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Hypoxia and antitumor CD8C T cells: An incompatible alliance?
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ABSTRACT
T Lymphocytes face pathologically low O2 tensions within the tumor bed at which they will have to
function in order to impact on the malignancy. Recent studies highlighting the importance of O2 and
hypoxia-inducible factors for CD8C T-cell function and fate must now be integrated into tumor
immunology concepts if immunotherapies are to progress. Here, we discuss, reinterpret, and reconcile the
many apparent contradictions in these data and we propose that O2 is a master regulator of the CD8C

T-cell response. Certain T cell functions are enhanced, others suppressed, but on balance, hypoxia is
globally detrimental to the antitumor response.
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Oxygen levels and hypoxia

Oxygen availability has led to an important step in the evolu-
tion of life: aerobic respiration, an extremely efficient energy-
producing process. Despite evolutionary pressure to provide O2

to most organs and cells in sufficient quantities, mammalian
tissue vascularization is variable, with wide differences in prox-
imity to the main source of O2 (i.e., blood from the aorta
artery). As a consequence, the physiological O2 fractions
(i.e., normoxic values of O2) found in the body significantly
vary between tissues and within the same tissue (Fig. 1).1-3

Indeed, whereas the maximum value of O2 found in the body
reaches 14.5% in pulmonary alveoli, only around 1% O2 is
found in superficial region of the skin. Migratory immune cells
clearly cope with such physiological variation in O2 supply, but
in pathological conditions of inflammation, infection, and
malignancy,4-7 O2 fractions are far below normoxic values,
which represent the so-called hypoxic status.

Hypoxia, tumors, and the antitumor immune response

Hypoxic areas can often be found within solid tumors and were
described to be negatively correlated with patient survival.8

Hypoxia has been shown to have a broad impact on tumor cells
and on different actors of the antitumor response: It promotes
tumor cell stemness, migration, metastasis, and resistance to
radiotherapy, chemotherapy, and to CTL- and NK-mediated
lysis.9-12 Direct effects on antitumor immunity have been
widely studied for innate immune cells, with a major impact
noted on tumor-associated macrophage polarization, DC mod-
ulation, and myeloid-derived suppressor cell -mediated immu-
nosuppression.2,4,13,14 For T cells, the promotion of Treg
accumulation and the Treg/Th17 balance have been intensively

studied.2,13,15 However, for CD8C CTL, our understanding of
the impact of hypoxia is less comprehensive and has been gath-
ered through very indirect methodology. Here, we focus on
these critical cells for antitumor function and we discuss issues
that may help to reconcile certain contradictory results.

The hypoxia-inducible factor (HIF) pathway, more
than a simple hypoxia story

The hypoxia-inducible factor (HIF) pathway has been
described to be the main regulator in the cell response to hyp-
oxia.16 HIFs are heterodimers composed of a constitutive
b subunit (usually HIF-1b) together with an inducible a sub-
unit (HIF-1a, HIF-2a, or HIF-3a). Under normoxia, prolyl
hydroxylase domain-containing (PHD) enzymes, which need
O2 as a cofactor, will hydroxylate the a subunit, leading to its
degradation after VHL-dependent ubiquitylation, or its inacti-
vation through FIH-dependent ubiquitylation. Conversely,
under hypoxia, the a subunit is stabilized and complexes
together with the b subunit. Subsequently, it translocates into
the nucleus and transcribes various genes that have a hypoxia-
responsive element sequence in their promoter. Under limiting
O2 tensions, the main targets are genes involved in angiogenesis
(to increase O2 supply) and glycolysis (cells can no longer rely
on O2-dependent oxidative phosphorylation for energy
production).

One approach that has been used to indirectly investigate
the impact of hypoxia on the cellular response is to stabilize
HIF (e.g., through drug targeting or genetic engineering). How-
ever, it is not clear whether strategies that aim at modulating
expression of VHL or PHD are HIF-specific, as these enzymes
were described to play a role in other pathways.17,18 Another
consideration when modulating HIF is that T cells, which have
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a complex signaling machinery associated with metabolic
reprogramming, were shown to stabilize HIF even under atmo-
spheric O2 fractions (i.e., »21% O2) after TCR stimulation in
vitro.19-21 Of interest, even if this observation might be an arti-
fact of in vitro culture, it could also result from the characteris-
tic clustering of T cells observed after activation and the
generation of localized areas of low O2 tensions in the cluster,
due to increased O2 consumption in a confined space. Thus,
localized decrease in O2 availability and HIF activity could
directly link two typical features of activated T cells: clustering
after activation and switching from oxidative phosphorylation
toward aerobic glycolysis.22,23

In addition to the complexities of trying to infer the impact
of hypoxia through HIF pathway modulation, certain cellular
responses to hypoxia were shown to be HIF independent.18,24,25

Therefore, we consider that solely modulating the HIF pathway
cannot fully decipher the overall impact of hypoxia. However,
combining HIF modulation together with oxygen level manip-
ulation is an important approach to identify any hypoxia effect
mediated by HIF.

Manipulating oxygen levels in vitro: Normoxia matters

Direct manipulation of O2 levels in vitro has the advantage of
recapitulating the predicted in vivo O2 deprivation, leading to
both HIF-dependent and HIF-independent mechanisms. In
order to study the impact of hypoxia by modulating O2 frac-
tions in vitro, one needs to compare a hypoxic condition to a
normoxic control.

In most studies that manipulate O2 levels in vitro, a compar-
ison is made between cells cultured at �1% of O2, as hypoxia,

to cells cultured in a classical incubator where O2 fractions are
close to the atmospheric value (i.e., »21%), as normoxia. How-
ever, the atmospheric O2 fraction is not physiologically relevant
as a normoxic control, since normoxia found in the body is far
below this value (Fig. 1).1-3 In order to make hypoxia studies
more physiologically valid, we consider that the physiological
normoxic O2 fraction used for comparison should correspond
to the healthy tissue for the cell type being studied. This O2

fraction is often termed “physioxia,”3,21 in order to differentiate
this condition from the 21% value that is erroneously consid-
ered as normoxia. Indeed, several key studies have clearly dem-
onstrated that the conventional culture of T cells in vitro under
atmospheric O2 fractions poorly reflected in vivo function, as
compared to physiological normoxia.26-28 This choice of nor-
moxic reference point is also critical for interpreting whether a
cellular response is truly a hypoxia response, or a normal physi-
ologic response. Many T cell functions in the healthy body
occur at a physiologic O2 fraction of 5%; such a response could
be falsely interpreted as a hypoxia response if compared to
culture under 21% O2.

The importance of the CD8C T-cell
differentiation stage

A major consideration in understanding CD8C T cell function
under hypoxia is the differentiation state of the cell. Antigen-
experienced CD8C T cells (i.e., effector and memory CD8C T
cells) will experience the widest range of O2 tensions, including
extreme hypoxia as they migrate and infiltrate hypoxic zones
within the tumor site. In contrast, the priming of na€ıve CD8C

T cells will occur principally in non-hypoxic secondary

Figure 1. The range of physiological oxygen fractions found in the body.
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lymphoid organs (Fig. 2). This aspect must be considered when
interpreting in vitro studies in which naive T cells are primed
under hypoxia: This condition would be rarely encountered in
vivo. Moreover, already primed CD8C T cells have distinct
requirements for activation and possess their own metabolic
programs,29,30 underlining the importance of distinguishing
T differentiation state rather than generalizing the consequen-
ces of hypoxia for CD8C T cells. Notwithstanding these aspects,
it is highly relevant to study the priming of CD8C T cells under
low O2 fractions (e.g., »5% O2), which are routinely found in
secondary lymphoid organs.

Low oxygen fractions and T-cell priming

Different consequences of lowering O2 fractions below atmo-
spheric have been observed at the priming stage of na€ıve T cells;
a few studies found that this was beneficial or had no impact on
T-cell expansion,31-36 but most reports showed that lowering
O2 fractions in vitro decreases cell proliferation and increases
cell death;26-28,37-42 the responsible mechanisms will be dis-
cussed in the next section. Similarly, analyses of the cytokine
secretion pattern gave different results according to the study,
with either increased IFNg, IL-2, IL-4, IL-6, IL-8, IL-10, MCP-
1, and TNF-a secretion under lowered O2 fractions, or a
decrease of some of the same cytokines (IFNg, IL-2, IL-10, and
TNF-a) in other studies.28,31-33,35,36,39,40 These inconsistencies
could be explained by differences in the methodology such as
the source and type of cells (e.g., human/mouse, primary/cell
line, PBMC, spleen, CD4C, and CD8C), the timing for analysis
after activation, the activation stimulus, and the percentage of

O2 used. Species differences (mouse/human) remain to be fully
elucidated, with different alternative isoforms of HIF-1a pres-
ent in T cells from mouse (exon I.1) and human (exon I.3).43,44

The presence or absence of APCs (and other third-party cells)
in the assay can modify the impact of O2 on T cell, since it was
shown that O2 can impact DC maturation status and cytokine
secretion profile.14 Another aspect is the timing after activation,
since it has been described that HIF-1a is mainly stabilized in
an acute manner, whereas HIF-2a is reported to be stabilized
in a chronic manner;8,45 this could lead to distinct effects
because of the different targets of these isoforms.46,47 Further-
more, HIF-1a or HIF-2a usage is dependent on the O2 fraction
utilized, since lower O2 concentrations promote stabilization of
HIF-1a as compared to HIF-2a. Indeed, very low concentra-
tions of O2 (favoring HIF-1a stabilization) are less likely to be
encountered in secondary lymphoid organs where T-cell prim-
ing occurs. Finally, although both TCR-independent and
TCR-dependent stimuli are used for in vitro studies, the impact
of O2 is likely to be linked to TCR signaling modulations. In
the case of antitumor immune responses in vivo, tumor anti-
gen-specific T-cell responses (i.e., TCR-dependent) will be the
most important to study.

Several studies have shown that T cell priming under low O2

fractions can increase differentiation of CD8C T cells toward
more lytic effector cells, even if these may be fewer in number
because of reduced expansion.21,28,42,48 Specifically, granzyme
A and B were upregulated when CTLs were generated under
physiological normoxia, as were FasL and Blimp-1, with capac-
ity to secrete higher amounts of IFNg.21,49 The metabolic pro-
file of the cells was also described to switch from an oxidative
phosphorylation metabolism toward a more glycolytic one
when O2 availability was lowered.

38 Indeed, several lines of evi-
dence suggest that the increase in effector differentiation
observed under low O2 tensions would be a result of increased
glycolysis (usually associated with effector differentiation,30 as
opposed to memory differentiation that relies on oxidative
phosphorylation and fatty acid oxidation), due to increased
HIF activity.19,38 Interestingly, the killing capacity of CD8C T
cells previously primed under atmospheric O2 fraction can be
enhanced by conditioning them under low O2 fractions for a
few days via a mechanism independent of granzyme B induc-
tion.21,42 In line with this effector differentiation modulation, it
has been shown that HIF activity negatively controls the
expression of CD62L and CCR7, but also, intriguingly, of S1P1,
CCR5, CXCR3, and CXCR4; these key molecules clearly impact
on T cell trafficking, but the capacity of homing to tumor has
not been assessed.19

Taken together, these results suggest that CD8C T cells
primed in vivo under physiological normoxia differentiate
toward effector cells with higher killing capacities, at the
expense of their overall expansion; this is in contrast to conclu-
sions that would be reached if extrapolating from in vitro prim-
ing under atmospheric O2 tension. This raises the possibility of
exploring the generation of T cells under low O2 fractions for
adoptive cell transfer therapy of cancer, even if use of naive T
cells would be clinically challenging. Moreover, the advantages
of increased effector capacities to kill tumor cells in the short
term would have to be balanced against the well-documented
advantages of controlling tumor growth in the long term by

Figure 2. The two main steps in a CD8C T-cell response against a solid tumor (illus-
trated here for a brain tumor): priming and reactivation. In secondary lymphoid
organs, where oxygen fraction is normoxic, naive CD8C T cells are primed after rec-
ognition of a MHC class I/ tumor peptide complex presented by dendritic cells. This
leads to expansion and differentiation into CTLs. After migration to the tumor site,
CTLs recognize tumor cell leading to tumor cell cytolysis and CTL expansion. At
this reactivation step, CTL will face normoxia and hypoxia.
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transfer of less differentiated CD8C T cells (stem-cell memory
and memory stage), with their better persistence and capacity
to self-renew.50-52

Hypoxia and reactivation of CD8C T cells

Once primed, CD8C T cells differentiate, and a fraction of them
(i.e., CTLs) egress from lymphoid organs to enter the tumor site
where they will face hypoxia (Fig. 2; example of a brain tumor
that often presents hypoxic areas). For antitumor function, it is
of critical importance to decipher the impact of hypoxia on the
fate and function of these effector cells, including cytolytic
capacities, proliferation and survival.

Hypoxia does not impact CTL cytolytic capacities

In vitro, CD8C T-cell priming under atmospheric oxygen frac-
tion gives rise to higher cytolytic capacities of the resulting
CTLs when preconditioned under hypoxia for a few days before
the killing assay.21 However, this result can be confusing since it
has been shown that hypoxia has no impact on CTL cytolytic
capacities when comparing to physiological normoxia,21,48 fur-
ther emphasizing how important it is to use physiologically
relevant oxygen fractions to infer hypoxia impact. Moreover,
tumor cell cytolysis mediated by CTLs is, at least, a bipartite
integrative response resulting from CTL cytolytic capacities
together with tumor susceptibility to cell lysis. Even if hypoxia
does not impact directly CTL cytolytic capacities, seminal stud-
ies from Chouaib et al. have shown that hypoxia induces resis-
tance of tumor cells to CTL-mediated cytotoxicity, as recently
reviewed.12 Indeed, hypoxia promotes autophagy in tumor cells
through a mechanism involving STAT3 activation and
miR-210 upregulation, leading to selective degradation of gran-
zyme B.53-56 Consequently, in situ hypoxia would inhibit tumor
cell cytolysis through its impact on tumor cells rather than on
CTLs.

Hypoxia decreases CTL proliferation and viability
after reactivation

An important feature of CD8C T cells is whether they can pro-
liferate after reactivation at the hypoxic tumor site to maintain
sufficient numbers to eradicate or control tumor cells. It is now
becoming clear that expansion of reactivated CTLs is positively
correlated with oxygen levels,21 as previously described for
CD8C T cells during priming. Hypoxia prevents CD8C T cell
expansion by decreasing both cell proliferation rate and viabil-
ity (at least partly through apoptosis induction). Importantly, T
cells left in culture without reactivation are not impacted by
hypoxia, thus showing that hypoxia as a detrimental impact on
T cells only when combined with activation/TCR signaling.38

Whether longer term persistence of tissue resident memory
cells (TRM) under low O2 fractions in vivo would be impacted
has yet to be addressed.57-59 The exact mechanisms impacting
expansion are still not clear, but several possible mechanisms
have been proposed; these are likely to be common to both
naive and antigen-experienced T cells. A decrease in ATP levels
has been logically envisaged, since cells rely more on glycolysis
(which is less efficient at producing energy) than on the

impaired oxidative phosphorylation under hypoxia. However,
this has been refuted since T cells were able to maintain the
same intracellular levels of ATP under hypoxia.36,39,41 Whether
HIF-1a stabilization is directly responsible for the decrease in
cell expansion is not clear for mature T cells,19,34,60 although in
thymocytes it leads to disrupted TCR signal transduction (via
an altered Ca2C response).61 Nonetheless, a hypoxia-induced
disturbance in TCR signal transduction might be involved, as
TCR-independent stimulation (i.e., PMA and ionomycin) was
shown to have no impact on cell proliferation of human
PBMCs under hypoxia (as opposed to TCR-dependent stimula-
tion, for which expansion defects were linked to Kv1.3 potas-
sium channels activity and Ca2C homeostasis).37,62

Interestingly, under hypoxia there is often reduced secretion of
IL-2, whereas IL-2Ra is upregulated.21,28,31,39 However, reduced
IL-2 secretion may not be a key factor, but rather a result of the
decreased cell number, as adding exogenous IL-2 does not
reverse the decreased proliferation observed under hypoxia.21,63

Signaling through IL-2Ra may warrant further investigation,
since dysregulation was noted under hypoxia, with increased
STAT5 phosphorylation.39 Importantly, in vitro generated
CTLs and ex vivo CD8C TILs (tumor-infiltrating lymphocytes)
reactivated under hypoxia have been shown to produce the
cytokine IL-10 (also noted for Th1 CD4C T cells in an
HIF-1a-dependent manner),64 although this autocrine produc-
tion was not responsible for impaired CD8C T cells prolifera-
tion.21 Intriguingly, IL-10 secretion was also promoted under
physiological normoxia, thus implying that IL-10 would be
commonly produced by CD8C T cells in vivo under physiologi-
cal oxygen fractions. In vivo, adenosine is accumulating in hyp-
oxic areas leading to A2AR-dependent immunosuppression.65

This raises the possibility that the hypoxia-induced decrease in
T-cell proliferation would be linked to this pathway, but a
recent report suggested that it was mostly A2AR-indepen-
dent.40 Another possibility that has been explored is the
hypoxia-promoted production of ROS,27,39 with important
roles in T-cell activation,66,67 and a capacity to stabilize HIFs.68

However, adding the exogenous antioxidant N-acetylcysteine
did not show any improvement in T cell proliferation.27 Over-
all, the decreased T-cell expansion under hypoxia is still not
fully elucidated, but is an important issue to address; identifica-
tion of the pathway involved could provide therapeutic targets
of importance for cancer immunotherapy.

A beneficial role of hypoxia for antitumor CTLs?

Recently, two studies challenged the aforementioned paradigm
that hypoxia would be a negative regulator of antitumor CD8C

T cells. In an elegant mouse model, Doedens et al. claimed that
HIF activity was important for sustained CTL function, either
in a chronic infection or in a tumor context.20 However, since
VHL-deficient CTLs were utilized, the effect may not be purely
HIF dependent. Furthermore, as CTLs generated under low
oxygen fractions have increased killing capacities, the observed
improvement in CTL activity might have been due to an
increase in HIF activity during priming, rather than during the
CTL reactivation. Finally, as HIF activity might not be the pri-
mary cause of the effect observed under hypoxia, and as it is
involved in CD8C T-cell physiology even in non-hypoxic
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conditions, we consider that the impact of hypoxia on CTLs
should not be inferred only from increased HIF activity without
directly studying hypoxic O2 levels. In the second study, Xu
et al. compared how different subsets of human CD8C T cells
were impacted by hypoxia.42 Hypoxia negatively impacted pro-
liferation of naive and central memory T cells after activation,
whereas, surprisingly, it enhanced effector memory T cell pro-
liferation, through an increased HIF-1a/glycolysis positive
loop. This effect was described to be linked to the dual role of
GAPDH. Indeed, as glycolysis is more active in effector mem-
ory cells, under hypoxia GAPDH becomes devoted to glycolysis
at the expense of its HIF-1a translational repressing abilities.
Indeed, it makes sense that effector memory cells, which rely
on glycolysis rather than on oxidative phosphorylation, would
be more adapted to face oxygen deprivation than naive and
central memory cells. However, one caveat of this study is that
hypoxia impact was compared with atmospheric O2; effector
memory cells may have proliferated to the same extent under
physiological normoxic oxygen fraction. Nevertheless, these
important results warrant further studies and confirmation.

CTLs reactivated under hypoxia show enhanced IL-10,
IL-2Ra, and 4-1BB expression

In an effort to recapitulate maximally in vitro what happens in
vivo, our group generated CTLs under 5% O2 to mimic priming
in secondary lymphoid organs and reactivated them either
under 5% O2 or 1% O2 to mimic reactivation in a normoxic or
hypoxic tumor, respectively.21 We consider that these culture
conditions avoid some experimental artifacts resulting from the
dramatic decrease in O2 availability during CTL reactivation
(e.g., from 21% to 1%) that would not occur in vivo. Indeed, we

observed that as compared to the classical comparison 1% O2

vs 21% O2, comparing 1% O2 vs 5% O2 led to significantly less
transcriptional modulation. We suggest that the far greater
number of genes that would be differentially transcribed when
making a 1% O2 to 21% O2 comparison should be considered
as false positives. Using this more physiologically relevant
approach, we found that IL-10, IL-2Ra (CD25), and 4-1BB
(CD137) were upregulated when cells were reactivated under
hypoxia. Upregulation of 4-1BB has already been described in
endothelial cells and T cells under hypoxia (via HIF-1a activity)
and represents a promising strategy to reinvigorate the immune
response to cancer.69-71 Interestingly, we observed that though
HIF-1a was not modulated at the RNA level, HIF-2a was upre-
gulated under hypoxia. This result emphasizes that HIF-2a,
which has been scarcely studied in T cell reactivated under
hypoxia (as opposed to the extensively studied HIF-1a),20

warrants further investigation. Nevertheless, a limitation in our
approach is that we analyzed the response of reactivated CTL
to relatively chronic hypoxia (i.e., 2–4 d). Indeed, because hyp-
oxia promotes a delay in cell proliferation, long-term analyses
of markers and RNA profiling of cells that are not synchronized
in their division cycle, and/or that divided differently, might
bias the interpretation.

Concluding remarks

Hypoxia studies highlight the critical role of O2 in immune
responses and T-cell physiology and allow a more comprehen-
sive view of the most likely functions and fate of T cells in vivo
(Fig. 3). However, we propose that a better understanding and
consensus of the impact of hypoxia on T cells can be reached if
more attention is paid to normoxic/hypoxic terminologies and

Figure 3. Direct and specific impact of atmospheric, normoxic, and hypoxic oxygen fractions during CD8C T-cell priming and reactivation. Oxygen fraction during the
priming impacts CD8C T-cell effector/memory differentiation. Associated parameters are shown in the diagram. Importantly, during reactivation where CD8C T cells face
hypoxia, expansion correlates positively with oxygen levels, whereas it is the opposite trend for IL-10, IL-2Ra, and 4-1BB. The cause of the decreased expansion of CTL
reactivated under hypoxia is still not clear: Mechanisms that were previously described or suggested (from studies investigating the hypoxia impact) are shown.
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values, the uncoupling of solely HIF-based results and hypoxia
impact, and definition of the stage of T-cell differentiation.

Tumors present a hostile microenvironment for immune
cells, with many immunosuppressive features; hypoxia-
regulated CTL proliferation and survival is likely to be one of
these. One strategy to enhance the efficacy of immunotherapy
would be to improve tumor oxygenation. To this end, modulat-
ing tumor vascularization could represent an attractive
approach. In fact, despite the highly vascularized characteristic
of tumors, tumor vessels are regularly leaky and malfunctional.
Consequently, the use of anti-angiogenic drugs has shown to
be useful for vessel normalization but often leads to hypoxia
enhancement.72 Development of these approaches considered
principally the tumor cell; our current understanding of the
importance of antitumor immunity now forces us to also con-
sider the consequences for immune cells.73 Alternatively, Hat-
field et al. recently used respiratory hyperoxia (i.e., atmosphere
supplemented with O2 up to 60%) in mouse tumor models; this
promoted an NK- and T-cell-dependant tumor regression.74

The study reported that hypoxic areas were decreased and
CD8C T-cell infiltration was enhanced (via the hypoxia-
adenosine pathway). As CD8C T cells were less present in hyp-
oxic areas, it was claimed that they avoid hypoxic areas.
However, this could also be interpreted as being due to their
diminished capacity to expand under hypoxia. Whatever the
exact mechanisms involved, these important results corrobo-
rate previous findings describing a negative impact of hypoxia
on CD8C T cells in in vitro studies and demonstrate that hyp-
oxia negatively impacts the global antitumor immune response
in vivo. This hypoxia impact may also function via other
immune cells, which can indirectly affect the antitumor CD8C

T-cell response and the efficacy of current therapeutic
treatments.2,4,10-12,14

The success or failure of all cell-based cancer immunothera-
pies is ultimately determined at the tumor site that is frequently
oxygen-deprived. Therefore, reaching a better understanding of
the O2-dependence of CD8

C T-cell responses and determining
the molecular pathways involved will undoubtedly open new
therapeutic opportunities to manipulate T cell metabolism,
survival, and antitumor effector function.
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