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Abstract

Background

Alteration of certain metabolites may play a role in the pathophysiology of renal allograft

disease.

Methods

To explore metabolomic abnormalities in individuals with a failing kidney allograft, we ana-

lyzed by liquid chromatography-mass spectrometry (LC-MS/MS; for ex vivo profiling of

serum and urine) and two dimensional correlated spectroscopy (2D COSY; for in vivo study

of the kidney graft) 40 subjects with varying degrees of chronic allograft dysfunction strati-

fied by tertiles of glomerular filtration rate (GFR; T1, T2, T3). Ten healthy non-allograft indi-

viduals were chosen as controls.

Results

LC-MS/MS analysis revealed a dose-response association between GFR and serum con-

centration of tryptophan, glutamine, dimethylarginine isomers (asymmetric [A]DMA and

symmetric [S]DMA) and short-chain acylcarnitines (C4 and C12), (test for trend: T1-T3 =

p<0.05; p = 0.01; p<0.001; p = 0.01; p = 0.01; p<0.05, respectively). The same association

was found between GFR and urinary levels of histidine, DOPA, dopamine, carnosine,

SDMA and ADMA (test for trend: T1-T3 = p<0.05; p<0.01; p = 0.001; p<0.05; p = 0.001;

p<0.001; p<0.01, respectively). In vivo 2D COSY of the kidney allograft revealed significant
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reduction in the parenchymal content of choline, creatine, taurine and threonine (all: p<0.05)

in individuals with lower GFR levels.

Conclusions

We report an association between renal function and altered metabolomic profile in renal

transplant individuals with different degrees of kidney graft function.

Introduction

Kidney transplantation has become the most widespread organ engrafting procedure [1].

While advances in immunosuppressive protocols have reduced the incidence of kidney acute

rejection over the years [2], long-term outcome of the kidney allograft remains affected by the

persistence of chronic allograft dysfunction [3–6]. The success of a renal transplant strictly

depends on the ability of monitoring transplant recipients and responsively changing their

medications. Unfortunately, we are still relying on the measurement of serum creatinine levels

and proteinuria to assess kidney function, which are non-specific and insensitive markers

[7,8,9] and whose increase may underlie an already predominantly lost kidney function [8, 9].

Also, metabolic tests and imaging techniques which are routinely employed to detect graft dys-

function, in some circumstances do not provide adequate specificity, sensitivity, or accuracy

[7, 10]. Thus, follow-up biopsies, both inconvenient to the patient and associated with expen-

sive histopathological analysis, are required to reach a definitive diagnosis [11]. The appear-

ance of novel techniques that allow the detection of unprecedentedly discovered pathways or

unidentified metabolites, may lead to a whole new era of patient management, particularly the

use of novel "omics" may generate opportunities unexplored thus far, ideally bypassing the

shortcomings of the current routine diagnostic tools. Metabolomics has the potential to per-

form an unbiased, non-targeted and dynamic analysis of low molecular mass cellular products,

thus making it an ideal candidate for the discovery of new potential markers of renal graft

function in the transplant patient [12,13,14,15]. Multiple studies report the association

between certain immunosuppressive schemes and specific metabolic alterations in urine and

serum of transplant patients [16–18] while others propose a relationship between acute renal

allograft rejection and urine metabolic profile [19]. Metabolite alteration may also accompany

the progression of chronic kidney allograft dysfunction and this may be relevant for the out-

come both in terms of graft survival and health of the patient. Thus, aiming to explore the pro-

file of metabolomic abnormalities induced by the progressive reduction of kidney function

and their potential impact on kidney graft function, we took advantage of two complementary

approaches: liquid chromatography-mass spectrometry (LC-MS/MS) for targeted metabolo-

mic profiling of serum and urine [20] and two dimensional correlated spectroscopy (2D

COSY) [21, 22] for the in vivo metabolomic profiling of the kidney allograft, in a population of

individuals with different degrees of graft dysfunction, defined by progressively lower levels of

glomerular filtration rate (GFR) and a pool of healthy non-allograft individuals controls. We

thus performed an analysis of the transplant individual at the serum, urine and kidney graft

level by taking advantage of the latest analytical techniques, in order to gain insights into the

metabolomic abnormalities evident in individuals with failing kidney allografts.

Materials and Methods

A complete description of methods is offered in the S1 Data.
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Patient characteristics

Forty kidney transplant individuals, with at least 6 months of follow-up after transplantation,

were admitted for post-transplantation routine analysis. After clinical evaluation, individuals

were enrolled in the study and assigned to different groups according to degree of allograft

function impairment. Transplant patients were then stratified in tertiles according to GFR

distribution (T1, T2 and T3) as shown in Table 1. Exclusion criteria were defined as (i)

GFR < 25 ml/min; (ii) serum creatinine > 3.0 mg/dl; (iii) severe uncontrolled arterial hyper-

tension; and (iv) arterial renal stenosis (assessed with Color Doppler Ultrasonography).

Finally, the control group (Ctrl) consisted of ten healthy individuals with normal renal func-

tion. Data were obtained after individuals’ written consent. The study protocol was conducted

after Institutional Review Board approval. A blinded code was assigned to each participating

patient. Kidney transplant recipients did not differ with regard to donor age, HLA match,

panel of reactive antibodies, cold ischemia time, rejection rate, cytomegalovirus infection and

lymphoproliferative diseases across the various renal function strata.

Metabolomics protocol

To gain greater insight into the metabolome of the kidney transplant patient, we opted to use a

novel and unique composite approach to define the of ex vivo (serum and urine) and in vivo
metabolomic profile of kidney transplant individuals by using LC-MS/MS, FIA-MS/MS

(n = 40 patients) and 2D COSY [22] with subsequent 3D-image transformation [23], per-

formed on a subgroup (n = 15) of renal transplant individuals. For additional details on the

metabolomics protocol, please refer to S1 Data. The Human Metabolome DataBase (HMDB,

http://www.hmdb.ca/) was used to study the metabolic pathways at the base of the observed

molecular alterations and to hypothesize potential effects of these on graft function.

Statistical analysis

Serum markers were presented as median (25th, 75th percentiles). Urinary markers normal-

ized to creatinine were presented as median (25th, 75th percentiles). Serum and urinary

metabolites present in at least 80% of the study subjects were designated as common and sub-

jected to further analysis. Kidney transplant recipients were stratified according to the distri-

bution of renal function (T1, T2, T3), in which T3 represented subjects with impaired graft

Table 1. Demographic and metabolic characteristics of kidney transplant individuals. Results are expressed as median (25th, 75th percentile).

T1 (56–108 ml/min) T2 (46–55 ml/min) T3 (21–39 ml/min) p-value

Age 56.0 (44.5, 62.0) 62.0 (53.0, 65.0) 55.0 (48.0, 65.0) ns

Pre-transplant dialysis duration (months) 35.0 (15.5, 112.5) 53.0 (43.0, 90.0) 78.0 (15.7, 102.0) ns

Follow-up (months) 75.0 (48.5, 115.0) 77.0 (30.0, 118.0) 64.5 (15.7, 185.8) ns

Systolic blood pressure (mmHg) 130.0 (127.5, 150.0) 130.0 (130.0, 140.0) 140.0 (121.3, 152.5) ns

Diastolic blood pressure (mmHg) 80.0 (75.0, 90.0) 80.0 (80.0, 85.0) 75.5 (70.0, 80.0) ns

Cholesterol (mg/dl) 160.0 (147.5, 187.0) 180.0 (155.0, 213.0) 204.5 (176.8, 240.0) ns

Triglycerides (mg/dl) 106.0 (72.5, 159.5) 166.0 (83.0, 209.0) 140.0 (100.8, 198.8) ns

BUN (mg/dl) 56.5 (49.5, 76.5) 76.0 (67.0, 103.8) 104 (88.75, 150.8) 0.009

GFR (ml/min/1.73m2) 65.0 (60.0, 83.5) 50.0 (48.0, 55.0) 34.5 (24.2, 35.7) by design

S-Creatinine (mg/dl) 1.3 (1.2, 1.6) 1.5 (1.5, 1.8) 2.4 (2.0, 2.7) <0.0001

AER (g/day) 0.1 (0.1, 0.2) 0.3 (0.1, 0.4) 1.0 (0.2, 2.5) 0.009

Abbreviations. Male (M); female (F); blood urea nitrogen (BUN); glomerular filtration rate (GFR); albumin excretion rate (AER).

doi:10.1371/journal.pone.0169077.t001
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function, T2 subjects with fairly conserved renal allograft function and T1 represented subjects

with well-preserved renal function, respectively. Multivariate analysis (volcano plot) of com-

mon metabolites represents a fold difference (x-axis) between mean values of the metabolites

within T3 and T1 strata respectively, whereas nominal significance is presented on the y-axis

(Figs 1 and 2). Differences among the groups were evaluated in the general linear model based

on the metabolites transformed to their logarithms (base 10). Study groups were treated in a

categorical (T3 vs. T1, T1 vs. Ctrl) or an ordinal way (T1-T3) appropriately. Spearman non-

parametric correlation matrix was created among kidney transplant recipients to evaluate cor-

relations among the metabolites. Correlation coefficients are presented. All tests were two-

sided, and a p value of less than 0.05 was considered indicative of statistical significance. Data

analysis was performed using SAS version 9.3 (SAS Institute, Cary, NC).

Results

Individual characteristics

Forty kidney transplant individuals were enrolled in our cross-sectional study and stratified

according to tertiles of GFR distribution as follows: T1 = 56–108 ml/min; T2 = 46–55 ml/min;

and T3 = 21–39 ml/min. Individuals among groups did not show major differences in terms of

demographic characteristics, lipid profile or blood pressure measurements (Table 1), while

mean group comparison revealed significant differences in blood urea nitrogen, serum creati-

nine and albumin excretion rate among T1, T2 and T3 (Table 1).

Ex vivo LC-MS/MS and FIA-MS/MS in kidney transplant individuals with

different degrees of graft function

We took advantage of the AbsoluteIDQTM p180 kit assay (BIOCRATES Life Sciences AG) to

determine serum and urinary concentration of 190 metabolites divided as follows: amines

(amino acids and biogenic amines), acylcarnitines, phosphatidylcolines, sphingomyelins, lyso-

phosphatidylcolines and hexose. The majority of the biochemical classes of metabolites were

commonly detected in serum except for acylcarnitines, for which the detectability was 37%.

On the contrary, there were two major biochemical classes of easily detectable metabolites in

urine: amino acid and biogenic amines (88%) and acylcarnitines (46%). Finally, all lipid

metabolites were below the limit of method detection in the urine samples (S1 Table).

Serum metabolomic profiling

Protein or amino acid metabolism alterations, dietary deficiencies, increased catabolic degra-

dation and inflammation are some of the causes behind metabolite abnormalities in serum

among kidney graft individuals [24]. In our cohort, glutamine was progressively higher in kid-

ney transplant individuals with impaired GFR (T3) as compared to patients with more pre-

served kidney function (T1) (T3 = 765 [749, 827] vs. T1 = 658 [640, 685] μM, p = 0.01; Fig 1A

and 1B). Conversely, serum tryptophan was reduced in patients with lower GFR (T3) as com-

pared to T1 patients (T3 = 71 [59, 76] vs. T1 = 93 [84, 94] μM, p<0.05; Fig 1A and 1B). Low

serum tryptophan concentrations have been linked to inflammation and regulation of the

immune response; in particular, indoleamine 2,3-dioxygenase (IDO)-mediated tryptophan

catabolism has been reported during allograft rejection [25].

Among biogenic amines, dimethylarginine (DMA) analogues showed significant differ-

ences among groups. Specifically, asymmetric (A)DMA was increased in patients with reduced

GFR (T3 = 2.47 [2.06, 2.57] vs. T1 = 1.56 [1.34, 1.68] μM, p<0.001; Fig 1A and 1B). Compari-

son of ADMA between T1 patients and control individuals revealed increases in serum
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ADMA levels in kidney recipients but with preserved renal function (T1 vs. Ctrl = 0.88 [0.73,

0.99] μM, p<0.0001; Fig 1B). Similarly, symmetric DMA (S)DMA was increased in patients

with low GFR (T3 = 1.64 [1.30, 1.95] vs. T1 = 1.02 [0.98, 1.28] μM, p = 0.01; Fig 1A and 1B)

and SDMA serum concentration variations were proportional to kidney graft performance

(test for trend [T1-T3]: p = 0.01; Fig 1 B). Reference individuals with normal renal function

displayed lower SDMA levels as compared to T1 patients (T1 vs. Ctrl = 0.48 [0.35, 0.52] μM,

p = 0.0004; Fig 1B). Methylarginine isomers have been previously reported to be altered in

individuals with chronic renal failure [26], perpetrating kidney damage through inhibition of

nitric oxide synthase activity, induction of collagen and TGF-β1 synthesis and constituting

independent causes of mortality and cardiovascular risk [27].

A common finding during renal insufficiency is the elevation of acylcarnitine serum con-

tent, most likely due to defective kidney excretion [28]. In the sample of patients under study,

butyrylcarnitine (C4) and dodecanoylcarnitine (C12) were significantly higher in patients with

Fig 1. (A) Multivariate analysis (volcano plot) of common metabolites measured in the serum on the Biocrates platform and their association with glomerular

filtration rate (GFR; T1-T3) are reported as fold difference (x-axis), and nominal significance is presented on the y-axis. (B) Serum metabolites significantly

different among patients with varying renal function are shown in the kidney transplant recipient (T1, T2, T3) and the control (Ctrl) group. (C) Spearman

nonparametric correlation matrix among the metabolites in serum significantly associated with varying kidney transplant function. Correlation coefficients are

presented. Significant associations are marked with an asterisk (*).

doi:10.1371/journal.pone.0169077.g001
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worse graft function (C4: T3 = 0.60 [0.35, 0.74] vs. T1 = 0.30 [0.26, 0.42] μM, p = 0.01; C12:

T3 = 0.12 [0.08, 0.15] vs. T1 = 0.10 [0.08, 0.11] μM, p<0.05; Fig 1A and 1B). Both C4 and C12

were significantly different between control individuals and kidney graft patients with con-

served renal function (C4: T1 vs. Ctrl = 0.15 [0.11, 0.23] μM, p = 0.0007; C12: T1 vs. Ctrl = 0.08

[0.07, 0.10] μM, p = 0.0015; Fig 1B). These alterations are also consistent with the impaired

fatty acid metabolism and subsequent acylcarnitine accumulation that occur during renal

failure.

Spearman correlation matrix of serum metabolites significantly associated with kidney

graft function revealed that only certain metabolites were correlated with each other. Total

DMA, SDMA and acylcarntine C4 were significantly correlated. Interestingly, there was also

an inverse association between acylcarnitine C12 and tryptophan. Glutamine did not correlate

with any other metabolite in the studied matrix (Fig 1C).

Urine metabolomic profiling

Urinary levels of amino acids and biogenic amines were overall reduced in individuals with

poor graft function, pointing to reduced biosynthesis, enhanced catabolism or poor filtration

of these classes of metabolites. Urinary histidine was reduced in T3 kidney graft patients as

compared to patients with more conserved graft function (T3 = 12.0 [10.0, 20.0] vs. T1 = 31.0

[22.0, 54.0] μM, p<0.05; Fig 2A and 2B). Histidine is an anti-inflammatory and anti-oxidant

factor, and its decrease has been associated with systemic inflammation and increased mortal-

ity in individuals with poor kidney function [29].

Among biogenic amines, the urinary concentration of carnosine was reduced in patients

with a failing graft (T3 = 0.11 [0.09, 0.17] vs. T1 = 0.46 [0.20, 0.56] μM, p<0.05; Fig 2A and

2B). Similarly, free urinary dopamine was decreased in T3 individuals compared to T1 (T3 =

0.08 [0.07, 0.10] vs. T1 = 0.14 [0.12, 0.22] μM, p<0.001) and Ctrl individuals (T1 vs. Ctrl = 0.18

[0.17, 0.28] μM, p<0.05; Fig 2A and 2B). Urinary DOPA (a metabolic precursor of dopamine),

followed the same pattern as dopamine (Fig 2A and 2B), and finally, total DMA and its two

analogues ADMA and SDMA were lower in patients in the T3 group (total DMA: T3 = 4.31

[4.19, 4.80] vs. T1 = 7.25 [5.26, 7.48] μM, p = 0.001; ADMA: T3 = 1.22 [1.02, 1.26] vs. T1 = 2.41

[1.72, 3.30] μM, p<0.001; SDMA: T3 = 3.19 [2.97, 3.32] vs. T1 = 4.34 [4.19, 4.98] μM, p<0.01;

Fig 2A and 2B). Notably, reduction in urinary ADMA, and in general disturbance of nitric

oxide metabolism, have been recently associated with renal graft failure and increased mortal-

ity in individuals following kidney transplantation [30].

Spearman correlation matrix of urinary metabolites significantly associated with kidney

graft function revealed that all the respective metabolites were significantly correlated with

each other (Fig 2C).

In vivo 2D COSY spectroscopy

A subgroup of fifteen individuals (n = 5 from each GFR tertile subgroup) underwent 2D

COSY examination for in vivo analysis of the transplanted kidney (Fig 3B1–3C1). Subse-

quently, additional 3D image post-processing was performed to better visualize and compare

the differences among resonance and crosspeaks composing the spectra obtained from T1 and

T3 groups (Fig 3A and 3B2–3C2), and 25 metabolites were identified. Mean comparison of the

crosspeak volumes revealed differences in the concentrations of the amino acids taurine,

which acts as an antioxidant agent and prevents lipid peroxidation of mesangial and tubular

epithelial cells [31], and threonine, whose role remains obscure in the context of renal function

(Fig 3A, 3C1 and 3C2). Both amino acids were found to be significantly reduced in the T3

group as compared to the T1 (Taurine: T3 = 0.07 [0.03, 0.10] vs. T1 = 0.12 [0.07, 0.16] arbitrary
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units [AU], p = 0.04; Threonine: T3 = 0.11 [0.06, 0.19] vs. T1 = 0.25 [0.19, 0.27] AU, p = 0.006;

Fig 3A, 3B1, 3B2, 3C1 and 3C2). Among other metabolites identified by in vivo 2D COSY

examination, choline, an essential nutrient with a pivotal role in the synthesis of cell mem-

branes and neurotransmitters [32] (e.g. acetylcholine), was significantly reduced in T3 individ-

uals as compared to T1 (Choline 1: T3 = 0.12 [0.04, 0.17] vs. T1 = 0.21 [0.16, 0.33] AU,

p = 0.01; Choline 2: T3 = 0.15 [0.09, 0.45] vs. T1 = 0.47 [0.29, 0.65] AU; p = 0.04, Fig 3A, 3B1,

3B2, 3C1 and 3C2). Similarly, creatine, whose major function is to transport high energy

groups from their site of production (mitochondria) to the site of ATP consumption in the

cytoplasm [33], was depleted in kidneys from T3 allograft individuals compared to T1 patients

(T3 = 0.04 [0.03, 0.08] vs. T1 = 0.11 [0.06, 0.16] AU, p = 0.03, Fig 3A, 3B1, 3B2, 3C1 and 3C2).

Taken together, these data suggest that in kidney transplant individuals, low GFR may be asso-

ciated with reduced metabolism/high-energy levels and reduced cellularity of the renal graft.

Fig 2. (A) Multivariate analysis (volcano plot) of common metabolites measured in the urine on the Biocrates platform and their association with glomerular

filtration rate (GFR; T1-T3) are reported as fold difference (x-axis), and nominal significance is presented on the y-axis. (B) Urinary metabolites significantly

different among patients with varying renal function are presented in the kidney transplant recipient (T1, T2, T3) and the control (Ctrl) group. (C) Spearman

nonparametric correlation matrix among the metabolites in urine significantly associated with varying kidney transplant function. Correlation coefficients are

presented. Significant associations are marked with an asterisk (*).

doi:10.1371/journal.pone.0169077.g002
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Discussion

In this work, we have characterized the metabolite profile of biofluids (i.e. serum, urine) and of

kidney allograft parenchyma in transplanted individuals with varying degrees of filtration

impairment, by using novel analytical techniques that allow unbiased quantification of the

molecular alterations associated with chronic allograft dysfunction [34], with the goal of defin-

ing the association between kidney allograft dysfunction and metabolomic fingerprint. Modifi-

cations in specific metabolites have been shown to be involved, either as a cause or symptom,

in kidney disease. For instance, circulating amines (i.e. amino acids and biogenic amines) are

promptly altered during the early phases of kidney impairment [34], and the more the graft

fails, the more the imbalance becomes clear. These alterations can usually be attributed to

increased protein degradation, inflammation [24, 35] or protein malnutrition. Accordingly,

Fig 3. Two dimensional Correlated Spectroscopy (2D COSY) results of the kidney allograft. (A) Table of 2D COSYcrosspeak volumes shows

significantly lower threonine, taurine, creatine and choline content in T3 individuals with low glomerular filtration rate and severe allograft dysfunction when

compared to T1 individuals with more conserved graft function. “-”indicates a p value greater than 0.05. (B) Representative 2D COSY spectra show higher

content of lipid-derived metabolites and reduced levels of threonine, taurine, creatine and choline in T3 individuals carrying a failing allograft. B1 shows a

topological map of crosspeaks and B2 shows the 3D reconstruction. (C) Representative 2D COSY of T1 allograft patients with more conserved graft function

with two-dimensional (C1) and three-dimensional (C2) reconstruction of the 2D COSY data. Data are expressed as median (25th, 75th percentile).

Abbreviations. Arbitrary Units (AU).

doi:10.1371/journal.pone.0169077.g003
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we showed that serum tryptophan alterations began to appear in T1 kidney allograft patients,

to worsen in poor allograft function patients (T3) with a dose response trend, and this decline

was not explained by urinary losses. Low serum tryptophan can be explained by an accelerated

breakdown rate by the immunomodulatory enzyme IDO, due to an excess of inflammation/

immune activation [25]. Evidence of a parallel reduction in urinary tryptophan in T3 individu-

als, who had poor allograft function, points to systemic exhaustion of this amino acid, rather

than localized waste. Conversely, high serum glutamine can be explained by the substantial

reduction in glutamine uptake that often takes place during chronic renal disease [36], and

this is further confirmed by the reduction in urinary glutamine in individuals with GFR

impairment. However, apart from the evidence that glutamine catabolism is one of the major

determinants of ammonemia in these patients, the kinetics of glutamine in renal dysfunction

are still largely unknown [37]. Progressive increase in the concentration of serum DMA deriv-

atives coupled with decrease in their urinary excretion was also evident in individuals with

more severe graft dysfunction. Low GFR can explain reduced excretion and serum accumula-

tion of ADMA and SDMA, also confirming their classification as toxic uremic retention sol-

utes [38]. DMA isomers appear to induce kidney damage through inhibition of nitric oxide

synthase, induction of the synthesis of collagen and TGF-β1 and sodium retention (22), sup-

porting the hypothesis that there is a relationship between ADMA and hypertension or glo-

merulosclerosis, two main determinants of kidney injury progression [39]. Finally, higher

serum concentration of short-chain acylcarnitines (C4 and C12) in T3 patients can be attrib-

uted to the loss of renal parenchyma typical of long-term renal failure that, by removing a

source of endogenous carnitine synthesis (thus reducing the handling and consumption of

acylcarnitines), impairs the ability of the kidney to excrete acylcarnitine into the urine [40].

Finally, decreased levels of the branched chain amino acids have been described in the pres-

ence of advanced chronic kidney disease in some reports [41]. In our study, serum levels of

leucine, isoleucine and valine did not differ between control groups and kidney transplant

recipients with varying renal function, most probably due to the overall good nutritional status

across groups of subjects under study.

Interesting results are also evident from urine mass spectrometry analysis. DOPA and

dopamine were reduced in T3 transplant individuals as compared to patients with more con-

served GFR. In the kidney, dopamine, when coupled to D1-like receptors in the proximal

tubule, causes inhibition of sodium reabsorption by blocking Na/H-exchanger and Na/

K-ATPase activity, thus regulating blood pressure. Notably, the absence of the same findings

in the serum points to a reduction in dopamine synthesis at the kidney level—evidence previ-

ously linked with onset of hypertension. Reduction in urinary ADMA has also been associated

with reduction in the lifespan of the kidney graft and overall mortality in kidney transplant

patients [30].

Changes in the in vivo NMR spectroscopy profile of certain metabolites often precede mor-

phological or symptomatic changes in the kidney, brain, breast, and other organs [42–46].

Although traditional 1D-NMR spectroscopy is sufficient to observe distinct functional groups

in small molecules, many overlapping resonances in complex molecules can render the inter-

pretation of peaks more difficult [47]. The use of 2D COSY circumvents this challenge by

introducing a second dimension to the spectrum derived from the graft [48], while additional

3D image transformation adds further spatial detail to the examination. In our study, the novel

application of in vivo allograft 2D COSY spectroscopy revealed a 50% reduction in peak inten-

sity from threonine, taurine, choline and creatine in individuals with advanced allograft dys-

function. Notably, taurine concentration in our patients was significantly altered only at the

kidney graft level. Recent studies suggest that during kidney injury, transcriptional repression

of the taurine transporter by p53 determines intracellular depletion of taurine, causing

Metabolomic Profiling and Failing Kidney Allograft

PLOS ONE | DOI:10.1371/journal.pone.0169077 January 4, 2017 9 / 14



necrotic cell death [49]. On the other hand, taurine supplementation protects mesangial and

tubular cells from high glucose or hypoxia in vitro, ameliorates nephrotic syndrome or diabetic

nephropathy in vivo in animal models [31], and provides better outcomes in patients trans-

planted with kidneys from donors submitted to taurine preconditioning [50]. T3 patients also

displayed intra-graft reduction in choline, a pivotal factor for the synthesis of cell membranes

and cell-signaling components, a condition that can translate to acute renal failure and hyper-

tension in animal models [51]. Finally, in vivo 2D COSY spectroscopy of the renal allograft

revealed a reduction in creatine content, whose major function is the transport of high energy

groups from mitochondria to cytoplasm, and is produced/stored in the kidney cortex; how-

ever, the implications of lack of creatine in kidney pathology are not clear yet. Notably,

although not statistically different, a general increase in intra-graft lipid content among T3

patients was evident.

The limitations of our study include minor overlap of metabolomic profile of the imaging

study with the targeted metabolomics of the biofluids, rendering it impossible for us to evalu-

ate whether serum or urinary metabolites reflected systemic or local changes within the trans-

planted kidney, therefore, metabolomic disturbances identified here, will need to be studied

further using tools of the functional studies. We also acknowledge a relatively small sample

size as well as the cross-sectional nature of our study design. Finally, the patients included in

our analysis were heterogenous in terms of both immunosuppressive schemes and other treat-

ments that they were submitted to: the decision to opt for heterogeneous groups was based on

the assumption of generalizability of our analysis. irrespective of underlying metabolomic

alterations induced by exogenous treatments, while focusing on common patterns of meta-

bolic abnormalities merely determined by the extent of kidney function. However, potential

value of the candidate metabolites in predicting worsening kidney graft function will need to

be evaluated in the subsequent follow-up studies.

We report the existence of a relationship between different levels of kidney graft impair-

ment and imbalance of specific metabolites possibly linked to the pathophysiology of renal

graft dysfunction. Low GFR was significantly associated with serum circulating factors linked

to negative immunomodulation, hypertension, micro-ischemic events, fibrosis and cytotoxic-

ity. Metabolic alterations at the parenchymal level of the transplanted kidney were also evident

with significant reduction in high-energy and structural components of the graft parenchyma,

and finally analysis of the urinary matrix highlighted the existence of a pro-hypertensive and

pro-inflammatory environment within the transplanted organ.
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