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Abstract

Germ-free animals have been used to define the vital role of commensal bacteria on the matu-

ration of the host immune system. However, the role of bacterial residues in diet in this setting

is poorly understood. Here we investigated the effect of bacterial contamination in sterile diet

on the level of allergic sensitization in germ-free mice. Sterile grain-based diets ST1 and R03

were tested for the level of bacterial contamination. ST1 contained higher amount of bacterial

DNA, approximately ten times more endotoxin, and induced higher, TLR4-dependent, cyto-

kine production in dendritic cells compared to R03. In a germ-free mouse model of sensitiza-

tion to the major birch pollen allergen Bet v 1, feeding on ST1 for at least two generations was

associated with decreased production of allergen-specific IgE and IgG1 antibodies in sera in

comparison to R03. Furthermore, reduced levels of allergen-specific and ConA-induced cyto-

kines IL-4, IL-5 and IL-13 accompanied by increased levels of IFN-γwere detected in spleno-

cytes cultures of these mice. Our results show that contamination of experimental diet with

bacterial residues, such as endotoxin, significantly affects the development of allergic sensiti-

zation in germ-free mice. Therefore, careful selection of sterile food is critical for the outcomes

of germ-free or gnotobiotic experimental models of immune-deviated diseases.

Introduction

Reduced exposure to exogenous stimuli and/or altered composition of intestinal microbiota

due to the overuse of antibiotics, western diet, and reduced prevalence of infection diseases

during childhood are feasible factors of increasing prevalence of allergic disorders [1–3]. This

concept was first put forth by the hygiene hypothesis and suggested a causal link between

allergy and western lifestyle, where the limited exposure to microbes can lead to compromised

regulation of the immune responses [4].

In this context, exposure to microbes or microbial components have been associated with

protection against allergy later in life [5–7]. One example of such microbe-derived environ-

mental factor is lipopolysaccharide (LPS), ubiquitously present cell wall component of Gram-
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negative bacteria. LPS and its bioactive moiety endotoxin have been used as a surrogate of

microbial burden in the environment [8]. Although the levels of human exposure to LPS are

highly variable, they are unavoidable. Several clinical studies have shown that continuous

exposure of humans to LPS has protective effects against the development of allergy [5,8–10].

Similarly, LPS prevented an allergic outcome in several experimental models [11–13]. Along

these lines, LPS of Acinetobacter lwoffii, a Gram-negative bacteria isolated from the farm cow-

shed, was identified as a protective factor against allergy [14,15].

LPS is a strong immunogen that triggers the activation of innate and acquired immunity via

the transmembrane TLR4-mediated signaling [16]. Stimulation of antigen presenting cells, such

as dendritic cells (DC) with LPS leads to their maturation associated with increased expression

of costimulatory molecules and production of cytokines [17]. In addition, LPS-exposed den-

dritic cells stimulate the generation of Th1 immune responses associated with production of

proinflammatory cytokines, such as IFN-γ. The property of LPS to redirect immune responses

from a Th2 towards Th1 immunity has been suggested as a key mechanism of the LPS-induced

beneficial effects, influencing the development and maintenance of allergic diseases [18]. Borto-

latto et al. have demonstrated that LPS impairs the development of allergic Th2 responses via

the IL-12/IFN-γ axis and this effect was TLR4-dependent [19]. Similarly, Rodriguez et al.
reported that LPS reduced allergic Th2 responses in mice via the TLR4-dependent pathway [11].

Germ-free (GF) mice that lack any exposure to living pathogenic or nonpathogenic micro-

organisms, provide an attractive model to investigate the role of the composition and function

of intestinal microbiota on the development of food allergy, allergic airway inflammation, or

allergen-specific tolerance induction [20]. It has been shown that GF mice are more responsive

to allergic sensitization, exhibit dysregulated allergic airway inflammation, and display higher

levels of serum allergen-specific IgG1 and IgE with increased production of Th2-associated

cytokines compared to the animals colonized by microbiota [17,20–25]. Data from our lab

have shown that this exacerbated allergic sensitization in GF mice can be prevented by

mother-to-offspring colonization of GF mice with single probiotic strain B. longum [17] or by

colonization of adult GF mice with a mixture of three Lactobacillus strains [26]. Although the

gastrointestinal tract of GF animals can be considered sterile, it is still permanently exposed to

self-antigens, ingested food antigens [27] and microbial residues in sterile food or beddings,

such as endotoxin. As far as the bacterial contamination in food is concerned, bacterial resi-

dues in sterile chow of GF mice have been associated with expansion of B and T cells in the gut

associated lymphoid tissue (GALT) and with higher levels of Th1 cytokine IL-12 and lower lev-

els of Th2 cytokine IL-4 upon mitogen stimulation of spleen cells in comparison to control

mice on LPS-free diet [28]. This data suggest that the contamination of sterile food with bacte-

rial residues may influence the outcome of experimental models of Th1/Th2-associated dis-

eases performed on GF animals. However, this premise has not been explored to date.

Here, we expand on our previous observations and show that not only the colonization of

GF animals with commensal bacteria but also exposure to bacterial residues (endotoxin) pres-

ent in sterile food is able to modulate the functional maturation of immune system leading to

altered responses in an experimental model of allergic sensitization. Furthermore, this is the

first demonstration of specific effects of different diets on the sensitization in germ-free mice.

Materials and Methods

Mouse diets, diet extract preparation and measurement of LPS

contamination

ST1 (Velaz, Praha, Czech Republic) and R03 (SAFE, Augy, France) are both grain based diets

which have been routinely used after irradiation to feed GF animals [17,24]. Composition of
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the R03 diet can be found on vendor’s web page www.safe-diets.com, composition of the ST1

diet is in supplementary material (S1 Table). Both diets are nutritionally adequate and animal

growth curves are comparable. For the preparation of extracts (eST1 and eR03), sterile pellets

were grounded by LPS-free sterile scissors, extensively vortexed and sonicated on ice for 5

minutes. Supernatants were collected after centrifugation, filtered (0.2 μm) and LPS concentra-

tions were determined by the fluorescent PyroGene™Recombinant Factor C Assay (Lonza,

Switzerland) according to the manufacturer’s instructions.

DNA isolation and 16S rDNA PCR amplification

Sterile diet (200 mg) was homogenized by the Tissue lyser (Quiagen, Hilden, Germany) in 0.6 ml

Tris-EDTA buffer (10 mM Tris-HCl, 5 mM EDTA, pH 7.8) for 10 min/50 Hz and centrifuged

(200 g/5 min). Supernatant (200 μl) was washed with 400 μl of Tris-EDTA buffer and centrifuged

again at 200 g/5 min. Supernatant (350 μl) was resuspended in 500 μl of lysis buffer (10 mM Tris–

HCl, 5 mM EDTA, pH 7.8) containing lysozyme (6 mg/ml). After 1 h incubation at room tem-

perature, 25 μl of 20% SDS and 10 μl of proteinase K (100 μg/ml) was added to each sample and

incubated at 55˚C overnight. Finally, mixture was treated with 10 μl RNase A (10 μg/μl) for

30 min at 37˚C. DNA was isolated by phenol-chloroform extraction and dissolved in 50 μl Tris-

EDTA buffer. The purity, integrity and concentration of nucleic acids were confirmed by agarose

gel electrophoresis and UV spectrophotometry as previously described [29]. Bacterial 16S rDNA

was amplified using PCR with the universal primers 27F (50 AGA GTT TGA TCC TGG CTC AG

30) and 1492R (50 GGT TAC CTT GTT ACG ACT T 30) as previously described [21]. To exclude

false negative results caused by inhibitors in the sample, 10x and 100x dilutions of the original

sample were used as a template. Ten ng of chromosomal DNA from Escherichia coli was used as a

positive control. Amplification products were separated by 1.2% agarose gel electrophoresis, visu-

alized using GelRedTM Nucleic Acid Gel Stain (Biotinum, Hayward, CA, USA) and images were

obtained by Fluorescent Image Analyser FLA-7000 (Fujifilm Corporation, Tokyo, Japan).

Animals

Germ-free BALB/c mice were kept under sterile conditions in Trexler-type plastic isolators and

supplied with water and sterile pellet diet ST1 or R03 ad libitum. Both diets were sterilized by

irradiation. Fecal samples were weekly controlled for microbial contamination as previously

described [30]. TLR4-/- deficient mice on BALB/c background [31] were a kind gift from M.

Freudenberg (Freiburg, Germany). BALB/c and TLR4-/- deficient mice were kept under specific

pathogen-free (SPF) conditions and fed sterile pellet ST1 diet. The animal experiments were

approved by the Committee for the Protection and Use of Experimental Animals of the Institute

of Microbiology v.v.i., Academy of Sciences of the Czech Republic (approval ID: 50/2013).

Experimental design

Germ-free mice were kept on the respective diets for at least two generation. Eight-week-old

GF female mice were subcutaneously (s.c.) sensitized on days 1, 14 and 28 with 1 μg of Bet v 1

(Biomay, Vienna, Austria) emulsified in 100 μl of Al(OH)3 (Serva, Germany). Mice sham

treated with Al(OH)3 alone were used as controls. Seven days after the last immunization,

mice were killed by CO2 asphyxia and samples were taken for further analysis.

Humoral immune responses

Blood samples were taken at sacrifice and serum levels of anti-Bet v 1 IgE, IgG1, IgG2a and

IgA were measured by ELISA as previously described [32]. The measurement of the results for
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each Ig subtype has been performed on the same plate and results were reported as optic den-

sity (OD). The activity of Bet v 1-specific IgE in serum was measured by rat basophile leukemia

cells degranulation assay as described previously [33]. Levels of total IgE and IgA in serum

were measured by a commercial ELISA kit as recommended by the manufacturer (Bethyl,

USA). Small intestine was excised and faeces removed by flushing the lumen with 2 ml of cold

PBS. The intestine was cut open lengthwise and frozen in 1 ml of Complete protease inhibitor

in PBS (Roche, Manheim, Germany). After thawing, samples were incubated in 20% saponine

solution (Sigma-Aldrich) overnight to permeabilize cell membranes. Supernatants were col-

lected after centrifugation (2000 g; 10 min) and stored at –20˚C. Levels of Bet v 1 specific IgA

and IgG1 in gut lavage were measured as described above and reported as OD.

Cellular immune responses

Spleen single cell suspensions from sensitized and control mice on ST1 or R03 diets were pre-

pared and cultured as previously described [33]. Mononuclear cells (3 x 106 cells/ml) were

stimulated with Bet v 1 (20 μg/ml), ConA (1.5 μg/ml; Sigma-Aldrich, USA) or media alone in

96-well plates at 37˚C for 60 hours in culture medium (RPMI 1640 supplemented with 10%

heat-inactivated FCS, 2 mM L-glutamine, 100 U/ml penicillin, 100 μg/ml streptomycin). Levels

of cytokines in culture supernatants were measured by the MILLIPLEX MAP Mouse Cyto-

kine/Chemokine Panel (Millipore, USA) according to manufacturer’s instructions and ana-

lyzed with the Bio-Plex System (Bio-Rad Laboratories, USA). Values are expressed as pg/ml or

ng/ml after subtraction of baseline levels of unstimulated cultures.

Preparation and activation of bone marrow-derived dendritic cells

Mouse bone marrow-derived DC (BM-DC) from wild-type BALB/c and TLR4-/- mice were

prepared as previously described [34]. Briefly, the bone marrow precursors were isolated from

femur and tibia of respective mice. Cells were cultured at 4x105/ml in bacteriological Petri

dishes in 10 ml culture medium with GM-CSF (20 ng/ml; Sigma-Aldrich). Fresh medium was

added at day 3 and 6 and BM-DC were used on day 8 of culture. BM-DC (106 cells/well) were

stimulated with 100 μg/ml of ST1 or R03 diet extracts for 18 h. As controls, BM-DC were incu-

bated with ultrapure LPS (LPS-EB, 1 μg/ml, InvivoGen, USA). Levels of IL-10, IL-12p70, TNF-

α and IL-6 in culture supernatants were determined by ELISA Ready-Set-Go! kits (eBioscience,

USA) according to manufacturer’s instructions.

Stimulation of HEK293 cells stably transfected with TLR

HEK293 cells stably transfected with plasmid carrying human (h)TLR2/CD14 gene were

kindly provided by M. Yazdanbakhsh (Leiden, Netherlands) and cells transfected with hTLR4/

MD2/CD14 were a gift of B. Bohle (Vienna, Austria). Cells were stimulated with ST1 or R03

diet extracts (10 or 100 μg/ml). TLR2 ligand Pam3Cys (Pam3CSK4, 1 μg/ml, InvivoGen, USA)

and TLR4 ligand LPS (LPS-EB, 1 μg/ml, InvivoGen, USA) were used as positive controls. After

the 20-h incubation period, culture supernatants were harvested and concentration of human

IL-8 was analyzed by ELISA (Thermo Scientific, USA) according to the manufacturer’s

instructions.

Statistical analysis

Data are expressed as means ± SEM. Statistical analysis was performed by non-parametric

Mann–Whitney U-test using GraphPad Software (GraphPad Prism 5.04, San Diego, USA);

P values < 0.05 were considered significant.
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Results

Bacterial DNA contamination and endotoxin content differs

considerably between two sterile diets commonly used in germ-free

animal facilities

Bacterial residues in sterile diets may influence maturation of immune system in GF mice

[28]. We therefore tested the presence of bacterial material in two different diets which are

routinely used in gnotobiotic breeding facilities. First, the presence of bacterial DNA in the

sterile diets R03 and ST1 was investigated by PCR. The data show that only low levels of bac-

terial DNA are present in the R03 diet (Fig 1A). On the contrary, ST1 diet contains higher

levels of bacterial DNA, detected in sample diluted 1:10 or even at higher dilution 1:100

(Fig 1A). Second, the amount of endotoxin was measured in extracts of both diets (eR03

and eST1) by the PyroGene™Recombinant Factor C Assay. The data clearly indicate that

the level of endotoxin contamination differs significantly between the two diets, with the

levels detected in eR03 being 10 times lower compared to the levels of endotoxin in eST1

(Fig 1B). Along these lines, the presence of TLR4 or TLR2 ligands in both diets was tested

by HEK293 cells transfected with respective receptor. No significant production of IL-8 was

detected in the HEK293/TLR4 or HEK293/TLR2 cultures incubated with eR03, suggesting

the lack of TLR4 or TLR2 ligands in this diet (Fig 1C and 1D). On the other hand, eST1

induced dose dependent production of IL-8 by HEK293/TLR4 indicating the contamina-

tion with TLR4 ligand (Fig 1C and 1D).

TLR4 ligands are the main component in the diet extracts driving the

cytokine production and maturation of dendritic cells

Incubation of wild-type BM-DC with eST1 led to significantly higher production of IL-12p70,

TNF-α, IL-6 and IL-10 in comparison to eR03 (Fig 2A–2D). This cytokine production was

TLR4 dependent and for the eST1 it was massively diminished in BM-DC derived from

TLR4-/- mice. Concomitantly, eST1 is a potent inducer of TLR4-dependent maturation of

BM-DC as shown by increased induction of CD40, CD80 and CD86 in comparison to unsti-

mulated or eR03-incubated cells (Supporting Information S1 Fig).

Fig 1. Bacterial contamination differs between R03 and ST1 diets. (A) DNA isolated from R03 and ST1 diets was diluted in ddH2O (1:10 and 1:100) and

PCR was performed with Bacteria-specific primers. PCR products were separated by 1.2% agarose gel electrophoresis. E. coli DNA was used as positive

control, H2O as negative control. (B) Endotoxin levels in R03 and ST1 diet extracts (eR03, eST1 respectively) were determined by the fluorescent

PyroGene™Recombinant Factor C Assay. Data are plotted as mean values ± SEM. Representative results from five independent experiments are shown.

(C-D) Human embryonic kidney cells (HEK293) stably transfected with an expression vector for human TLR4 (HEK293-hTLR4/MD2/CD14; HEK293/TLR4)

and TLR2 (HEK293-hTLR2/CD14; HEK293/TLR2) were cultured for 20 h with 10 μg/ml or 100 μg/ml of respective diet extracts (eR03, eST1). Ultra-pure

lipopolysaccharide from E. coli (LPS; 1 μg/ml) and Pam3CSK4 (PAM, 1 μg/ml) were used as positive controls for TLR4 and TLR2, respectively. Unstimulated

cells (M) were used as controls. Results are expressed as mean values ± SEM, representative results from three independent experiments are shown.

*P� 0.05, **P� 0.01, ***P� 0.001, n.s = not significant.

doi:10.1371/journal.pone.0167786.g001

Diet Influences Sensitization in Germ-Free Mice

PLOS ONE | DOI:10.1371/journal.pone.0167786 January 4, 2017 5 / 15



Contamination of sterile diet with endotoxin is associated with altered

humoral response to Bet v 1 in germ-free mice

Several studies have shown that mice raised in conventional conditions or mice mono-colo-

nized with probiotic bacteria are less responsive to sensitization and display reduced levels of

Th2-associated humoral responses compared to GF mice [17,22,24]. Here we tested whether

food containing high levels of endotoxin can similarly influence the course of sensitization.

We therefore investigated the production of specific and total antibodies after immunization

with major birch pollen allergen Bet v 1 (Fig 3A). As expected, Bet v 1-immunization led to sig-

nificant induction of specific antibodies in the serum in comparison to sham-treated controls

(Fig 3B–3E). Interestingly, mice on ST1 diet exhibited significantly reduced Bet v 1-specific

IgE-dependent ß-hexosaminidase release as well as lower production of specific IgE and IgG1

in the serum compared to sensitized GF animals on R03 diet (Fig 3B–3D). No significant dif-

ferences were noted for Bet v 1-specific IgA in the serum between sensitized groups (Fig 3E).

Also, there were no significant differences for Bet v 1-specific IgG2a in the serum between

Fig 2. Extracts derived from R03 and ST1 diets induce different cytokine production from dendritic cells.

Bone marrow-derived dendritic cells (BM-DC) generated from wild-type (WT, white bars) and TLR4-deficient

(TLR4-/-, black bars) mice were cultured with media alone (M), ultra-pure lipopolysaccharide from E. coli (LPS,

1 μg/ml), extract of R03 (eR03, 100 μg/ml) or of ST1 (eST1, 100 μg/ml) for 18 h. Production of IL-12p70 (A), IL-10

(B), TNF-α (C) and IL-6 (D) in culture supernatants was measured by ELISA. Mean values ± SEM are shown. One

representative out of three experiments yielding similar results is shown.

doi:10.1371/journal.pone.0167786.g002
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sensitized groups or sham-treated controls (data not shown). Levels of total IgE tend to be

lower in the sensitized GF animals on ST1 diet in comparison to animals on R03 diet (Fig 3F).

Feeding ST1 diet was associated with increased levels of total IgA in the serum and reached sig-

nificant difference when sensitized groups on dissimilar diet were compared (Fig 3G).

Decreased levels of Th2-associated antibodies in serum of sensitized animals fed on ST1 diet

compared to R03-fed animals were accompanied with decreased levels of specific IgG1 in the

gut lavage (Fig 4A). No significant differences were observed for specific IgA in the gut lavage

among the groups (Fig 4B).

Fig 3. Systemic sensitization to Bet v 1 in mice bred on endotoxin-low (R03) and endotoxin-high (ST1) diet.

(A) Experimental design: Mice were bred on the respective diet for at least two generations. Eight-week-old female

germ-free mice fed with R03 or ST1 diet were sensitized by subcutaneous immunization (s.c.) three times with 1 μg

of recombinant Bet v 1 in Alum (Bet v 1/Al(OH)3). Age-matched sham-treated mice were used as controls. At

sacrifice, blood, spleens, and small intestines were collected for further analysis. (B) Functional IgE in serum was

measured by Bet v 1-mediated β-hexosaminidase release from rat basophil leukemia cells. Bet v 1-specific IgE (C),

IgG1 (D), IgA (E), total IgE (F) and total IgA (G) in sera were measured by ELISA. Data are plotted as mean

values ± SEM. Pooled values of two independent experiments (n = 9–10 sensitized groups, n = 5–6 sham-treated

groups) are shown. *P� 0.05, **P� 0.01, ***P� 0.001.

doi:10.1371/journal.pone.0167786.g003
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Contamination of sterile diet with endotoxin is associated with altered

antigen-specific and non-specific production of cytokines in spleen cell

cultures

To determine the role of contamination in diet on cellular responses in sensitized GF mice, we

isolated spleens from sensitized and sham-treated mice fed R03 or ST1 diet. Single cell suspen-

sions were cultured with/without Bet v 1 or with/without polyclonal mitogen ConA. Concern-

ing the allergen-specific recall responses, the data clearly indicate that the presence of bacterial

fragments in the diet was associated with reduced production of typical Th2-associated cyto-

kines. In cell cultures derived from sensitized GF mice fed ST1 diet, the levels of Bet v 1-spe-

cific IL-4, IL-5, IL-13 and IL-10 in spleen cultures were significantly decreased in comparison

to cultures derived from mice on R03 diet (Fig 5A–5C and 5H). On the other hand, the level of

IFN-γ was increased in these mice. No differences were observed in levels of TNF-α and IL-17

(Fig 5F and 5G). Same trend has been observed for the Bet v 1-restimulated mesenteric lymph

node cell cultures (data not shown). Regarding the non-specific cytokine responses induced by

ConA in spleen cell cultures, similar picture was obtained as for Bet v 1-specific responses. ST1

diet was associated with reduced production of IL-5 and IL-13 (Fig 6B and 6C). Spleen cell cul-

tures derived from sensitized ST1-fed animals produces significantly higher levels of IFN-γ
and TNF-α in comparison to cells derived from R03-fed animals (Fig 6E and 6F). Production

of ConA-induced IL-17 and IL-10 was comparable between R03 and ST1 sham or sensitized

groups (Fig 6G and 6H).

Discussion

Germ-free animals provide an attractive model for studying the host-microbiota interactions

and they are extensively used in investigating the impact of gut microbiota on the maturation

and function of the host immune system [20,35]. We and others have used GF animals to test

Fig 4. Levels of Bet v 1-specific IgG1 and IgA in gut lavage. Bet v 1-specific IgG1 (A) and IgA (B) in gut lavage

were measured by ELISA. Data are plotted as mean values ± SEM. Pooled values of two independent experiments

(n = 9–10 sensitized groups, n = 5–6 sham-treated groups) are shown. *P� 0.05, **P� 0.01, ***P� 0.001.

doi:10.1371/journal.pone.0167786.g004
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the beneficial effects of single probiotic bacterial strains or their mixture on the development

of several immune-mediated diseases [17,20,26,35–38]. Recently, it has been demonstrated

that not only the presence of microbiota, such as bacteria, or macrobiota, such as helminth

parasites in gastrointestinal tract, but also permanent exposure to self-antigens, ingested food

antigens [27], viruses [39] or microbial residues from dead bacteria in sterile food or beddings,

such as endotoxin, may influence the host immune responses. In this study, we tested whether

signals derived from bacterial contamination in the sterile chow can influence the develop-

ment of allergic sensitization to major birch pollen allergen Bet v 1 in germ-free mice. We

could show that feeding on ST1 diet, which contains high levels of bacterial contamination

such as endotoxin, reduced humoral and cellular responses to Bet v 1 when compared to ani-

mals fed on diet R03 with low content of endotoxin.

Several studies have shown that the immune responses in GF mice are skewed towards Th2

phenotype. For example, Hrncir et al. have detected increased ConA-induced production of

IL-4 and decreased production of IFN-γ and IL-12 in spleen cell cultures of GF mice in compar-

ison to conventionally reared animals [28]. Furthermore, Olszak et al. have shown increased

Fig 5. Influence of endotoxin-low (R03) and endotoxin-high (ST1) diet on Bet v 1-specific cytokine production in splenocytes. Germ-free mice

fed endotoxin-low (R03) and endotoxin-high (ST1) diet were sensitized as indicated in Fig 2. Spleen cell cultures derived from these animals were

incubated with 20 μg/ml of Bet v 1 for 60 h in vitro. Levels of IL-4 (A), IL-5 (B), IL-13 (C), IL-6 (D), IFN-γ (E), TNF-α (F), IL-17 (G), and IL-10 (H) in culture

supernatants were measured by MILLIPLEX MAP Mouse Cytokine/Chemokine Panel. Cytokine levels are expressed after subtraction of base line

levels of unstimulated splenocytes. Pooled values from two independent experiments (n = 9–10 sensitized groups, n = 5–6 sham-treated groups) are

shown as mean values ± SEM. *P� 0.05, **P� 0.01, ***P� 0.001.

doi:10.1371/journal.pone.0167786.g005
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pathology in model of asthma in GF mice compared to SPF controls [38]. Similarly, Hill at el.

have shown that Th2 cell response are exaggerated in GF mice in comparison to animals colo-

nized with commensal bacteria and depletion of bacterial communities by antibiotic treatment

led to increased serum IgE and increased allergic inflammation [40].

We and others have previously demonstrated the potential of single probiotic bacteria or

well defined bacterial mixtures to reverse the development of exacerbated allergic immune

responses in germ-free mice [17,26,40]. These observations are in accordance with the concept

of the hygiene hypothesis which proposes that exposure to microbes decreases susceptibility to

atopic diseases. Although GF animals do not harbor any living microorganisms, they are still

exposed to microbial residues from dead microorganisms in the sterile food or bedding [24].

We have measured the load of bacterial contamination in two different sterile diets ST1 and

R03, which are commonly used in germ-free facilities. We could show that both the levels of

bacterial DNA as well as level of endotoxin are markedly increased in ST1 in comparison to

R03 diet. Using a PyroGene™Recombinant Factor C Assay, we determined that 1 mg of ST1

chow contains approximately 1200 EU of endotoxin. According to EC-5 US reference stan-

dard, 1 EU corresponds to 0.1 ng of endotoxin [41]. Thus, in average, a 20 g female mouse

which consumes 2 g of ST1 chow/day, is exposed daily to approximately 0.24 mg of endotoxin.

In previous study, Hrncir et al. have shown that LPS contamination in chow influenced the

development and expansion of the host immune cells [28]. The question arising from this study

Fig 6. Influence of endotoxin-low (R03) and endotoxin-high (ST1) diet on mitogen-induced cytokine

production in splenocytes. Germ-free mice fed endotoxin-low (R03) and endotoxin-high (ST1) diet were

sensitized as indicated in Fig 2. Spleen cell cultures derived from these animals were incubated with 1.5 μg/ml of

ConA for 60 h in vitro. Levels of IL-4 (A), IL-5 (B), IL-13 (C), IL-6 (D), IFN-γ (E), TNF-α (F), IL-17 (G) and IL-10 (H) in

culture supernatants were measured by MILLIPLEX MAP Mouse Cytokine/Chemokine Panel. Cytokine levels are

expressed after subtraction of base line levels of unstimulated splenocytes. Pooled values from two independent

experiments (n = 9–10 sensitized groups, n = 5–6 sham-treated groups) are shown as mean values ± SEM.

*P� 0.05, **P� 0.01, ***P� 0.001.

doi:10.1371/journal.pone.0167786.g006
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was whether and to which extent the bacterial contamination impacts on the development of

the course of allergic sensitization in a mouse model of type 1 allergy in germ-free conditions.

In vitro, we have shown that endotoxin from ST1 chow stimulates maturation of DC and

induces production of pro-inflammatory cytokine IL-12p70 and regulatory IL-10. It has been

previously shown that DC secreting IL-12 and/or IL-10 were able to efficiently inhibit the

induction of allergic Th2 responses by inducing the differentiation of CD4+T cells towards a

Th1 or Treg phenotype [42]. Along these lines decreased susceptibility for sensitization to

allergens by systemic or local application of LPS was dependent on IL-12 production [13]. Fur-

thermore, local administration of IL-12 resulted in decreased production of Th2 cytokines and

the effect was associated with enhanced production of IFN-γ [43,44].

Epidemiological studies have shown that continuous exposure to endotoxin is associated

with a lower prevalence of allergy in children [8]. For example, oral application of bacterial

lysate containing Gram-negative E. coli led to reduced infantile atopic eczema [45]. In an ani-

mal model, oral application of bacterial lysate containing fecal E. coli led to reduced levels of

allergen-specific IgE and IgG in serum in comparison to control animals [46]. Similarly, peri-

natal mucosal application of endotoxin prevented allergic sensitization and airway inflamma-

tion in mice [47]. Accordingly, we could show that exposure of mice to endotoxin in ST1 diet

for at least two generations led to reduced levels of allergen-specific humoral and cellular

responses in comparison to animals fed on R03 diet.

The feeding of high dose of endotoxin in ST1 diet was associated with decrease of Th2-asso-

ciated cytokines and increase in production of allergen-specific IFN-γ in re-stimulated spleen

cells. Our data are in agreement with study by Younger et al. that could show that LPS given

orally to 25 g mice at range from 2.5 mg to 0.039 mg is effective to induce IFN-γ production

[48]. Interestingly, in an experimental model of allergic airway inflammation, inhalation of

LPS together with an allergen has been linked to the development of allergy in both protecting

and facilitating role, where low level of LPS was indispensable for Th2 priming, while high

dose LPS reduced inflammatory responses in a mouse model of allergic airway inflammation

[49]. The question whether low level of bacterial fragments presented in the diet R03 could

play a role in induction of Th2 sensitization remains to be evaluated.

Further, we have shown that higher bacterial contamination in the diet leads to decreased

level of allergen-specific IgE and IgG1 antibodies in sera accompanied by decreased levels of

specific IgG1 in small intestine, suggesting lower level of sensitization in these mice. This data

are in agreement with our previous study where colonization of GF mice with a mixture of

3 Lactobacillus strains prevented the development of allergic sensitization associated with

reduced levels of IgE and IgG1 [26]. It has been shown that immature B cells preferentially

switch to IgE [50] and signals derived from the intestinal microbial colonization have been

found to influence the immunoglobulin repertoires in the gut lamina propria [51]. Previous

studies investigating the impact of microbiota on sensitization in germ-free animals produced

contrasting data. According to Hazebrouck et al. and Rodriguez et al., sensitization in GF mice

on R03 diet led to increased levels of allergen-specific humoral and cellular responses in com-

parison to conventional mice [22,24]. On the contrary, study by Repa et al. showed that the

levels of specific humoral immune response are independent on microbial colonization in

mice on ST1 diet [52]. Certainly, the discrepancy between these studies might result from the

different sensitization protocol and/or the different allergen used. However, in the light of our

recent data; it is tempting to speculate that this difference might be due to the endotoxin con-

tamination in the diet. Therefore, in agreement with Reliene and Schiestl [53], we suggest that

original scientific articles should supply information of the type of diet used.

Taken together our findings expand on the hygiene hypothesis. We suggest that not

only intestinal microbiota or parasites influence the development of allergic responses in
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experimental settings, but also bacterial fragments in the sterile diet may have a profound

effect on level of sensitization under germ-free conditions. Importantly, observations from our

study may be relevant to germ-free or gnotobiotic experimental models investigating the role

of microbiota in several other models of immune-deviated inflammatory diseases.
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