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Abstract

The labor-intensive process of microbial natural product discovery is contingent upon identifying 

discrete secondary metabolites of interest within complex biological extracts, which contain 

inventories of all extractable small molecules produced by an organism or consortium. 

Historically, compound isolation prioritization has been driven by observed biological activity 

and/or relative metabolite abundance and followed by dereplication via accurate mass analysis. 

Decades of discovery using variants of these methods has generated the natural pharmacopeia but 

also contributes to recent high rediscovery rates. However, genomic sequencing reveals substantial 

untapped potential in previously mined organisms, and can provide useful prescience of 

potentially new secondary metabolites that ultimately enables isolation. Recently, advances in 

comparative metabolomics analyses have been coupled to secondary metabolic predictions to 

accellerate bioactivity and abundance-independent discovery work flows. In this review we will 

discuss the various analytical and computational techniques that enable MS-based metabolomic 

applications to natural product discovery and discuss the future prospects for comparative 

metabolomics in natural product discovery.

Graphical abstract

1 Introduction

Genomic sequencing of both cultivated microorganisms and uncultivated microbiomes has 

revealed that most of the biosynthetic potential of microorganisms remains inaccessible to 

date. Even genomes of extensively studied microorganisms contain a large fraction of 

secondary metabolite biosynthetic gene clusters for which natural products have not been 

identified.1-3 It is now estimated that the products of greater than 90% of secondary 

metabolite gene clusters are either not expressed under standard laboratory growth 
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conditions4,5 and/or their products are difficult to identify within extracted metabolomes. 

Secondary metabolites play crucial roles in the chemical ecology of their producing 

organisms,6-8 and these roles often correlate translationally into applications in human 

medicine.9 Therefore, solving the linked problems of secondary metabolite gene expression 

and the identification of secondary metabolites within metabolomic inventories have become 

central efforts in the field of natural product discovery.

Natural product biosynthetic potential can be rapidly estimated from genomic sequence data 

via automated bioinformatics platforms capable of comparing sequenced biosynthetic gene 

clusters to previously sequenced microorganisms and inferring putative structures of natural 

products by biosynthetic inference.10-16 Recently, several reviews have described evolving 

computational tools for biosynthetic gene cluster analysis.17,18 Increasingly sophisticated 

methodologies have been developed to tackle the biosynthetic gene cluster expression 

problem, which may be subdivided into heterologous and native approaches. Heterologous 

strategies endeavour to recapitulate functional secondary metabolic biosynthetic gene 

clusters in surrogate producers. Gene clusters may be cloned, and/or synthesized and 

refactored into alternate organisms with the aim of detecting newly produced metabolites in 

comparison to a clean background.19-24 The success of heterologous expression is dependent 

upon functional expression within the host organism, which is a function of successful 

transcription, translation, and precursor availability as discussed in other reviews.19,25,26 

Given the phylogenetic diversity of microbial secondary metabolite producers, a number of 

hurdles must be addressed to successfully identify constructs for functional expression. In 

addition to optimizing genetic regulatory elements for heterologous expression, differences 

in protein stability, post-translational modification of biosynthetic enzymes, and precursor 

availability must be addressed. Alternatively, native expression methods endeavour to 

activate secondary metabolite production from within the native producer.4,27,28

In addition to refactoring biosynthetic gene clusters via genome editing, many chemical and 

biological stimuli have been reported over the past few decades that activate secondary 

metabolite expression. The practice of exposing microorganisms to an array of growth 

conditions for the purpose of eliciting the production of multiple compounds is not a recent 

development.29 However, contemporary studies of the impact of stimuli on microbial 

metabolism, in addition to fulfilling to goals of natural product discovery, now model the 

chemical ecology and environmental microbiology of microorganisms.4,27,30-32 For 

example, microbial secondary metabolite producers have shown responses to subinhibitory 

antibiotic exposure33,34 as well as vertically acquired antibiotic resistance mutations which 

engender mutations in transcription and translation machinery35-40 have been demonstrated 

to activate the production of a fraction of previously undiscovered metabolites. Similarly, 

rare earth metal exposure,41-43 which may affect circulating levels of pleiotropic factors, has 

been demonstrated to modulate secondary metabolite production. A particularly successful 

strategy for activating secondary metabolite expression in microbes is via stimulation with 

competing organisms.44-48 Taken together these phenomenon suggest that secondary 

metabolites are indeed produced by microorganisms to respond to environmental stimuli45 

and this is supported by the apparent biosynthetic gene cluster activation selectivity of 

various stimulatory methods as well as the intrinsically complex nature of secondary 

metabolite gene cluster regulation.1,49
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Regardless, all categories of genome-prioritized natural product discovery require a means 

of measuring the modulation of secondary metabolite production within the extracted 

metabolome of native or heterologous producers, and metabolomics methods have been 

continually adapted to this task. Metabolomics is often defined as the comprehensive study 

of small molecules within a biological system and provides a direct measure of detectable 

secondary metabolite production within an organism of interest. Currently there are two 

analytical platforms to facilitate metabolome profiling for natural product discovery. Nuclear 

magnetic resonance (NMR) based metabolomic analyses, reviewed elsewhere,50 are not 

biased by molecular class and provide enhanced structural information for metabolites but 

are limited by the inherently low sensitivity of NMR. In contrast, the metabolomic analyses 

through mass spectrometry (MS), which will be the focus of our review, are exceptionally 

sensitive but are exclusively biased towards ionisable metabolites. The structural diversity of 

secondary metabolites, which span a broad range of functionality, molecular weight, and 

ionization efficiency, renders comprehensive detection of all metabolites through MS a 

challenging endeavour, and there is no universal approach for bioanalytical detection. For 

this reason, the development of metabolomics methods with MS strategies necessitates a 

discussion of contemporary practices and advances in analytical instrumentation.

As the product of the central dogma, the metabolome also contains information regarding a 

wide variety of cellular processes unrelated, or indirectly related to secondary metabolism. 

Correspondingly, metabolomics information may encode insights into how secondary 

metabolite producing organisms respond to chemical and biological stimuli and may also 

provide a means of investigating the biological mechanisms of newly isolated natural 

products, antibiotics, and chemotherapeutics, from the metabolomic changes engendered 

within treated organisms. Secondary metabolites are generally biosynthetic end-products and 

unlike primary metabolites, they accumulate at higher levels than the fluxes observed in 

central metabolism.51 Hence, comparatively abundant secondary metabolites are well suited 

for comparative metabolomics work-flows. Other recent reviews have highlighted some 

applications of mass spectrometry for the discovery of natural products deriving from 

plant52 and microbial53 sources. In this review we provide a foundational overview of the 

analytical techniques that underlie MS-based metabolomic applications to natural product 

discovery and describe how these various techniques provide differentiating molecular 

characteristics for detected metabolites. We discuss the computational methods used to 

process complex metabolomics data and bioinformatics methods that utilize the molecular 

characteristics of detected metabolites to prioritize and dereplicate leads for natural product 

discovery. Lastly, we describe how these metabolomic methods are being applied to 

investigate biological activities for natural products and discuss future prospects for the field.

2 Methods of generating inventories of microbial metabolites

A variety of MS techniques are available to acquire metabolomics data with corresponding 

advantages and challenges depending on the analytical descriptor(s) that is/are desired. In 

each method, the end result of the analysis is a set of metabolomic ‘features’, ions with a 

determined mass-to-charge ratio (m/z) and potentially additional descriptive information. 

This additional information may include descriptors such as mass accuracy, 

chromatographic retention time, isotopic envelope, size and shape information, 
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fragmentation data, and topological distribution, among others. A summary of key 

descriptors and the information they provide in secondary metabolite characterization is 

provided in Table 1. As the dimensionality of feature characterization has an impact upon 

subsequent effectiveness of comparative metabolomics analyses, we will briefly discuss in 

this section commonly utilized methods for MS acquisition and highlight several of these 

key molecular characteristics that can be obtained with MS.

2.1 Mass measurement accuracy

The mass-to-charge ratio (m/z) of detected metabolites is the most useful property used to 

initiate the process of dereplication. For more than a decade mass analyzers have been able 

to determine mass accuracy with an error of under 1 ppm.54-57 This level of mass accuracy 

allows for the determination of elemental composition boundaries for compounds under 600 

Da 58,59 when coupled with isotopic mass ratios.60 While advances in Fourier Transform ion 

cyclotron resonance MS (FTICRMS) can now routinely perform at sub-ppm mass errors, 

typical instrumentation provides mass errors in the range of 1 to 10 ppm (e.g. time-of-flight 

MS). Unfortunately, this alone is insufficient to confidently dereplicate features, because of 

the extensive number of potential isomers for a given elemental composition.61 Early 

compound dereplication is thereby often dependent on obtaining additional distinguishing 

characteristics such as those listed in Table 1, or via additional characteristic such as UV/Vis 

spectrum and biological activity.62,63 It is also noteworthy that MS analysis is predicated on 

the ability to generate ions of the species of interest. Neutral or poorly ionizing species are 

transparent to MS, and because of this the number of detectable compounds from a 

metabolomic extract will vary depending on the analytical methods used during acquisition, 

in particular the specific ionization source and ionization conditions that are used.

2.2 Isotopic modeling

The isotopic envelope, comprised of both the major and minor isotopic contributions to the 

elemental formula, provides several opportunities for enhanced characterization 

information,64 including: (i) the presence of heteroatoms,65 and (ii) isotopic enrichment 

strategies for relative and absolute quantitation of the abundance of the secondary 

metabolite.66 The MS analysis of most biological molecules is typically concerning 

elemental formula comprising C, H, O, and N. The shared characteristic of these elements is 

that the monoisotopic peak also corresponds to the lowest mass isotope and thus, the lowest 

mass peak in the envelope is also the highest abundance. However, the vast majority of the 

periodic table is characterized by isotopic abundances that are somewhat varied from lightest 

to heaviest mass isotope and their isotopic signatures are oftentimes used in MS-based 

atomic analyses for identification purposes.67 The presence of heteroatoms, such as chlorine 

or bromine, are readily discernable in their contribution to the isotopic abundance observed 

for secondary metabolites and their stoichiometric contribution can be quickly verified 

through the use of isotopic calculator algorithms.68 Furthermore, these approaches are 

equally well suited by the addition of non-natural isotopic enrichment or depletion for 

determining the relative or absolute abundance of the secondary metabolite that is expressed. 

One such approach termed stable isotope labeling in cell culture (SILAC) has been 

demonstrated as a facile tool for incorporating enrichment or depletion in experimental 

protocols.69 Finally, genomic-based structural predictions, implying biosynthetic precursors, 
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can be combined with stable isotope studies to identify targeted metabolites within 

organisms. 70

2.3 Chromatographic retention time

Liquid chromatography (LC) is one of the most commonly used approaches to separate 

individual constituents of complex natural product extracts, and various LC methods and 

their applications have been previously reviewed.71-73 For natural product separations, 

reversed phase LC, and hydrophobic interaction chromatography are most commonly 

employed with a water-acetonitrile, or water-methanol gradient.74 This is typically 

performed on the basis of hydropathy, where reversed phase LC (RPLC) and hydrophobic 

interaction chromatography (HILIC) are most commonly utilized,75 and column retention 

will be affected by the ionization of these groups. Mobile phase pH can thereby significantly 

affect the separation efficiency for natural product extracts. Due to the dependence of 

compound retention on pH, and to assist ionization, mobile phases are commonly buffered 

with either acetic acid, trifluoroacetic acid, or formic acid76 to protonate acidic sites and 

facilitate retention. However, as low pH may suppress detection of negatively charged 

species in switched scanning modalities, neutral volatile buffers are often preferred.

Liquid chromatography-mass spectrometry (LC-MS) acquisition can take minutes to hours 

per chromatographic separation, and environmental changes throughout the course of the 

sample set (column conditioning, instrumental sensitivity and accuracy drift, etc.) can affect 

the quality of the data. Consequently, for multiple extract samples analysed in a sequential 

fashion, conditional changes between the start and end of analysis could lead to significant 

artefactual differences in group metabolomes, which complicate interpretation of subsequent 

comparative analyses. While challenging, recent reviews have outlined metabolomic 

experimental design strategies to accommodate these technical problems.77,78

2.4 Size and shape by ion mobility

Additional metabolomic feature information can be obtained by using gas-phase ion 

mobility-MS (IM-MS), without significantly increasing analysis time over MS-alone.79 The 

mechanism and utility of IM-MS has been the topic of several recent reviews.79-81 Briefly, 

in time-dispersive IM-MS, a uniform weak electric field is applied to a post-ionization ion 

drift tube containing an inert gas, where the ion velocity through the chamber is dependent 

upon thermal collisions with the background gas and its charge state.82 The number of 

collisions ions make as they traverse the drift cell are proportional to their collision cross-

sectional area, providing distinguishing information regarding an ion’s shape and/or 

conformation in the gas phase.83 The separations in IM are very low energy in comparison 

with collisions used for fragmentation analysis, where in IM the ions experience 

approximately 104 to 106 collisions across a size separation versus 1 or several high energy 

collisions in collision induced dissociation (CID), respectively. Typical drift tube resolving 

power of IM-MS is sufficient such that conformationally restricted or extended metabolites, 

such as cyclic peptides, polycyclic polyketides, and polyenes often possess distinct ion 

mobility profiles that are obtained over the course of micro to milliseconds. IM-MS is often 

coupled with time-of-flight (TOF) MS that can rapidly acquire the m/z ratios for ions eluting 

from the IM-MS cell in a few microseconds. The frequency of data collection allows for 
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sufficient time sampling across chromatographic peaks, which occur over the course of 

minutes, to be coupled to IM-TOFMS.79,84 When applied to microbial metabolomics the 

enhanced separation and sensitivity provided by IM-MS has been beneficial for identifying 

known secondary metabolites, dereplication, and prioritizing features. Our laboratory has 

previously used IM-MS to help obtain high quality fragmentation data (IM-MS/MS) for all 

detected ions from crude extracts while comparing the differences between antibiotic 

resistant and wild-type Nocardiopsis.40 This facilitated the putative identification of several 

metabolites over-produced in mutant strains. IM-MS has been applied to differentiate 

halogenated natural products in cyanobacteria85 as well as peptide natural products from 

cave actinomycetes.86 IM-MS has also been applied to investigate the 3-dimensional 

structures of lasso peptides, interlocked microbial peptides with a range of bioactivities,87 

and this will likely find other useful applications to natural product discovery as the 

technology becomes more widely available.

2.5 Ion fragmentation for structural information

Both time-dispersive (e.g. TOFMS) and scanning mass spectrometers (e.g. liner quadrupole 

MS and ion trap MS) can be used to acquire both precursor and fragment ion information 

(i.e. tandem MS),88 which can provide a wealth of highly specific structural information that 

can be used to help identify and dereplicate metabolites.89-93 In metabolomics-driven natural 

product discovery workflows, fragmentation data is commonly collected via an automated 

data-dependent acquisition method in which the most abundant ions within a scanning cycle 

are automatically selected for fragmentation. Fragmentation data analysis facilitates natural 

product dereplication which, as will be discussed in more detail below, is a critical step in 

the process of natural product discovery.94 There are a variety of methods applied to activate 

and induce dissociation of target ions, primarily categorized on the basis of how the ion is 

activated, collisionally, electron attachment, or through photon absorption, where the 

observed fragment ions will vary based on the method and parameters selected for 

fragmentation. For small molecules, collision induced dissociation (CID),95 and surface 

induced dissociation (SID)96 are commonly utilized. The degree of fragmentation observed 

using these methods depends on the number and degree of scissile bonds within a given 

molecule as well as the resulting internal ion energies used for analysis. In automated data-

dependent tandem mass spectrometric fragmentation analysis, a given single set of 

dissociation parameters may not be appropriate for every feature of interest within a sample, 

requiring multiple experiments to determine optimal fragmentation parameters, and to 

effectively capture fragmentation data for a broad cross section of molecular classes. 

Ultimately, these methods provide characteristic fragmentation spectra that can be compared 

to established libraries of secondary metabolite fragmentation data to identify known 

secondary metabolites within the experimental sample.63 Additionally, tandem mass 

spectrometric data are useful for elucidating the structures of peptide natural products and 

have been used in ‘peptidogenomics’ strategies to link ribosomal and non-ribosomal peptide 

natural products to their cognate biosynthetic gene clusters.97-99
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2.6 Leveraging spatiotemporal metabolomics inventories to capture inter-organism 
interactions

Secondary metabolite producing microorganisms can be cultivated on agar medium 100-102 

or in planktonic liquid103-109 culture medium, and several methods have been developed to 

extract and chromatographically separate resulting metabolomes.110-112 However, 

microorganisms cultivated as monocultures or mixed cultures on agar may display planar 

metabolite distributions containing valuable information about chemical pleiotropism, 

nutrient dependence, and chemical ecology,113-115 and bulk liquid extractions discard the 

spatial metabolomic feature differentiation that could otherwise be observed.116 

Correspondingly, imaging mass spectrometry (IMS) methods have been developed for agar 

cultivated117 and environmental118-120 microbial samples to provide a second distinguishing 

ion characteristic, spatial localization. In IMS experiments, the area of a sample is divided 

into pixels which are individually analysed by the mass spectrometer. Matrix assisted laser 

desorption ionization (MALDI) is a commonly used ionization technique for IMS.121,122 

MALDI requires the application of an ionization matrix to facilitate ionization of cell and 

agar embedded metabolites. This ablative technique has been applied to visualize spatial 

temporal distributions of secondary metabolite production in marine cyanobacteria51,120 and 

to elucidate microbial producers responsible for observed secondary metabolite 

biosynthesis.119,123 MALDI-IMS has also be used to visualize metabolic exchange between 

interacting organisms117,124-129 and identify novel antibiotic production in Streptomyces.130 

The efficiency of MALDI ionization is matrix dependent, and varies across metabolite 

classes. Correspondingly, Desorption Electrospray Ionization (DESI) and secondary ion 

mass spectrometry (SIMS), which do not require the addition of an ionizing matrix, have 

also been applied to visualize natural product distribution through IMS131-134 among 

others.135 Determining the spatial distribution of produced secondary metabolites can be 

useful in natural product research, and as these IMS technologies continue to develop they 

are expected to become an integral component of metabolomic investigations into microbial 

secondary metabolites.136 Metabolomic features generated via IMS consist of m/z and its 

corresponding Cartesian coordinate in agar culture.

3 Preparation of high content mass spectral data for metabolomics studies

3.1 Strategies for formatting data for effective comparative analysis

Typical LC-MS analysis of extracted metabolites results in thousands of detectable features 

characterized by m/z, and retention time, as well as potentially ion mobility and 

fragmentation.137 Unbiased manual comparison of features between samples is challenging, 

especially when analysing a large number of samples. Therefore, it is necessary to automate 

feature collection from the acquired data in several processing steps that will facilitate data 

analysis. There are a variety of non-compatible vendor-specific data file formats for mass 

spectrometric data which originally impeded the development of universal processing 

software. To address this issue the Protein Standards Initiative (PSI) group138 developed a 

standardized format, mzData, to facilitate data exchange.139 An additional format, mzXML, 

was developed by to serve as a standard format for MS and MS/MS data processing.140,141 

While both of these formats were popular, the scientific community pushed for a unified 

standard format to simplify software development. A new format mzML was released to 
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replace both mzXML and mzData formats,142 however, all of these are still commonly used 

for metabolomics data. Correspondingly, one of the first steps in metabolomics data 

processing is to convert the data files from a vendor-specific format into one of the 

appropriate standard formats listed above for the processing software. One common utility 

for this is ProteoWizard’s MSconvert,143 which also has the ability to pre-filter the data with 

user defined parameters.

3.2 Methods and considerations for metabolite peak detection and alignment

After data format conversion, metabolite peaks must be identified and extracted from the 

data and aligned for all samples. A number of reviews have covered and compared the 

various processing packages and their algorithms.110,144-146 In this section we highlight a 

few of the common computational methods employed natural product discovery based 

metabolomics. The initial peak identification can be fairly challenging, as LC-MS ionization 

methods typically generate high levels of background chemical noise largely from mobile 

phases and buffers.147 Therefore, the automated processing methods must be able to identify 

genuine sample features while omitting detected chemical background and instrumental 

noise, and there have been several algorithms developed to accomplish this task Vectorized 

peak detection algorithms identify data points above a set intensity threshold in both the m/z 
and retention time dimensions.148,149 There are also a number of 1-dimensional LC-MS 

processing algorithms commonly used for peptide analysis which detect peaks by using the 

isotope patterns in the m/z dimension.150-152 Another of the more common methods 

involves separating the LC-MS data into extracted ion chromatograms (EIC), each covering 

a very narrow m/z range. This process is called binning and, while fast and generally 

effective, this can lead to problems if the bin size is too large or too small. A matched 

filter153 is commonly applied to EICs to select for m/z peak shapes in the chromatographic 

time domain, and if features are split between multiple bins due to inappropriate sizing, they 

can be excluded by the algorithm resulting in false negatives. The traditional XCMS peak 

detection algorithm, a widely used LC-MS processing software package, sections off 0.1 

Dalton wide EICs and then applies a second derivative Gaussian filter that aids in the 

discrimination of authentic peaks from noise along with a 10:1 signal to noise intensity 

threshold.154 An alternative to the binning approach for high resolution MS data is the 

centWave algorithm which identifies ion dense regions of interest in centroid data.155 Peaks 

are detected along these regions using a continuous wavelet transform, which allows for a 

much more dynamic range of peak shapes.155,156 The quality and validation of peak 

detection from increasingly complex datasets remains an area of intense research 

efforts.157,158

Another consideration in data processing is the tendency for retention times of features to 

vary between multiple injections due to changes in chromatographic conditions discussed 

previously. It is therefore necessary to match mass features between samples of an 

experiment, and align the retention times of matched peaks to generate a discrete feature list. 

Originally, internal reference standards were used to adjust retention times of each 

sample.159,160 However, retention time drifts throughout an acquisition are often not 

linear,154,161 and this also required additional sample preparation steps to incorporate the 

standards. A variety of algorithms have been developed to align features between sample 
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runs without the use of internal standards. The original XCMS alignment algorithm 

identified hundreds to thousands of peak groups that are present in a large number of 

samples. These “well behaved” groups are used as markers to align the remaining detected 

features. Typically, the number of these markers identified from metabolome extracts is 

sufficient to cover the chromatographic profile of samples and correctly align the nonlinear 

retention time drifts. Local regression, LOESS,162 is then used to approximate drifts for 

regions without sufficient peak markers. Several alignment algorithms have been developed 

to process LC-MS data,163-169 and in a comparative study of six freely available retention 

time alignment methods the XCMS algorithm was shown to be the best for processing 

metabolomics data.170 However, it was noted that the appropriate selection of parameters 

used for the methods could have a large impact on the data output, such that the apparent 

success of any particular method is dependent upon the user’s experience. A software 

package, Isotopologue Parameter Optimization (IPO), was recently released to automatically 

optimize XCMS parameter settings using natural C13 isotopic peaks.171 This software 

applies to a variety of different sample types, chromatographic strategies, and instrument 

methods and aids to simplify and systematize method development while optimizing 

metabolomics processing for non-experts.

After peak alignment it is common for several mass/retention time features to possess few or 

even no matches between samples. This may be because some peaks are entirely unique to a 

subset of experimental samples but can also stem from errors in peak detection due to 

inappropriate parameter settings, noisy data, etc. Gap-filling is commonly used to ensure 

these are not false negatives and provide a non-zero value for subsequent statistical analyses. 

In the absence of a detectable peak, the values obtained through gap filling reflect noise 

within the region peaks that were detected in other samples. For low abundance features, the 

integrated noise level over the peak region may be similar to the value determined for the 

feature, and this can lead to the observation of a metabolite ion that statistically correlates 

with a single condition while its lower abundance isotopes show no correlations in 

subsequent statistical analyses.

4 Analysis of metabolomics data in the context of secondary metabolites

The next stage of metabolomics analysis consists of applying one or more methods to 

compare metabolomics datasets. Depending on the objectives of a given study, several 

complementary methods may be applied. In the following discussion we review extant 

methods for comparative metabolomics analysis. To illustrate the application of these 

methods, we apply them to the analysis of a metabolomics dataset focused on the cytotoxic 

macrolide producing organism, Nocardiopsis sp FU40, and its exposure to multiple 

competing organism in mixed culture. In selected mixed culture conditions, this organism 

increased production of the secondary metabolites called ciromicins, which we highlight 

throughout data analyses.
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4.1 Multivariate statistical analysis and data projections for identification of abundant 
covarying metabolites

Subsequent to pre-processing, metabolomics data can be analysed through multivariate 

statistical analyses (MVSA) which simplify and identify significant correlations within the 

data. Two common methods for metabolomics data analysis are partial least squares (PLS), 

or projections to latent structures, regression methods and principal component analyses 

(PCA) reviewed in more detail elsewhere.172173 Briefly, PLS methods assume that changes 

within the data are largely driven by a subset of latent variables, which are not themselves 

measured within the data but are more abstract, such as experimental treatments/stimulants 

or conditions. With this assumption, a PLS analysis will identify latent vectors within the 

data that describe the maximal covariance between user defined groups.174,175 Alternatively, 

PCA makes no assumptions about the data and identifies the sources of the highest variance 

across the samples to distinguish the samples from one another.176 The fundamental 

difference between these two analyses is that PLS are supervised with user defined groups 

while PCA are unsupervised variable reduction methods. Orthogonal signal corrections can 

be applied to PLS regressions to improve separation between predictive and non-predictive 

variation.177 The product of these analyses are scoresplots, or projections of samples onto a 

hyperplane within the data describing sample covariance, from PCA and PLS analyses. 

Interpretation of scoresplots show the separation of samples based on feature variance to 

determine which samples are similar (nearby in Cartesian space) and dissimilar (far away) 

with regards to their most significantly varying features. Replicate analyses of the same 

sample should cluster within the scoresplot, and in this way scoresplots are a useful means 

of identifying errors in sample acquisition or data pre-processing. Additionally, a control 

comprised of pooled samples should locate close to the origin of a PCA plot. Another useful 

product of the PCA analyses are loadings plots, which show correlations between variables 

in the data and summarize these variables’ impacts on the scoresplot. Nearby features are 

positively correlated, while distant features are negatively correlated, and features in the 

same region as samples in the scoresplot will be more abundantly or uniquely present in 

those samples.

4.1.1 Strain prioritization via principal component analysis—One approach to the 

discovery of new natural products has been to prioritize organisms distinguished as 

metabolically unique through a PCA analysis. There is often a great deal of redundancy in 

the compounds identified through microbial natural product screening endeavours, and this 

redundancy can be reduced through the selection of metabolomically diverse microbial 

strains.178 Under the hypothesis that organisms with similar secondary metabolic potential 

would cluster in PCA space, Hou et al. analysed 47 microbial strains to demonstrate how 

MVSA could prioritize strains with diverse secondary metabolic potential.179 Similarly, 

PCA has been used to prioritize marine microbial symbionts180 as well as phylogenetically 

similar Streptomyces181 for natural product isolation. Figure 2 demonstrates how 

metabolically unique organisms are distinguishable along the principal component vectors of 

the PCA scoresplot. This method may also be useful for identifying new classes of bioactive 

microbial compounds as has been done for plant extracts.182 However, caveats to this 

approach include (1) that the correlating features responsible for PCA prioritization of a 

subset of organisms from a library may not be secondary metabolites, which are generally 
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present in relatively low abundance within crude extracts, and (2) that low abundant 

secondary metabolites, will not be emphasized by these methods.

4.1.2 Secondary metabolite prioritization within metabolomics data via 
principal component and regression analyses—One important application of PCA 

and PLS metabolomics for natural product discovery is to prioritize induced secondary 

metabolites in comparative analyses between chemically and/or biologically stimulated and 

control conditions. Secondary metabolite production can be activated in microorganisms 

through a variety of chemical and environmental stimulation,29,30,183,184 and PCA and PLS 

are commonly applied to identify abundantly produced features in these conditions.40,185-187 

Binary comparisons using S-plots can be a used to identify group specific features of a PLS 

model. 188 These graphs separate features by their covariance along the x-axis and their 

correlation to user defined groups on the y-axis. More simply, more abundant features are 

farther from the origin on the x-axis, and features with correlations closer to 1 or -1 are 

likely to be unique or specific to one group or the other. Volcano plots have also recently 

been used to identify significantly covarying metabolites in binary comparisons of natural 

product extracts.189 Volcano plots show each features’ statistical significance, p-value, on 

the y-axis and fold change along the x-axis.190,191 Similarly PCA loadings plots can be used 

to visualize significant feature differences between sample sets. Figure 3 demonstrates how 

S-plots, volcano plots, and loadings plots can distinguish induced metabolomic features in 

our Nocardiopsis case study. The loadings plot tripartite comparison identifies features that 

correlate with either the Nocardiopsis or Rhodococcus monocultures or a mixed culture 

where the two compete for nutrients. In this plot the induced cytotoxic macrolactam 

ciromicin is clearly distinguishable as positively correlated with the mixed culture extract. 

Similarly, ciromicin was clearly identified through the S-plot and volcano plot comparisons 

between the Nocardiopsis monoculture and the mixed culture. These methods can be very 

powerful, and freely available online metabolomics packages, such as XCMS Online192,193 

and Metaboanalyst194,195 can perform some routine MVSA data analyses in addition to data 

pre-processing. An alternative and fairly unique comparative analysis available through 

XCMS Online is the cloud plot196. These plots convey feature fold changes, m/z, retention 

time, and statistical distribution in the same Figure, and can perform both binary and 

multigroup comparisons.193

4.2 Discovering molecular inventories of microbial responses via self organizing map 
analytics

A strength in MVSA analysis of metabolomics datasets is the identification of the most 

unique and abundant features between small numbers of treatment conditions. However, 

these methods are limited to displaying data in two or three dimensions and are biased 

towards the largest differences within the entire dataset. Therefore, the utility of MVSA to 

represent an experiment diminishes as the number and diversity of samples increases. For 

instance, it is common to screen a target organism under dozens of stimulus conditions to 

optimize compound production, or to induce silent biosynthetic gene clusters, and in these 

cases we have previously demonstrated that an alternative method utilizing Kohonen self-

organizing map (SOM) analytics can be more effective at representing multiplexed stimuli 

data than PCA.184 As discussed above, metabolomic acquisition via LC-MS results in the 
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acquisition of thousands of detectable features. Through SOM analyses these features are 

organized using an artificial neural network into a 2-dimensional grid based on feature 

response patterns across all experimental conditions. Features that share similar trend 

patterns are grouped in nearby nodes of the map as shown in Figure 4. Through multiple 

iterations, typically several hundred, this organization is improved ultimately resulting in a 

feature map where features in this case correspond to clusters of similar response trends. 

Unlike MVSA, SOM analyses improve with increasing amount of data and response 

conditions (e.g. stimuli), as this leads to more varied response trends which in turn enhances 

feature organization. A metabolomics workflow – molecular expression dynamics inspector 

(MEDI), provides an open access methodology for SOM analysis from MS data and is 

readily applicable to microbial metabolomics.197 In MEDI, each tile, or node, of the grid is 

coloured based on the centroid intensity of its features to generate heatmaps. Difference 

maps can be generated by subtractive analysis (e.g. control and stimulus conditions) to 

readily prioritize abundant and treatment-specific metabolomic features into regions of 

interest. We applied these SOM analytics to map stimuli-induced metabolomic responses 

from 23 distinct conditions in Streptomyces coelicolor.184 In this study 16 detected 

secondary metabolites produced by S. coelicolor were induced in one of the 23 conditions 

and prioritized through the SOM analysis.184 Application of SOM analyses to investigate 

metabolomic changes engendered through microbial competition in our Nocardiopsis case 

study prioritized several metabolites unique to mixed culture conditions including the 

ciromicins. Additionally, the single SOM analysis recapitulates the results of multiple 

MVSA analyses. In Figure 5 three PCA loadings plots are compared with three SOM 

heatmaps from the Nocardiopsis mixed culture example study. When the features held 

within regions of interest on the SOM maps are sorted by abundance they are highly 

consistent with the loadings plots from PCA analyses. Indeed, there is correspondence 

between PCA and the neural networks used for MEDI analysis. As the data and/or 

conditions become sparser, the SOM heatmap begins to decompose into a similar functional 

form as PCA.

4.3 Molecular networking to reveal structural uniqueness and relatedness in large 
datasets.

Microorganisms have been extensively mined for natural products throughout much of the 

past century in the search for new pharmaceuticals, and the rediscovery of known 

compounds or known families of compounds is quite common. Identifying and removing 

these rediscovered natural products, a process known as dereplication, is both critical and 

challenging.59,198 Typically accurate masses or determined molecular formula of extracted 

compounds are used to search databases of known natural products. However, the large 

number of isobaric compounds complicate dereplication. UV/Vis absorbance59 spectra and 

chromatographic retention times199 can be used to further match extracted features to 

database compounds, and as technologies and databases improve, it is likely that ion 

mobility will play a role in natural product dereplication as well.85,86,200 Fragmentation 

spectra acquired through tandem MS is another useful property for dereplication. Metabolite 

fragmentation patterns observed through MS/MS analysis can be matched to those in 

databases like PubChem, METLIN201 and MassBank202 to putatively identify MS features. 

Kernel based machine learning algorithms have recently been applied to dereplicate 
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metabolites using multiple levels of tandem MS,91,203 and while this works well for primary 

metabolites, public databases for microbial secondary metabolites with fragmentation 

spectra encompass only a small fraction of known natural products. For example, GNPS: 

Global Natural Products Social Molecular Networking, the largest natural product public 

database with MS/MS spectra, contains more than 140,000 natural products,198 and there are 

an estimated 600,000 published natural compounds.204

Computational methods to generate theoretical fragmentation spectra have been employed to 

compensate for the lack of experimental data on natural products.205 These in-silico MS/MS 

spectral databases can further facilitate natural product dereplication when coupled with 

molecular networking,206 and as both experimental and in-silico database coverage 

improves, comparisons of fragmentation spectra may become the most useful method of 

natural product dereplication. In addition to matching fragmentation spectra with database 

compounds, fragmentation data can be used to cluster related classes of molecules by 

fragment similarity. Molecular networking analyses cluster families of molecules through 

vector correlations between fragment ions.207 Yang et al. demonstrated the utility of this 

approach for natural product discovery by dereplicating 58 natural products from marine and 

terrestrial microorganisms.208 Molecular networking in this study also identified a number 

of novel analogs to known compounds, which are more difficult to obtain through other 

dereplication methods. In Figure 6 we have applied molecular networking to our 

Nocardiopsis example dataset. Using the network visualizer in the GNPS: Global Natural 

Products Social Molecular Networking website, fragmentation spectra for each object in the 

network can be easily viewed and compared to matched reference spectra from the GNPS 

library. The features in the network can also be coloured by the user-defined group or 

condition to which they are correlated. In Figure 6 we have highlighted features unique to 

mixed culture conditions in red. As shown, molecular networking identifies unique features 

which is unbiased by compound abundance. Several features of this dataset share no 

significant fragment similarity with the network and are isolated as “self-loops”. In fact, 

ciromicin A is among these uniquely fragmenting features, and this in itself may be another 

useful means to prioritize leads, as outlying features may be more structurally unique. 

Molecular networking analysis can be enhanced by combining additional metabolomics 

techniques. Klitgaard et al. used a combination of molecular networking and stable isotope 

labelling to identify novel analogs of nidulanin A and fungisporin in the well-studied fungus 

Aspergillus nidulans.70 Fragment based clustering in this manner can also be used to 

identify modified natural products stemming from interactions between organisms. Moree et 

al. used molecular networking with imaging mass spectrometry to investigate the 

interkingdom interactions between Pseudomonas and Aspergillus and observed a variety of 

biotransformed metabolites arising from this microbial competition.209 Similarly, Briand et 

al. applied molecular networking to identify new compounds and analogs arising from 

intraspecific interactions between algae.210 The application of molecular networking for the 

Nocardiopsis mixed culture data shown in Figure 6 links a number features found in the 

Nocardiopsis monoculture with similarly fragmenting features only detectable in mixed 

culture. These may represent compounds made by Nocardiopsis that are stimulated or 

modified in some way by the competitor Tsukamurella.
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Molecular networking can also prioritize features by linking observed natural products to 

their cognate biosynthetic gene clusters and gene cluster families99,211 when used in 

conjunction with genomic sequence analysis. This can be an advantageous means of 

prioritizing metabolite leads as demonstrated by the work from Kleigrewe et al. where 

molecular networking was combined with genomic sequence analysis to identify a novel 

group of acyl amides, termed columbamides, from marine cyanobacteria.212 The Crawford 

lab has recently employed ‘pathway-targeted’ molecular network analyses to identify 

metabolites from the colibactin gene cluster, which had been linked to increased virulence in 

E. coli.213-215 As previously discussed, heterologous hosts are often used for the production 

of microbial secondary metabolites,216-218 and molecular networking is a useful tool for 

comparative metabolomics to visualize the output of these heterologous hosts. Schorn et al. 

used molecular networking to identify novel eponemycin congeners produced through 

heterologous expression in Streptomyces albus J1046.219 Molecular networking has even 

been applied to identify virulence factors in pathogenic organisms,220,221 and this method 

will become more beneficial for natural product discovery as databases and technologies 

improve.

5. Investigations of secondary metabolite bioactivity

Natural products are intrinsically biologically active, however, the clinical relevance of this 

activity may not always be discernible. Typically, natural product structure and mode of 

action are determined fairly late in the natural product discovery pipeline, which contributes 

to high rediscovery rates. Therefore, prioritizing natural product leads by deep profiling of 

pharmacologically relevant biological activities would expedite natural product based drug 

discovery. Natural product extracts are commonly divided into multiple fractions which are 

then screened to identify the components underlying the desired biological activity.222-225 

However, low abundance compounds can often be overlooked in complex extracts, and 

recently MVSA have been utilized to help link observed fraction bioactivity to detectable 

features from metabolomic analyses.39,226 Even after correlating metabolites with biological 

activity, determining the mode of action for active compounds can be difficult and 

expensive.227-230 One approach has been developed that uses the antibiotic spectrum of 

activities across different organisms, mode of action profiles (BioMAP), to group similar 

antibiotics.231 This method was effectively able to cluster antibiotics of the same compound 

class and led to the identification of a novel naphthoquinone antibiotic, arromycin.231 Gene 

expression profiling with either the entire transcriptome232,233 or a subset of reporter 

genes234,235 has also been used to predict modes of action for natural products. However, 

because these transcriptomic screens are still relatively costly, there is a great interest in 

applying metabolomics analyses to predict natural product modes of action using either 

natural product extracts236 or purified compounds.237-242 Vincent et al. have recently shown 

untargeted metabolomics can effectively identify compound modes of action when specific 

metabolic pathways are the primary drug target.243 Metabolomic consequences of drug 

combinations may additionally be able to identify synergism, or antagonism between 

coadministered drug therapies.241 In a study with M. smegmatis, Halouska et al. observed 

that antibiotics which share similar biological targets engender similar metabolomic changes 

and are grouped together through MVSA.239 The group additionally applied their 
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metabolomic methods to investigate antibiotics with unknown biological targets and found 

them to group with membrane disrupting antibiotics, ampicillin, D‐cycloserine, and 

vancomycin.239 This methodology could prove very useful to prioritize compounds for 

isolation. Antimicrobial extracts which separate themselves metabolomically through 

MVSA or other analyses may exert their activity through a novel biological target or 

mechanism. In this way pharmaceutically relevant natural products could be prioritized for 

isolation. These metabolomic analyses have even been applied to investigate the underlying 

methods by which known antibiotics kill pathogens.244 Another approach, cytological 

profiling, uses automated image and microscopy analyses to identify phenotypic changes 

induced from bioactive compounds,245,246 and this method has been used to classify 

biologically active compounds by their respective modes of action247,248 even within more 

complex marine derived bacterial extracts.249 A combined approach integrating these 

phenotypic screens with untargeted metabolomics has recently been developed to predict the 

modes of action for complex libraries of natural products and prioritize unique bioactive 

components.250 Applying this method, Compound Activity Mapping, on data from 234 

natural product extracts led to the discovery of the quinocinnolinomycins, a new family of 

natural products implicated to induce endoplasmic reticulum stress based on further 

cytological profile clustering.250 Ultimately, these multi-omic combinatorial methods may 

become the preferred means of predicting molecular modes of action. Integrating the 

phenotypic data from cytological profiling and the transcriptomic functional signature 

ontologies235 with metabolomics data using one or combinations of the powerful analytical 

platforms discussed in this review, self-organizing maps, molecular networking, MVSA, 

etc., could provide new insights into the modes of action of bioactive compounds and greatly 

facilitate novel drug discovery.

6 Conclusions

Metabolomic analyses are powerful tools for natural product discovery. However, while 

metabolomics can provide a wealth of information regarding the activity and responses of 

microorganisms, with current technologies it is practically impossible to analyse the entire 

metabolome of an organism comprehensively due to variations in ionization efficiency and 

limitations in detection across wide concentration dynamic range. Instead, only detectable 

metabolites, which make up a fraction of the total metabolites present, are used to draw 

conclusions from current studies. While the full transcriptomic and proteomic potential of an 

organism can be determined through modern genome sequencing, there is no readily 

discernible limit to the number of metabolites present within organisms, so it is difficult to 

predict the number of metabolites omitted by current analyses. Due to these limitations, 

extra care must be taken when drawing conclusions from metabolomics datasets. 

Nonetheless, metabolomics analyses benefit microbial natural product discovery pipelines in 

a variety of ways as described in this report. These can be used to prioritize organisms, 

identify activated compounds from stimuli exposure, prioritize features through bioactivity 

spectrums or molecular class, and even dereplicate prioritized secondary metabolites. The 

metabolomics methods described herein may also facilitate investigations into the 

fundamental purpose behind secondary metabolite production within microbial 

communities. It is largely unclear how the production of secondary metabolites is regulated 
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in situ as well as which ecological stimuli trigger secondary metabolic production. Such 

studies would benefit natural product discovery endeavours by facilitating predictions of 

stimuli to induce secondary metabolite production within the endogenous producer and 

could additionally provide insight into human health and wellness. Microbial secondary 

metabolites have a significant impact on human health by means of both isolated 

pharmaceuticals and compounds produced in situ from within human microbiomes,13,251-255 

and metabolomics may be able to offer insights into how these organisms modulate their 

secondary metabolism in response to diet, medicine, and endogenous host factors.

Comparative metabolomics methods are aiding in unleashing the repressed and/or hidden 

wealth of microbial secondary metabolism predicted by whole genome sequencing. The 

combination of complimentary methods (e.g. SOM and molecular networking) has the 

potential provide new tools to accelerate discovery by comparison. Ultimately, the purpose 

of these efforts is to identify biological roles for secondary metabolites, be they biochemical, 

chemical ecological, or translational in human medicine. We feel that the next era in 

secondary metabolite discovery and application will be facilitated by methods that combine 

high content biological activity data measurements for metabolites within metabolomes with 

corresponding multidimensional metabolomic data to illuminate effectors of natural small 

molecule interactions, and their roles in biological systems.
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Figure 1. 
General metabolomics workflow. metabolites are extracted from experimental conditions 

and detected through ms analysis. ms data is then formatted and processed before 

undergoing statistical analyses to determine important metabolomic changes between the 

sample groups. these results may then be used to direct new experiments to optimize 

secondary metabolite production or test biological hypotheses generated from the initial 

experiment.
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Figure 2. 
Using a pca scores plot to prioritize microbial producers. a panel of actinomycetes including 

microbiospora, streptomyces, and nonomurea genera. in this analysis, 14 strains grown 

under identical conditions were compared and principal component analysis was used to 

display metabolomic feature variance between the strains. principal component 1 primarily 

groups streptomyces from other strains, and component 2 further distinguishes nocardiopsis 

sp. fu40 as metabolomically unique compared to other tested strains. percentages shown in 

parentheses correspond to the variance between the samples contained within the specific 

component.
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Figure 3. 
mvsa s-, loadings, and volcano plots to identify induced features. (a) the scoresplot reveals 

group separation between the nocardiopsis monoculture (nf), the rhodococcus wratis 

competitor monoculture (rw), and the mixed culture (rw&nf). (b) s-plot shows ciromicin 

significantly correlates (p < 0.1) to the mixed culture group in a binary comparison vs the 

nocardiopsis monoculture. (c) loadings plot of features shows ciromicin contributes 

significantly to group differentiation on the pca scoresplot. (d) volcano plot also prioritizes 

ciromicin ions which have a high correlation (low p-value) on the y-axis and high fold 

change on the x-axis. shading in panels a and c are used to highlight the data corresponding 

to the different sample subtypes.
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Figure 4. 
Feature organization within a self-organizing map analysis. feature abundance profiles are 

illustrated for each feature as a response trend across all experimental conditions shown in 

the upper right. these trends are organized for similarity as shown on the bottom right. these 

organized data serve as the basis for visual heatmap representations of the observed 

metabolomic content of experimental cultures.
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Figure 5. 
Three example comparisons of prioritized features through principal component and self-

organizing map analyses on mixed cultures with nocardiopsis fu40 (nf), rhodococcus wratis 

(rw), tsukamurella pulmonis (tp), and bacillus subtilis (bs). features prioritized within som 

regions of interest recapitulate pca tripartite analyses when sorted by abundance, or 

percentage of the region of interest (% roi). shading in scores and loadings plots used to 

highlight the data corresponding to the different sample subtypes.
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Figure 6. 
Applications of molecular networking to explore data. comparisons of acquired 

fragmentation spectra to established databases facilitates putative feature identification. 

connectivity between features shown with blue lines relates structural similarities. reference 

compounds seeded into the network can identify structural analogs. feature distributions 

between experimental conditions are indicated by node colouring, red for mixed culture 

specific, and grey for features detected within the monoculture.
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Table 1

Overview of analytical descriptors relevant to metabolomics-based natural product discovery

Analytical
Descriptor Description Analytical technique

Mass accuracy

Deviation of the experimentally determined m/z 
from
the true m/z. Expressed as the mass error (e.g. 
ppm),
with sufficiently small error an exact chemical 
formula
can be determined.

Mass analyzer

• Space-dispersive (e.g. ion trap, quadrupole)

• Time-dispersive (e.g. Time of flight)

Isotopic
modeling

Comparison of the abundances of specific 
isotopes in
the molecular isotopic envelope. Can provide 
rapid
indication of amount and identity of 
heteroatoms.

Chemometrics

• Theoretical isotope calculators

• Mass defect analysis

• Quantitation

Chromatographic
retention time

Time required for fluid-solid phase partitioning 
across a
column. Provides separation on the basis of a
differentiating characteristic orthogonal to mass.

Chromatography

• Hydropathy (e.g. Liquid chromatography)

• Volatility (e.g. Gas Chromatography)

• Size and charge (e.g. Size exclusion, Charge 
exclusion, Ion capture)

Ion mobility drift
time

Gas-phase electrophoretic separation based on 
size
and shape of the metabolite as ions pass through 
a gas
filled drift tube.

Ion drift tube

• Time-dispersive (e.g. Drift time ion 
mobility,Traveling-wave ion mobility)

• Space-dispersive (e.g. Field-asymmetric ion 
mobility)

Fragmentation

Tandem MS using ion activation to provide
characteristic fragment species. Provides 
metabolite
structural information to prioritize which of 
multiple
isomers are the likely identity for a given 
elemental
formula.

Ion activation

• Collisional (e.g. Collision induced dissociation, 
and Surface induced dissociation)

• Electron (e.g. Electron transfer dissociation and 
Electron capture dissociation)

• Photoactivation (e.g. Infrared multiphoton 
dissociation and Wavelength-Tunable 
Ultraviolet Photodissociation)
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Table 2

Overview of methods for metabolomic data analysis

Method Description Applications Disadvantages

Principle component
analysis and 
Projections
to latent structures

MVSA to identify 
significant
covariance within 
data

• Identifying data outliers

• Strain prioritization

• Grouping samples

• Compound prioritization

• Less effective 
with large 
datasets

Self organizing Maps

Organizes 
features into a 2-
dimensional map 
based on feature
response trends 
across a variety of
experimental 
conditions

• Grouping samples

• Compound prioritization

• Comparing large numbers 
of experimental conditions

• Less effective 
with small 
numbers of 
conditions

Molecular networking

Organizes 
features into a
connectivity 
network based on
similarities in 
molecular
fragmentation 
patterns

• Compound prioritization

• Compound dereplication

• Fragmentation 
can vary with 
instrument 
parameters
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