while only the wet bias
in Sweden and parts of Norway is significant (panel g).
Excluding observations with undercatch corrections leads
to additional significant wet biases in Northern Germany
and Southeastern Norway (panel h).

The results in Figure 10 show that evaluating climate
model precipitation with single observational data sets

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd
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leads to a non-representative bias pattern that can mis-
guide further model development and the ranking of mod-
els in an ensemble. In large areas of Europe, the sign of
the model bias is changing when evaluation is performed
with different observational data sets. The observational
uncertainty is largest in mountainous regions and espe-
cially in the Scandinavian Mountains due to accounting
for precipitation undercatch in the RSs. In literature, it is
frequently stated that state-of-the-art RCMs are ‘too wet’
in large parts of Europe and particularly over mountainous
regions, which is interpreted as a common RCM deficiency
(Jacob et al., 2007; Kjellstrom et al., 2010; Kotlarski et al.,
2014). However, our evaluation shows that most of these
biases are not significant because they depend on the
selected observational data set.

Two remarks are important to consider in the above
evaluation. First, in this framework the significance of the
model biases depends on the included observational data
sets. It might be reasonable to exclude single data sets if
they show unrealistic precipitation values or weight the
observations, which is outside the scope of this study.

Int. J. Climatol. 37: 305-327 (2017)
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Figure 10. Differences between the multi-model mean precipitation and the mean (panel a), minimum (panel b), maximum (panel ¢), and maximum
without considering undercatch corrected data sets (panel d) precipitation from the observational data sets. Results for DJF/JJA average precipitation
differences are shown in panels a—d/e—h respectively.

Second, biases of single models are typically larger than
the bias in the multi-model mean because model biases
tend to cancel out by averaging (Reichler and Kim, 2008).
This topic will be addressed in the upcoming paragraphs.

Figure 11 shows an overview of seasonal mean model
biases compared to observational uncertainties in a
box-whisker diagram. Observation mean precipitation
is used as reference (zero line). The thick black lines
(grey circles in case of the individual models) in the
boxes show the median differences while the lower/upper
box length show the 25/75 percentiles. The upper/lower
whisker show the 5/95 percentile of the differences. As
multi-model mean biases and observational uncertainties
are of similar size (empty box overlaps with the coloured
boxes except for Sweden in JJA), quantitative and qual-
itative investigation of model biases clearly demands
the consideration of observational uncertainties. Even
though biases of single models spread more than the bias
in the multi-model mean, most biases of single models
are still within the range of observational uncertainties
(except for France, UK, and Germany during JJA; see
grey vertical lines in Figure 11). In DJF, the individual
models have more similar biases than in JJA, which is
probably related to the convective nature of summertime
precipitation and the high uncertainties in deep convection
parameterization schemes applied in the models. There
are two remarkable outliers in the observational ensemble.
The first is the Norwegian RD due to its consideration of
precipitation undercatch. The second is the GPCP data set
(especially during DJF in Germany and the Carpathians).
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In GPCP, a bulk undercatch correction method is used
that overestimates the undercatch by approximately 15%
(Schneider et al., 2014). Furthermore, the GPCP data set
has by far the largest grid spacing (2.5°) of all considered
data sets. The consequence is a spatially smooth precipi-
tation field that underestimates precipitation maxima (e.g.
in mountains) and overestimates precipitation in their
surroundings (e.g. foothills) when compared to higher
resolved data sets.

Beside the partly large observational uncertainties in sea-
sonal mean precipitation, the observational data sets have a
similar shape of the annual cycle of precipitation (coloured
lines in Figure 12). The amplitude of the annual cycle can,
however, differ largely. For example, in the UK (panel f)
the ERA-Interim annual cycle has a December maximum
of 2.8 mmday~' and a May minimum of 2.1 mmday~',
while the PERSIAN-CDR annual circle has a Decem-
ber maximum of 4.9 mmday~' and a July minimum of
2.3mmday~ . In general the observational uncertainties
tend to be larger during the winter season. We can again
identify the same outliers as in Figure 11. The precipita-
tion undercatch corrected Norwegian RD and the GPCP
(and respectively the PERSIAN-CDR) annual cycle have a
positive offset from the other observations especially dur-
ing DJF. The offset of GPCP/Persian-CDR is highest in
Germany.

Most climate models (grey-dotted lines in Figure 12) are
able to reproduce the shape of the observed annual cycle
in Spain, the UK, Sweden, and Norway (panels a, f, g, and
h), however, the shapes deviate largely in the other areas.
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Figure 11. Box-Whisker statistics showing the spatial spread for seasonal mean precipitation biases between the precipitation in the mean

observational data set and the precipitation in the individual observations (colored boxes), the mean model (empty box), and the individual models

(thin black boxes with circles showing the median). The boxes show the 25-75 quantile distance while the whiskers show the 5-95 quantile range.
Results for DJF/JJA are shown in panel a/b.

For example, in the Alps (panel c), there is an observed
summertime maximum in precipitation caused by the high
convective activity in this seasons. The models, however,
show spring and autumn maxima and a secondary summer-
time minimum. This is likely related to a misrepresentation
of convective precipitation in the models due to error prone
deep convection parameterizations Molinari and Dudek,
1992; Romps, 2010; Jones and Randall, 2011). In Swe-
den and Norway (panels g and h) modelled precipitation
has a positive offset to most observations except for the
undercatch corrected Norwegian RD.

Observational uncertainties are also present in spa-
tial patterns and variability, RMSE, and inter-annual
variabilities. In Figure 13(a)—(f), DJF and JJA climate
mean precipitation fields from the observational data
sets and the climate models are compared to the RDs.
In Figure 13(g)—(h), the variability in the seasonal mean
time series are compared. Models with statistical values
lower/higher (in case of correlation coefficients/RMSE)
or lower or higher (in case of standard deviations and
inter-annual variability) than any value in the obser-
vational ensemble are considered to be outside of the
observational uncertainty. Spatial correlation coefficients
of mean precipitation during DJF are high in all observa-
tional data sets in Norway, Sweden, Spain, and the UK
(panel a left), while larger differences exist in the Alps,
France, and Germany. All simulations show correlation
coefficients within the observational uncertainties (panel a
right; except the REMO run in Norway). In JJA (panel b)
the observed correlation coefficients tend to agree better
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than in DJF (except for Norway and Sweden). Most mod-
els have higher correlation coefficients than in DJF (except
in Norway and Sweden). Only the ARPEGE simulation
shows correlation coefficients that are predominantly
outside of the observational uncertainties.

Spatial standard deviations divided by the standard devi-
ation of the RDs (standard deviation over all grid cells
in a region) of seasonal mean precipitation are within a
range of —60—20% in DJF (panel c¢). The RDs have always
a higher standard deviation than the other observations
(except CRU in the UK) while ERA-Interim always has
lower values. Most RCMs are able to capture the observed
spatial standard deviations in Norway, Sweden, Spain, and
the UK while they significantly overestimate (up to 200%)
the variability in the other regions. In JJA, observational
uncertainties are similar to DJF and vary between —60
and 35% (panel d). As in DJF, the RDs have predomi-
nantly higher spatial variabilities than the other data sets.
The RCMs predominantly overestimate the spatial stan-
dard deviations in the Carpathians and France, while they
commonly underestimate it in Norway and Sweden. In the
Alps, the Carpathians, and France more than four RCM
simulations have variabilities that are outside the observa-
tional uncertainties. These are the same areas as in DJF
except for Germany.

Observational uncertainties in the spatial average RMSE
of seasonal mean precipitation during DJF are largest
in Norway (larger 1.9mmday~!) and smallest in the
Carpathians (the analysis of relative errors leads to differ-
ent results). The GPCP data set shows overall the largest
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Figure 12. Annual cycle of monthly mean precipitation in different sub-regions (panels). Results from the observational data sets are shown as
coloured lines while precipitation from climate models is shown as grey-dotted lines.

RMSE values, which is likely related to its undercatch cor-
rection and the coarse grid spacing. The RCMs are pre-
dominantly within the observational uncertainties of the
RMSE (except for three models in the Alps) even though
they show large RMSE values in Norway (c¢f Figure 10).
Only the RCA simulation has predominant significant
RMSE errors. During JJA (panel f) observed RMSE dif-
ferences are smaller than in DJF and the modelled RMSE
are often exceeding the observational uncertainties except
for Norway and Sweden. In Norway, the models have
a smaller RMSE compared to the RD than any of the
other observations (except for ERA-Interim). Especially,
notable is the outstanding performance of the RACMO
model.

Finally, the observed normalized inter-annual variability
(standard deviation of seasonal mean, region average pre-
cipitation divided by the standard deviation of the RDs)
lies within —55-35% during DJF (panel g). The RDs have
a higher inter-annual variability than the other observa-
tions except for the GPCP data set. Most models over-
estimate the inter-annual variability in the Alps and the
Carpathians and underestimate it in Norway, Spain, and
the UK. Predominantly significant differences are found in
Sweden, the Alps, and the Carpathians. In JJA, the obser-
vational uncertainties are smaller than in DJF (—=40-15%;
panel h). Except for Norway and Sweden, the RCM vari-
ability is predominantly outside the observational uncer-
tainties, whereby over and underestimations of modelled
variability occur. Again the RACMO model shows an out-
standing performance because its variability is within the
observational uncertainty range in most regions.
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Summing up, observational uncertainties in the statis-
tics shown in Figure 13 tend to be larger in DJF than
in JJA. This might be caused by precipitation under-
catch errors, which are smaller in JJA, and the large
investigated scales (monthly on 0.5°). Precipitation uncer-
tainties are probably larger for daily and local scales.
For many statistics and regions, the performance of the
majority of RCM simulations is within the observational
uncertainties. Nevertheless, there are some common and
significant model errors that can be identified such as the
overestimation of spatial variability in DJF in four of the
eight regions, or the misrepresentation of the inter-annual
and spatial variability and large RMSEs in JJA.

6. Discussion

In this study, we show uncertainties in gridded precipita-
tion data sets in Europe (three daily data sets and seven
coarser resolution monthly data sets) and compare them
with biases from eight state-of-the-art high-resolution
RCM simulations from the EURO-CORDEX project. We
show that in most European regions, the magnitude of
observational uncertainties is similar to those of the RCM
biases. The reasons for the observational uncertainties
include, among others, differences in station densities,
the application of precipitation undercatch correction, data
interpolation, and the impact of technical specifications
such as the defined threshold for wet days.

Our results confirm previous studies (e.g. Haylock et al.,
2008; Hofstra er al., 2010; Rauthe eral., 2013; Isotta
et al., 2015) that show major differences between gridded
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Figure 13. Heat maps showing spatial correlation coefficients (panels a and b), spatial standard deviations divided by the standard deviation of the

RDs (panels ¢ and d), and root mean squared errors (panels e and f) for seasonal mean precipitation. Here, spatial means that the statistic were

performed considering all grid cells in a region. Panels g and h show the normalized inter-annual standard deviation of area mean precipitation.

Precipitation from the observational data sets (left block in each panel) and modelled precipitation (right block; M-RCM shows results for the mean

model) are compared to the precipitation of the RDs. Results for DJF/JJA are shown in the left/right panels. Hatched boxes show model results that
are outside the observational uncertainties.

© 2016 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 37: 305-327 (2017)
on behalf of the Royal Meteorological Society.



UNCERTAINTY IN EUROPEAN PRECIPITATION

observational data sets in subregions of Europe (up to
80% of seasonal mean precipitation). One major contri-
bution to uncertainty is the density of stations networks
considered in a data set. Uncertainties in observational
data sets tend to decrease in regions where all data sets
have a high station density (at least one station per grid
cell). This highlights the need for high station densities
if regional and local scale precipitation features are of
interest, especially in mountainous regions. Observational
errors in regions with low station density are not easily mit-
igated by merging them with model information, as in the
example of HMR reanalysis (see also Isotta ef al. (2015)).
Nevertheless, improvements in reanalysis-based data sets
compared to data sets that use the same station network
but do not have additional information from a reanalysis
can be found in mountainous regions (e.g. the Alps, the
Carpathians). Additional skill of regional reanalyses and
high-resolution RDs might be present on scales smaller
than the 25-km grid spacing that is investigated in this
study. In addition, regional reanalyses have the advantage
that they are able to provide a large set of physically con-
sistent parameters.

One error component, which was frequently neglected
in previous observation intercomparison studies, is pre-
cipitation undercatch. This component can get dominant
in high latitudes and mountainous regions due to the high
fraction of precipitation falling as snow (e.g. Mohr, 2009).
The GPCP and RDs of Sweden and Norway include an
undercatch correction and have clearly more precipitation
than most of the other data sets. However, bulk undercatch
correction methods as used in the GPCP data set cannot
resolve regional variabilities in the amplitude of the under-
catch and tend to over correct undercatch (Schneider et al.,
2014) at least in flat regions.

RCMs tend to agree more with undercatch corrected
data sets especially in DJF and in Northern Europe and
mountainous regions during JJA. Typically the biases of
RCMs are within the range of observational uncertainties
although frequently one or two models in the ensemble
can be considered as outliers. The following guidelines
should be considered in regional climate assessments of
precipitation:

e To minimize sampling errors (errors in the amount, tim-
ing, intensity, and spatial structures of precipitation) a
high station density is essential. The station density is
primarily determining the effective resolution (actual
spatial information content) of a gridded data set that
can be several times larger than its grid spacing (e.g.
Isotta et al., 2014). Regional reanalyses have the abil-
ity to improve the spatial representation of precipitation
in data sparse regions. However, they cannot fully com-
pensate the benefits of a high-density station network.

e A small grid spacing can easily mislead to the assump-
tion of a high information content, which is not true in
data sparse regions. We strongly advice to investigate
the station density of a gridded observational data set
in the region of interest before it is used. In data sparse
regions, we found median uncertainties of up to 60%
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of the seasonal mean precipitation. Strategies to mini-
mize uncertainties are to only use grid cells that feature
stations or to upscale the gridded data set to a coarser
grid.

e Precipitation undercatch can be the dominant error
source in mountainous and high latitude regions (errors
of up to 80%). Data sets that include a station-based
undercatch correction (specific error characteristics of
rain gauges, phase of the precipitation, exposure of the
stations), such as the RD of Norway and Sweden, are
rare because of missing information. Bulk undercatch
correction methods, such as proposed by Legates and
Willmott (1990) and used in the GPCP data set, are not
able to correct errors on a local scale and might over-
or underestimate the undercatch. A way to evaluate cli-
mate models with non-corrected observations might be
to estimate the potential undercatch of simulated precip-
itation based on the simulated wind speed and phase of
precipitation.

e The amplitude of uncertainty in observational precip-
itation data sets depends on the statistics of interest.
High observational uncertainties are found for regional
precipitation amounts (especially for extremes), spatial
structures, and short-temporal variabilities (e.g. daily
scale). Lower uncertainties are found for the shape of
the annual cycle, spatial variability of climate mean
fields, and the inter-annual variability of regional mean
precipitation. In general, uncertainties are increasing
for decreasing spatio-temporal scales and for increasing
precipitation intensities.

e Precipitation data from surface radar or radar remote
sensing products can provide valuable information
about spatial precipitation structures in data sparse
regions (e.g. Wagner et al, 2012). However, radar
derived precipitation amounts are rather unreliable.
Recent work is focusing on combining spatial infor-
mation from radar data with precipitation amount
measurements at the surface (e.g. Velasco-Forero et al.,
2009; Schiemann et al., 2011; Verworn and Haberlandt,
2011), which is promising to provide more accurate
precipitation data sets.

e There is not a single best observational data set for
regional precipitation assessments but all data sets have
their strength and weaknesses. A promising strategy is
the consideration of an ensemble of observational data
sets from different sources (station, satellite, or reanaly-
sis based) such as in the approach presented in this study.
It might be beneficial to exclude observational data sets
that show non-physical behavior or miss important fea-
tures. A sub-selection or weighting of observational data
sets therefore depends on the investigated processes and
regions of interest.

7. Conclusion

As models are frequently tuned on the basis of observa-
tional data, misguided model development can easily result
from not taking into account observational uncertainties.
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For example, tuning models to observations in regions
where the mean model bias strongly depends on the
selected observational data set (e.g. in Norway) can deteri-
orate the model performance. Furthermore, our results are
relevant for empirical-statistical bias correction of model
output, which is usually applied before using climate sim-
ulations in climate change impact investigations. Bias cor-
rection approaches use observations to adjust biases in
model output. Usually, such approaches use one single
observational data set and disregard observational uncer-
tainty. As observational uncertainty in precipitation is of
a similar size to model error in many regions, the para-
doxical situation may arise, that bias corrected model out-
put is as biased, or even more biased than the uncor-
rected model output. This calls for improved bias correc-
tion approaches that incorporate observational uncertainty
or at least clearly mark regions where bias corrected model
output cannot be regarded as reliable.

Climate prediction studies are also influenced by obser-
vational uncertainties. Tuning climate models towards
observations changes the model physics and therefore
impacts the climate change signal. Additionally, tuning
models or bias correction of model outputs in areas exhibit-
ing large observational uncertainties (such as Scandinavia)
either removes or adds precipitation, and thus has an
impact on all threshold-based climate indices such as
drought indices, extreme precipitation indices, or veg-
etation indices. The greatest observational uncertainties
are found with respect to the number of dry days and
extreme precipitation intensities. These factors are particu-
larly relevant for regional hydrology and ecosystems mod-
elling and can affect studies related to tourism, agriculture
(Cline, 2007), transportation (Polade et al., 2014), flood
risk (Mudelsee et al., 2003), flash floods, and debris flows
(Guzzetti et al., 2008; Stoffel et al., 2014).

If regional and local precipitation features or extreme
events are of interest, we strongly encourage to use ref-
erence data sets with a high station density background.
Even though our study focuses on Europe, the results are
of global relevance. Observational uncertainties might be
even higher in polar or in high elevated regions, or in
regions where data is relatively sparse.

Following our results, it is not possible to assess model
quality, when observational uncertainties are not taken into
account in many European regions. Thus, we strongly sug-
gest to use more than one observational data set for cli-
mate model evaluation and for bias correction of climate
model output. Methods for sound consideration of obser-
vational uncertainty have yet to be further developed and
need to become much more widespread. This is a crucial
issue because in the absence of an appropriate estimate
of observational uncertainties no scientifically meaning-
ful investigation of model quality can be achieved. There
is thus considerable need for observational data sets from
independent sources (e.g. stations, radars, satellites) and
for corresponding and more reliable uncertainty estimates.
Such uncertainty estimates need to take account for prob-
lems relating to undercatch, under-sampling, measurement
techniques, homogeneity, and interpolation.
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