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ORIGINAL INVESTIGATION
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Targeted sequencing of 169 deafness probands identified 
one homozygote and one heterozygous carrier. Genea-
logical studies, cascade sequencing and haplotype analysis 
across four unrelated families showed all subjects with the 
unique audioprofile (n =  12) were also homozygous for 
p.(Ala163Val) and shared a 1.4  Mb DFNB29-associated 
haplotype on chromosome 21. Most significantly, sequenc-
ing 175 population controls revealed 1% of the population 
are heterozygous for CLDN14 p.(Ala163Val), consistent 
with a major founder effect in Newfoundland. The young-
est CLDN14 [c.488C>T; p.(Ala163Val)] homozygote 
passed newborn screening and had normal hearing thresh-
olds up to 3 years of age, which then deteriorated to a pre-
cipitous loss >1  kHz during the first decade. Our study 
suggests that genetic testing may be necessary to identify 
at-risk children in time to prevent speech, language and 
developmental delay.

Introduction

Hearing loss is one of the most common and genetic of all 
human phenotypes. Permanent bilateral sensorineural hear-
ing loss affects 1/500 newborns, and almost twice as many 
adolescents (Smith et  al. 1999; Morton and Nance 2006). 
Although approximately two-thirds of prelingual severe 
hearing loss cases are recessive, and 94 deafness loci have 
been reported, only a minority of hearing loss cases with a 
presumed recessive inheritance pattern can be conclusively 
diagnosed with a clear genetic etiology (Sloan-Heggen 
et  al. 2016). Therefore, many recessive cases may be due 
to genetic defects in genes yet to be identified. However, 
recent studies using new high-throughput technologies 
and broader application in multi-ethnic populations report 
GJB2 yields of less than 25%, suggesting a larger role for 
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other recessive genes in prelingual severe cases (Yan et al. 
2016; Sloan-Heggen et al. 2016).

Sensorineural hearing loss is characterized by both 
degree (mild, moderate, severe or profound) and configu-
ration (low, mid and/or high frequency) using the standard 
behavioral audiogram. Although clinically heterogeneous, 
rare pathognomonic audiograms may present with surpris-
ing regularity in clinics within genetically isolated popu-
lations and where patients often share a common ances-
tor due to founder effects. For example, the Finnish and 
Pakistani populations have been invaluable for discovery 
of deafness genes as population bottlenecks (genetic drift) 
and/or inbreeding increase the likelihood of inheriting 
recessive alleles that are identical by descent. These popu-
lations are often characterized by large sibships, deep gene-
alogies and higher consanguineous rates. The population of 
Newfoundland and Labrador (NL) was founded by ~20,000 
Protestant English and Roman Catholic Irish settlers. Reli-
gious and geographic isolation within small coastal fish-
ing (outport) communities (Manion 1977) has resulted in 
a higher inbreeding coefficient in the NL population (Bear 
et  al. 1987, 1988; Zhai et  al. 2015). We have previously 
identified several founder deafness mutations in the NL 
populations (Abdelfatah et al. 2013a, b; Ahmed et al. 2004; 
Doucette et al. 2009; Young et al. 2001).

A unique clinical audioprofile of steeply sloping sensori-
neural hearing loss was noted in several unrelated families. 
Herein, we report a founder missense variant in CLDN14 
causing precipitous prelingual sensorineural hearing loss in 
children born with normal hearing thresholds. The essential 
role of CLDN14, a component of tight junctions, was first 
discovered through studies in consanguineous families from 
the genetically isolated population of Pakistan. Tight junc-
tions have been shown to play a significant role in maintain-
ing the structural integrity of cells within the inner ear. Other 
genes encoding tight junction proteins, such as MARVELD2 
(DFNB49) (Riazuddin et  al. 2006; Nayak et  al. 2016), 
have also been implicated in recessive hearing loss. Clau-
din-14 is essential for the formation of tight junctions and 
is expressed in both hair cells and supporting cells of the 
organ of Corti; however, CLDN14 exhibits preferential gene 
expression in sensory hair cells over supporting cells (Wil-
cox et al. 2001; Ben-Yosef et al. 2003; Scheffer et al. 2015). 
Initially, CLDN14 was considered the cause of congenital 
recessive and profound deafness (Wilcox et  al. 2001), and 
more recently of milder forms of hearing loss (Bashir et al. 
2013). The CLDN14 c. 488C>T p.(Ala163Val) allele has 
previously been reported in multiple studies as a variant of 
uncertain significance (VUS; Thorleifsson et al. 2009; Toka 
et  al. 2013; Purcell et  al. 2014) and recently identified by 
Sloan-Heggen et al. (2016) as one of two VUS in a patient 
with congenital hearing loss. Our study shows children 
inheriting two copies of CLDN14 c. 488C>T p.(Ala163Val) 

alleles are born with normal hearing thresholds and expe-
rience a rapid and progressive loss by 3–4  years of age. 
Extensive clinical recruitment and targeted screening sug-
gest that CLDN14 p.(Ala163Val) represents a major founder 
variant in the Newfoundland population.

Materials and methods

Study participants and audiometric evaluations

This project is part of a large study of hereditary hearing loss 
in the Canadian province of Newfoundland and Labrador. 
Informed consent, family history and permission to access 
medical records and audiograms were obtained from all par-
ticipants as per approved institutional review board protocol 
#01.186 (Human Research Ethics Board, St. John’s, NL, 
Canada). Sensorineural hearing loss was determined when 
hearing thresholds were abnormal, and the air and bone con-
duction results within 10 decibels (dB) of each other (i.e., 
air–bone gaps of 10 dB or less). Both retrospective and pro-
spective audiograms and health records were obtained.

In the course of ongoing clinical recruitment, we noted 
a rare but consistent clinical audioprofile characterized as 
steeply sloping, sensorineural hearing loss above 0.5 kHz 
with mid- and high-frequency thresholds in the severe to 
profound range (Fig.  1a–d). On the premise that subjects 
with this hearing loss pattern also shared a recent common 
ancestor, we used the distinct audioprofile to guide clini-
cal recruitment, and a research team visited several small 
fishing villages (outports) to measure hearing thresholds, 
extend pedigrees, provide genetic counseling and collect 
blood samples (Fig. 2).

DNA preparation, targeted sequencing 
and audioprofiling

Genomic DNA was extracted from peripheral blood using 
a simple salting out protocol (Miller et  al. 1988). All 
probands recruited to the study were screened for popu-
lation-specific deafness alleles (Supplementary Table  1; 
Abdelfatah et  al. 2013a, b; Ahmed et  al. 2004; Doucette 
et al. 2009; Young et al. 2001). To identify other candidate 
genes to screen, audiograms were submitted to Audiogene 
(Hildebrand et al. 2009) for computerized comparison with 
known average audiograms of 16 autosomal dominant loci 
(under the assumption that hearing loss was segregating as 
an autosomal dominant trait in these NL families). Bidi-
rectional Sanger sequencing (ABI PRISM 3500XL DNA 
Analyzer; Applied Biosystems, Foster City, CA, USA) with 
standard PCR assay using Primer3 (Untergasser et al. 2012) 
was used to screen candidate mutations and genes (Merner 
et al. 2008). We used Mutation Surveyor Software (version 
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4.07, SoftGenetics LLC State College, PA 16803) to select 
quality reads and analyze DNA sequences.

Whole exome sequencing and variant filtration

We prepared whole exome libraries for four members of 
Family 2010 using the Ion Torrent AmpliSeq RDY Exome 
Kit (Life Technologies, Cat. #A27193) (Fig.  2). Exome 
library purification, adapter ligation and barcoding were 
done using the Ion PI Hi-Q OT2 200 kit (Life Technolo-
gies, Cat. #A26434). Purified libraries were quantified 
using the Ion Library Quantification Kit (Life Technolo-
gies, Cat. #4468802) and then loaded onto a PI v3 chip 
and sequenced with the Ion Torrent Proton Sequencer. 
Single-nucleotide variants (SNVs) and insertion/dele-
tions (INDELs) were called (GATK, v3.5) and annotated 
using SnpEff (v4.1; http://snpeff.sourceforge.net/) and 
SNVs were filtered against publically available SNP data-
bases (ExAC Browser, http://exac.broadinstitute.org/; 
dbSNP, http://www.ncbi.nlm.nih.gov/projects/SNP/; 1000 
genomes, http://www.1000genomes.org). We assessed 
the impact of SNVs at the protein level with SIFT, Poly-
Phen-2, and MutationTaster. Filtered SNVs had a mini-
mum of 20× coverage, a predicted moderate/high impact 
(nonsense, frameshift, missense, splice sites) and a minor 
allele frequency (MAF) of <1%. The apparent vertical 
transmission of hearing loss in several branches of the 
clan pedigree (Fig.  2) could be due to either a dominant 
gene with reduced penetrance, or a recessive gene with a 

pseudodominant inheritance pattern; therefore, we con-
ducted both autosomal dominant and recessive analyses.

Cascade sequencing and haplotype analysis

Potential pathogenic mutations were subjected to cascade 
screening in all available relatives across three families 
observed to have the same rare audioprofile (Families 2010, 
2033 and 2075) and also in 175 ethnically matched con-
trols. Microsatellites flanking candidate genes were geno-
typed according to standard procedures (Abdelfatah et  al. 
2013a) and alleles called using GeneMapper software v4.0. 
Haplotypes were reconstructed manually and compared 
across families. Variants of interest were also screened in 
169 deafness probands with Newfoundland ancestry.

Results

Clinical evaluation

Our research audiologist (AG) noted that probands (from 
Families 2010, 2075 and 2033) all shared a unique hear-
ing loss pattern. The proband of Family 2010 (V-9; Fig. 2) 
presented at 36  years of age with the characteristic pat-
tern of normal low-frequency thresholds, steeply sloping 
to severe bilateral, symmetrical, sensorineural hearing loss 
throughout mid and high frequencies (Fig. 1a). Age appro-
priate audiologic tests of the proband’s son (VI-4; Fig. 2) at 

Fig. 1   Rare, precipitous 
audiologic phenotype caused 
by CLDN14 (c.488C>T; 
p.(Ala163Val)) in an Irish 
clan. a Pure tone audiogram of 
Family 2010 proband (PID V-9) 
and sister (PID V-10), b pure 
tone audiogram series for PID 
VI-2 (Family 2075) showing 
normal hearing at age 2 years 
and a progressive hearing loss 
apparent by 4 years of age, c 
first and d second decade pure 
tone audiogram of affected 
subjects. Yellow shaded area 
indicates range of normal 
hearing. Hearing thresholds are 
measured in decibels hearing 
level (dB HL), X = left ear (air 
conduction), O = right ear (air 
conduction), > = left ear (bone 
conduction), ↘ = no response 
at the limits of the audiometer. 
* = 8 kHz was not measured

http://snpeff.sourceforge.net/
http://exac.broadinstitute.org/
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.1000genomes.org
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1 month and 1 year of age were normal. Serial audiograms 
on PID VI-2 (Fig. 1b; Family 2075) show normal hearing 
thresholds across frequencies up to 3 years of age, and sub-
sequent rapid progression of hearing loss affecting high 
frequencies first. Significant hearing loss of variable sever-
ity is already present in children aged 5–7 years (Fig. 1c), 
which include probands of families 2033 and 2075. By the 
middle of the second decade of life, these children uni-
formly exhibit the distinctive steeply sloping audiogram 
(Fig. 1d). The hearing loss progresses slowly during subse-
quent decades, primarily in the mid–high frequencies, with 
relatively well-preserved low-frequency thresholds. For 
adults, some variation in thresholds at 0.5 kHz is observed 
(PID V-10; Fig. 1a) but otherwise the adult presentation is 
relatively uniform.

Targeted sequencing and audioprofiling

Targeted sequencing was carried out on probands for known 
deafness alleles (previously identified in this population; Sup-
plementary Table 1) but none were found. Several gene can-
didates, as suggested by Audiogene (Hildebrand et al. 2009), 
were also Sanger sequenced, including COCH, KCNQ4 and 
TMC1. We identified a rare variant in TMC1 (c.421C>T; 
MAF of 0.01%) predicted to cause the substitution of argi-
nine to a tryptophan residue at position 141 and to be delete-
rious by SIFT (and probably damaging by PolyPhen-2 and 
Panther). Although identified in both the probands (V-11) of 
Family 2010 and transmitted to her affected son (V-14), the 
c.421C>T variant did not co-segregate with mid–high-fre-
quency loss in this family (data not shown).

Fig. 2   Combined pedigrees of three families (2033, 2075 and 2010) 
with rare, precipitous audiologic phenotype connect to a founding 
couple and share an ancestral DFNB29-associated haplotype. Shaded 

symbols precipitous sensorineural hearing loss. Half-shaded symbols 
unspecified hearing loss
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Whole exome sequencing

Whole exome sequencing on Family 2010 using three 
affecteds (V-9, VI-4 and V-17) and one unaffected par-
ent (V-8) (Fig.  2) yielded >35,000 total variants. Under a 
dominant model, 34 heterozygous variants were filtered 
(data not shown). However, none of these variants resided 
within known deafness genes/loci (http://hereditaryhear-
ingloss.org/). Under a recessive model, we filtered four 
homozygous variants (in PRKDC, ZNF404, CUL7 and 
CLDN14). One of these, CLDN14 (DFNB29) is a known 
deafness gene expressed in the sensory epithelium of the 
organ of Corti of the inner ear (Wilcox et al. 2001; Schef-
fer et al. 2015). CLDN14 consists of three exons and two 

isoforms and encodes a protein containing four transmem-
brane domains. The CLDN14 p.(Ala163Val) point vari-
ant (Fig.  3c) identified in Family 2010 predicts substitu-
tion of an alanine to a valine at the beginning of the fourth 
transmembrane domain (Fig.  4a) and is highly conserved 
(Fig.  3b). The CLDN14 c.488C>T allele was first identi-
fied in the Icelandic population (Thorleifsson et al. 2009). 
Globally, the CLDN14 c.488C>T variant has an MAF 
of 0.02564% (ExAC Browser, http://exac.broadinstitute.
org/) and has been reported in both European and African 
populations. The heterozygous CLDN14 (human GRCh37/
hg19: g. 37833506 G>A, NM_012130.3: c.488 C>T) 
allele is reported as a variant of uncertain significance in 
dbSNP (rs143797113), ExAC browser (MAF: 0.02564%), 

Fig. 3   a Pedigree of family R2072, identified in screening of the 
NL deafness cohort, with the rare, precipitous audiologic phenotype 
who also share the CLDN14 [c.488C>T; p.(Ala163Val)] variant and 
ancestral DFNB29-associated haplotype, b Conservation of the Clau-
din-14 protein using Clustal Omega and WebLogo display. Homo 
sapiens (NP_001139551.1), Pan paniscus (XP_008975916.1), Mus 
musculus (NP_001159398.1), Rattus norvegicus (NP_001013447.1), 
Canis lupus familiaris (XP_013965166.1), Gallus gallus 

(XP_015155717.1), Gekko japonicas (XP_015277878.1), Pelodis-
cus sinensis (XP_006126056.1), Xenopus laevis (NP_001086045.1), 
Danio rerio (NP_001004559.2). Red font and arrow indicate a highly 
conserved alanine residue at position 163, c sequence electrophero-
grams of CLDN14 [c.488C>T; p.(Ala163Val)]. Box highlights vari-
ant, d wild-type/normal CLDN14 c.488C. Box highlights normal 
sequence

http://hereditaryhearingloss.org/
http://hereditaryhearingloss.org/
http://exac.broadinstitute.org/
http://exac.broadinstitute.org/
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1000 genomes (MAF: 0.04%), and the Grand Opportunity 
Exome Sequencing Project (MAF: 0.05%). This allele has 
also been reported in several control samples from other 
study cohorts within the USA (Toka et  al. 2013), Swe-
den (Purcell et al. 2014), and Africa (ExAC browser). The 
majority of known pathogenic CLDN14 mutations reside 
within one of the transmembrane domains in Claudin-14 

(Fig. 4a; Bashir et  al. 2013; Charif et  al. 2013; Lee et  al. 
2012; Wattenhofer et al. 2005; Wilcox et al. 2001). Func-
tional studies of CLDN14 mutations have demonstrated 
the importance of transmembrane domains with respect 
to protein topology and folding, as well as proper spatial 
localization within cells. For example, previous localiza-
tion experiments showed that the p.V85D and p. G101R 

Fig. 4   a Location of pathogenic mutations in Claudin-14. 
Colored amino acid residues indicate previously reported clau-
din-14 mutations. Arrow indicates position of CLDN14 c.488C>T 
[p.(Ala163Val)]. Adapted from: Bashir et  al. (2013), b Cross-sec-

tional diagram illustrating the anatomical location of the cochlear 
canals and their respective ionic composition. *CLDN14 expression, 
c Schematic diagram demonstrating the molecular structure of tight 
junctions
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deafness mutations within domain II (Fig. 4a) fail to form 
tight junctions due to the mislocalization of Claudin-14 
protein to the cytoplasm, in vitro (Wattenhofer et al. 2005). 
Since p. (Ala163Val) is predicted to change a highly con-
served amino acid within the fourth transmembrane domain 
(Fig. 3b), we suspect a similar impact regarding the spatial 
localization of claudin-14 to the plasma membrane, leading 
to the cells’ inability to form tight junctions. While previ-
ous research have demonstrated the importance of amino 
acid conservation within in claudin-14 transmembrane 
domains, experimental functional studies are warranted to 
prove CLDN14 c.488C>T, p.(Ala163Val) pathogenicity.

Cascade sequencing and haplotype analysis

Cascade sequencing in all available subjects from Families 
2033 and 2075 show that affecteds with the distinct precipi-
tous mid–high-frequency hearing loss (Fig.  2, filled sym-
bols) were also homozygous for CLDN14 p.(Ala163Val) 
(Fig.  3c). Subjects with a flat loss, such as PID IV-4 and 
his descendants (V-5, V-7 and VI-4) lacked the recessive 
CLDN14 variant (Fig.  3d). This pattern is consistent with 
our hypothesis that CLDN14 p.(Ala163Val) is a likely 
pathogenic, recessive allele where homozygosity results in 
a distinct precipitous mid–high-frequency hearing loss and 
relatives inheriting a single copy (carriers) or wild type do 
not have this pattern. According to the American College of 
Medical Genetics standards and guideline (Richards et al. 
2015), CLDN14 p.(Ala163Val) is a strong PS4 PM2 likely 
pathogenic variant. The cause of hearing loss in subjects 
with flat audioprofiles is not known, but is clearly not due 
to homozygosity for CLDN14 c.488C>T. Future studies 
will explore the genetic etiology of their hearing loss. Fur-
thermore, screening our cohort of 169 deafness probands 
identified an additional homozygous subject (Family 
2072) and two heterozygous carriers. In Family 2072, the 
proband’s mother (with the distinct audioprofile) was also 
found to be homozygous for CLDN14 p.(Ala163Val) and 
her father a carrier (Fig. 3a). Screening population controls 
identified four carriers out of 175 subjects, estimating an 
MAF of 1.15% in the Newfoundland population and sug-
gesting that this likely pathogenic variant is not rare.

Extensive genotyping in the vicinity of DFNB29 
revealed that p.(Ala163Val) resides on a 1.4  Mb ances-
tral haplotype shared across all four families (Figs. 2, 3a). 
Haplotype analysis shows affected individuals in the four 
families inherit an ancestral DFNB29-associated haplo-
type on chromosome 21q22.1, signifying clan member-
ship, although biological connection for Family 2072 was 
not found (Fig. 3a). Additionally, we sequenced all coding 
sequences of the CLDN14 gene, including the exon/intron 
boundaries and 5′ and 3′ UTRs. We identified a common 
synonymous variant (c.243C>T; rs219799) within the clan, 

which was incorporated into our DFNB29-associated deaf-
ness haplotype.

Genealogical analysis

Extension of the pedigrees and review of all clinical audio-
grams identified 16 subjects with hearing loss; 10/16 sub-
jects showed the distinct precipitous mid–high-frequency 
hearing loss (Fig. 2). Subjects with hearing impairment not 
consistent with the distinct precipitous mid–high-frequency 
pattern include PID IV-3 (whom we have not connected 
to the founding couple) and all descendants of PID IV-4 
(Fig. 2). In these cases, the audiogram can be characterized 
as a flat loss across all frequencies: PID IV-4 had a pro-
found flat loss and his descendants (V-5, V-7, VI-3) show 
a mild flat loss (Fig. 5). Family interviews determined the 
surnames suggestive of Irish descent (Seary 1977) and con-
nected Families 2010, 2033 and 2075 to a single founding 
couple six generations ago. We noted that the inheritance 
pattern in the combined pedigree suggested either auto-
somal dominant (with reduced penetrance) or autosomal 
recessive (pseudodominant) inheritance (Fig.  2). In sum-
mary, this population-based study using a targeted and 
whole exome sequencing approach identified a CLDN14 
(DFNB29) variant (c.488C>T, p. (Ala163Val), likely patho-
genic, sensorineural hearing loss, autosomal recessive.

Discussion

We have determined that a known VUS (CLDN14, 
c.488C>T, p. (Ala163Val)) is likely pathogenic, and causes 
a precipitous, bilateral and rapid deterioration of hearing 
thresholds at frequencies >0.75 kHz in children, progress-
ing gradually in adults. We have also determined that this 
likely pathogenic variant is amplified in the founder popu-
lation of the island of Newfoundland and is present in ~1% 
of the population. The role of CLDN14 in nonsyndromic 
hearing loss was first described in two large consanguin-
eous families from Pakistan with recessive profound con-
genital deafness (Wilcox et  al. 2001). Recessive CLDN14 
alleles manifest as nonsyndromic sensorineural hearing 
loss with considerable phenotypic variability and may 
present as congenital or prelingual, and mild, moderate–
severe or profound (Bashir et al. 2010, 2013). In this study, 
homozygous children had normal hearing thresholds up to 
3 years of age and overall, a remarkably conserved hearing 
phenotype. A combination of pedigree extension and geno-
typing linked four families of Irish ancestry to a founding 
couple six generations back.

The claudin family of proteins consists of 24 mem-
bers with tissue-specific expression. Claudin-14 plays a 
critical role in the formation of tight junction barriers that 
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regulate paracellular ion transport (Mineta et  al. 2011) 
and is highly expressed in the kidney, liver and the inner 
ear (Ben-Yosef et al. 2003; Wilcox et al. 2001). Moreover, 
preferential gene expression has been observed in the inner 
ear, as CLDN14 expression is lower in supporting cells, 
relative to sensory hair cells (Wilcox et al. 2001; Scheffer 
et  al. 2015). Normal hearing function and hair cell depo-
larization are dependent on tight junctions in the reticular 
lamina. In the organ of Corti, hair cell stereocilia are bathed 
in potassium-rich endolymph, while the basolateral surface 
of the hair cell body is surrounded by an intercellular (or 
extracellular) fluid continuous with the perilymph (Fig. 4b, 
c). The reticular lamina, formed in part by tight junctions 
between the apical surfaces of hair cells and supporting 
cells of the sensory epithelium, creates a barrier isolating 
the endolymphatic fluid from other cochlear compartments, 
which contain perilymph. Maintenance of this ionic gradi-
ent is essential for mechanotransduction, which depends 
on the modulation of potassium current flowing from the 
endolymph into the hair cells through the stereocilia as 
they are displaced by sound-induced vibrations. Disrup-
tion of this tight junction barrier alters the ionic gradient, 

increasing the potassium concentration around the hair cell 
body, compromising mechanotransduction and causing hair 
cell toxicity and eventual cell death.

The CLDN14 p.(Ala163Val) variant reported in this 
study has been identified in previous studies but not in asso-
ciation with disease. It was first reported as a VUS by Thor-
leifsson et al. (2009) in a large Iceland/Netherlands GWAS 
cohort study examining SNPs associated with kidney 
stones and bone mineral density and more recently by Toka 
et  al. (2013), who detected the CLDN14 p.(Ala163Val) 
allele in 3 of 1230 study participants for another kidney 
function study. The heterozygous p.(Ala163Val) allele 
was also found in a Swedish GWAS study examining the 
polygenic nature of schizophrenia (Purcell et  al. 2014). 
The heterozygous p.(Ala163Val) allele was submitted 31 
times to ExAC browser, 29 alleles from European descent 
and 2 from the African population. In a recent American 
study including 1119 deafness probands, a cohort made 
up of 62.3% autosomal recessive cases (Sloan-Heggen 
et  al. 2016) used a targeted sequencing approach and the 
most commonly implicated genes were GJB2, MYH9, 
OTOA, PCDH15, SLC26A4, STRC, TMC1, TMPRSS3 and 

Fig. 5   Clan members lacking the recessive CLDN14 [c.488C>T; 
p.(Ala163Val)] variant do not present with the characteristic  steeply 
sloping hearing phenotype, exhibiting a different age of onset and 
hearing threshold progression a Profound, flat sensorineural hearing 
loss with an unknown etiology at age 63 (PID IV-4), b PID V-5 (age: 
53) presents with borderline hearing thresholds, c PID V-7 (age: 58) 
presents with mild hearing loss with a diagnosis of Meniere’s dis-

ease, d at age 39, PID VI-3 presents with mild hearing loss, and e a 
heterozygous CLDN14 [c.488C>T; p.(Ala163Val)] carrier (PID V-4) 
exhibits mild hearing loss at age 60. Yellow shaded area indicates 
range of normal hearing. Hearing thresholds are measured in decibels 
hearing level (dB HL), X =  left ear (air conduction), O =  right ear 
(air conduction)
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USH2A. Interestingly, Sloan-Heggen et  al. 2016 reported 
the p.(Ala163Val) allele in a patient with congenital hear-
ing loss; however, in a compound heterozygous state with a 
second CLDN14 allele (p.P28L). In summary, these studies 
suggest that the likely pathogenic CLDN14 p.(Ala163Val) 
allele is both rare and widely distributed around the globe.

Many reports claim that approximately 50% of autosomal 
recessive deafness is caused by either homozygous or com-
pound heterozygous mutations in the DFNB1 locus (GJB2), 
which is often the only gene that is routinely screened in 
the clinical setting when there is a family history of hear-
ing loss. This represents a massive ascertainment bias, as 
children who are DFNB1 negative are not followed up, due 
to the expenses associated with genetic testing. Recently, 
a large, ethnically diverse, cohort study demonstrated the 
importance of investigating DFNB1-negative deaf probands 
(Yan et al. 2016). This study took a targeted panel approach 
in 342 probands (185 simplex and 157 multiplex families), 
sequenced 180 known hearing loss genes, and identified 
151 variants in 119 families. Fifty-three families had patho-
genic or likely pathogenic mutations within 27 genes, while 
the remaining were variants of uncertain significance. This 
study solved 25 and 7% of multiplex and simplex families, 
respectively, emphasizing the importance of large families 
and strong histories of disease in genetic studies.

Pediatric hearing programs strive to identify and treat 
early to prevent delay in language, learning and social 
development. However, the detection of delayed onset 
and progressive forms of hearing loss remain a signifi-
cant challenge. Children who are homozygous CLDN14 
p.(Ala163Val) pass newborn and early hearing tests.  The 
proband’s son (R2010, PID VI-4) was discharged after his 
test at 1  year of age indicated normal hearing.  Preschool 
testing 4  years later showed significant deterioration of 
both mid and high frequencies (Fig. 1c). Delayed identifi-
cation could result from limited testing of high frequencies 
in the preschool years, often complicated by limited testing 
tolerance in children. In this study,  PID VI-2 had normal 
hearing at 8 kHz at 2 years of age. At 3 years, hearing was 
reported normal although thresholds at 8 kHz were not per-
formed. By 4 years, a 55 dBHL threshold at 8 kHz and mild 
to moderate loss at all high frequencies required immedi-
ate hearing aid fitting. Retrospectively, if 8 kHz thresholds 
had been performed at 3 years, diagnosis and therapy could 
have been offered a year earlier (Fig.  1b). Conversely, 
genetic testing or prenatal/preconception parental carrier 
screening could provide appropriate hearing surveillance 
and minimize the risk of delays in language development 
and learning from rapidly progressing hearing loss.

Adults who are homozygous for CLDN14 p.(Ala163Val) 
also have a consistent phenotype but challenges in manage-
ment remain. Hearing aids benefit affected children and 
young adults (up to the third decade), but most adults do 

not find them beneficial. For example, PIDs V-9 (age: 50), 
V-10 (age: 51) and V-17 (age: 57; Fig.  2) reported some 
additional sound with hearing aids but no improvement of 
speech comprehension, consistent with the extreme erosion 
of mid and high frequencies. Older affected adults with 
well-preserved low-frequency sensitivity have limited com-
munication by phone. PIDs V-10 and V-17 (Fig. 2) whose 
threshold at 0.5  kHz is deteriorated  can no longer com-
municate by phone. Adult members of this clan are highly 
skilled speech readers who can detect speech initiation and 
turn quickly to maximize the use of visual clues. Unfortu-
nately, these skills can be mistaken for hearing and subjects 
have voiced concerns regarding safety in the workplace.

The development of the organ of Corti is unidirectional, 
and follows a base-to-apex hair cell degeneration in the 
Cldn14-null mouse cochlea. This may explain why we 
observe a sensorineural threshold loss progressing from 
the high to low frequencies in affected clan members. The 
cochlea discerns high- from low-frequency sound, based 
on a stiffness gradient along the basilar membrane (Ehret 
1978; Teudt and Richter 2014). In Cldn14-null mice, the 
organ of Corti undergoes a base-to-apex deterioration 
beginning around postnatal day 10, with a more severe and 
rapid degeneration of outer hair cells compared to inner 
hair cells. By day 13, the three rows of outer hair cells are 
almost completely absent in the cochlear base, with partial 
loss and stereociliar disorganization in the middle and api-
cal turns (Ben-Yosef et al. 2003). The cochlear lesion then 
proceeds towards the cochlear apex, with a rapid deterio-
ration of the outer hair cells accompanied by the onset of 
inner hair cell damage. By day 18, outer hair cell deterio-
ration is severe with only a few remaining outer hair cells 
exhibiting damaged stereocilia in the most apical region; 
in contrast, only partial inner hair cell loss is reported 
throughout the cochlea by this age. Auditory brainstem 
responses measured in 4-week-old Cldn14-null mice indi-
cate a significant hearing loss in comparison to their wild-
type and heterozygous littermates (Ben-Yosef et al. 2003).

Summary

A population-based study of hearing loss in the NL popu-
lation has clarified the role of CLDN14 p.(Ala163Val), a 
VUS previously identified in the USA, Iceland and Swe-
den. CLDN14 p.(Ala163Val) appears to be of Irish origin 
and causes a precipitous, prelingual recessive sensorineu-
ral hearing loss. This likely pathogenic variant is frequent 
in this island population of Northern European decent, and 
CLDN14 p.(Ala163Val) homozygotes have normal hear-
ing thresholds at birth, then experience rapid, progressive 
nonsyndromic hearing loss in early childhood. Although 
missed by newborn hearing screening, genetic testing 
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would ensure identification of at-risk children, allowing for 
appropriate monitoring and timely intervention, aural reha-
bilitation and counseling for families. Although GJB2 is 
routinely screened in the regional hospital diagnostic clinic, 
we recommend targeted screening of CLDN14, as well.

Limitations

While exome sequencing is a powerful tool to elucidate dis-
ease causing, coding variant, it does not explore non-coding 
regions. Additionally, there is no experimental proof of the 
predicted amino acid substitution, and without functional 
data, we cannot be certain that the point mutation impacts 
protein location within tight junctions. For example, this 
variant could cause alternative splicing or alter gene expres-
sion. Although less likely, it is plausible that a causal, non-
coding variant at the DFNB29 locus is in linkage disequi-
librium with p.(Ala163Val). Even though our study presents 
several lines of evidence to suggest pathogenicity, experi-
mental functional analysis of p.(Ala163Val) is required.
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