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Abstract

Background—Oral colostrum priming (OCP) after birth in preterm infants is associated with 

improved weight gain and modification of the oral immuno-microbial environment. We 

hypothesized OCP would modify salivary immune peptides and the oral microbiota in preterm 

infants.

Methods—We conducted a prospective, randomized clinical trial to determine the effects of OCP 

on salivary immune peptide representation in preterm infants (<32 weeks completed gestation at 

birth). Saliva samples were collected prior to and after OCP. Salivary immune peptide 

representation was determined via mass spectroscopy. Oral microbiota representation was 

determined via sequencing of 16S rRNA gene.

Results—Neonates that received OCP (n = 48) had a 16-day reduction in the median length of 

hospitalization as compared to infants that did not receive OCP (n = 51). No differences in salivary 

immune peptide sequence representation prior to OCP between groups were found. Longitudinal 
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changes in peptides were detected (lysozyme C, immunoglobulin A, lactoferrin) but were limited 

to a single peptide difference (alpha defensin 1) between primed and unprimed infants after OCP. 

We found no difference in microbial diversity between treatment groups at any time point, but 

diversity decreased significantly over time in both groups. OCP treatment marginally modified 

oral taxa with a decline in abundance of Streptococci in the OCP group at 30 days of life.

Conclusions—OCP had neither an effect on the salivary peptides we examined nor on overall 

oral bacterial diversity and composition. Infants that received OCP had a reduced length of 

hospitalization and warrants further investigation.
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Introduction

Human milk ingestion is associated with a decreased risk of developing infection and 

necrotizing enterocolitis in preterm infants1, 2. Breast milk contains multiple functional 

immunologic elements that contribute to improved neonatal host immune defense3, 4. Recent 

work has shown that mixing of milk and the neonate’s saliva appears to represent a unique 

biochemical synergism that may boost early innate immunity5. Breast milk feeding is 

associated with an altered oral and nasopharyngeal microbiota later in infancy6, 7. However, 

oral feeding is not practical in most preterm infants due to developmental immaturity8. 

Recently, the practice of early (as soon as produced by the mother) oral administration of 

mother’s own colostrum was proposed as a protective strategy9. Like breast feeding in term 

infants, recent studies have shown OCP may influence the microbial colonization of the oral 

cavity in very low birth weight infants (<1500g, VLBWs)10, decrease clinical sepsis, inhibit 

secretion of pro-inflammatory cytokines, increase levels of circulating immune-protective 

factors in extremely preterm infants (<28 weeks)11, and increase weight at 36 weeks 

corrected age12.

While OCP appears a safe, cost-effective, and easily implementable practice that may 

improve overall weight gain, it remains unclear if oral colostrum priming changes the oral 

immuno-microbial milieu or overall health in very preterm newborns12. Also remaining 

unclear are whether these effects are passive and thus must be continued, or if priming 

results in temporary or sustained changes. We hypothesized OCP would modify salivary 

immune peptides and the oral microbiota in preterm infants.

Methods

Human subjects and sample processing

We performed a prospective, randomized trial of OCP in preterm infants and examined the 

impact over time on salivary immunopeptides and also examined the oral microbiota in a 

subset of these patients. The study began February 2013 and finished July 2014. The 

Institutional Review Board at Vanderbilt University approved the study prior to its initiation. 

Inclusion criteria were birth at <32 weeks completed gestation. Exclusion criteria were not 

meeting inclusion criteria, decline to participate, enrollment in competing studies, or 
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Spanish-speaking only. Following informed consent from a parent, preterm infants (<32 

weeks completed gestation) were randomized by a numeric list generated by Dr. Slaughter a 
priori to receive oral priming with mother’s colostrum or no oral priming. Participating staff 

members were not blinded. The rate of breast-feeding intention among mothers of infants in 

the neonatal intensive care unit at Monroe Carell Jr. Children’s Hospital at Vanderbilt 

exceeded 95% during the period of study. Maternal and neonatal demographics as well as 

birth hospitalization outcomes were collected and analyzed.

Oral priming with mother’s colostrum

Orogastric gavage feeding was not restricted in patients of either group during the period of 

colostrum priming. Freshly pumped maternal colostrum (mother’s first milk production after 

birth) was aliquoted and kept refrigerated at 4°C until administered. Neonates randomized to 

OCP received 100 µL of colostrum in each cheek via a 1ml syringe every 6 hours for 5 days 

beginning in the first 48 hours of life similar to our previous era-based study12. Aliquoted 

colostrum to be used over the first 24 hours (4 syringes) was refrigerated at 4°C and was 

never frozen. The policy at Vanderbilt was to keep milk refrigerated (before or after 

thawing) for a maximum of 24 hours so remaining aliquots were frozen at −20°C until the 

day of use.

Saliva collection

Neonatal saliva was obtained at 3 time points: day of life (DOL) 1–2, DOL 8–9 and DOL 

30. These time points were selected a priori to 1) minimize the potential impact of residual 

amniotic fluid/lung liquid in the mouth, 2) allow for collection of samples 24–48 hours after 

the completion of oral priming, and 3) obtain data from a fixed post-priming time point for 

microbiota determination. To collect saliva, a wicking sterile sponge at the end of an 

applicator shaft (Beaver Visitec) was inserted directly into to the neonate’s mouth using 

sterile technique for a minimum of 60 seconds, removed and immediately sealed into a 

sterile 15ml conical tube (Thermo Fisher). If adequate saliva for analysis could not be 

collected, 100 µL of sterile 0.9% saline was used to irrigate the mouth and a second wicking 

sponge was used for collection. Saliva or oral washing was isolated from the sponge via 

centrifugation, sterilely aliquoted for proteomic or microbiota studies, and stored at −80°C 

until processed in batches.

Salivary peptide measurement

Representative peptides for each protein were selected based on their appearance across 

samples in the discovery phase of analysis in which series of unscheduled runs in saliva 

samples retention times and the most useful transitions to monitor (Supplemental Figure 1). 

Heavy-labeled peptide internal standards were synthesized by JPT (SpikeTides TQL 

peptides, JPT, Berlin, Germany) that contained isotopically-labeled terminal arginine and 

lysine residues (13C and 15N) and a trypsin-cleavable C-terminal tag. These isotopically-

labeled peptides were spiked into samples at approximately endogenous levels prior to 

digestion. Skyline software (University of Washington, MacCoss lab) was used to set up 

scheduled, targeted MRM methods and three to five MRM transitions were monitored per 

peptide. Additional methods are in Supplemental methods.
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Oral bacterial DNA isolation

Saliva samples for oral microbiota determinations were obtained using sterile technique. 

DNA was extracted using a modified Qiagen protocol as previously described13. Briefly, 50 

µl of saliva was pretreated with 20 mg/ml lysozyme in TRIS-HCl and EDTA buffer (Qiagen, 

DNeasy Blood & Tissue Kit, catalog no. 69504) for lysis of Gram-positive bacteria. The 

remainder of the bacterial DNA extraction protocol proceeded per the manufacturer’s 

instructions. All DNA samples were evaluated for quality using spectrophotometry and 

agarose gel electrophoresis. To control for environmental contamination of study samples, 

bacterial DNA was extracted from template-free negative controls and sequenced in parallel 

with patient samples as described below.

16S rRNA amplicon sequencing of bacterial DNA

Total DNA (12.5 ng) was amplified using a combination (4:1) of universal and 

Bifidobacterium-specific primers targeting the V1–V2 region of the bacterial 16S rRNA 

gene14, 15. Master mixes contained 12.5 ng of total DNA, 0.2 µM of each primer and 2× 

KAPA HiFi HotStart ReadyMix (KAPA Biosystems, Wilmington, MA). Primer sequences 

contained overhang adapters appended to the 5’ end of each primer for compatibility with 

the Illumina sequencing platform (Supplemental methods). Additional methods are in 

Supplemental methods.

Sequencing data analysis

Multiplexed paired-end fastq files were produced from the sequencing results of the Illumina 

MiSeq using the Illumina software configureBclToFastq. The paired-end fastqs were joined 

into a single multiplexed, single-end fastq using the software tool fastq-join. Demultiplexing 

and quality filtering was performed on the joined results. Quality analysis reports were 

produced using the FastQC software. Bioinformatics analysis of bacterial 16S rRNA 

amplicon sequencing data was conducted using the Quantitative Insights Into Microbial 

Ecology (QIIME) software16. OTU picking was performed on the quality filtered results 

using pick_de_novo_otus.py. Chimeric sequences were detected and removed using 

ChimeraSlayer17. Alpha diversity and beta diversity analysis were performed on the data set 

using the QIIME routines: alpha_rarefaction.py and beta_diversity_through_plots.py18, 19, 

respectively. Summary reports of taxonomic assignment by sample and all categories were 

produced using QIIME summarize_taxa_through_plots.py and summarize_otu_by_cat.py.

Statistical approaches and analytical methods

Prior to conducting the study, power calculations were performed assuming 50 subjects in 

each group. For comparing the priming to no priming groups, we had 90% power to detect 

our primary outcome, which was a 0.46 standard deviation differences in peptide means 

between groups. Secondary endpoints of interest were length of stay, total days intubated, 

age at feeding initiation, days to 100ml/kg/day of enteral feeds, as well as rates of 

necrotizing enterocolitis and sepsis. For analyses of changes over time, the effect size we 

were able to detect depended on the correlation between the DOL 1–2 and DOL 8–9 

measurements. If the correlation was high, r=0.8, then would have 90% power to detect a 

0.13 standard deviation change in mean over time. If the correlation was lower, we would 
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have 90% power to detect a 0.33 (r=0.5) or 0.52 (r=0.2) standard deviation change in mean 

over time. All tests have a two-tailed type I error probability of 0.05.

Continuous variables were summarized using the median, 25th, and 75th percentiles, and 

categorical variables were summarized using percentages. We used the non-parametric 

Wilcoxon rank sum to test if continuous variables differed by randomization group, and we 

used Pearson Chi-squared test for categorical variables. All subjects were analyzed 

according to their randomization assignment (intent to treat). The Wilcoxon signed rank test 

for paired day was used to compare peptide levels on DOL 1–2 to levels on DOL 8–9. 

Spearman's rank correlation was used to test for associations among peptides. Analysis of 

similarity tests (ANOSIM) were applied to specific categories in the metadata mapping file 

to separate samples into groups, and then test whether there were significant differences 

between those groups. R and P values were calculated using the phylogeny-based 

unweighted UniFrac distance metric. For identification of bacterial taxa differentially 

represented in specific categories we compared OTU frequencies in sample groups using a 

nonparametric ANOVA test (Kruskal Wallis). P-values were corrected for multiple 

comparisons by the Benjamini-Hochberg FDR procedure. P-values of less than 0.05 were 

considered significant.

Results

Patient Characteristics and Outcomes

The details of the enrollment, allocation, and analysis are shown in Figure 1. The two groups 

of patients were well-matched in maternal and neonatal characteristics (Table 1). Mothers of 

neonates randomized to OCP had a greater incidence of prenatal care (100% OCP versus 

92% no OCP, P=0.045 by Pearson) and diabetes (17% OCP versus 4% no OCP, P=0.035 by 

Pearson). Necrotizing enterocolitis (stage≥2) occurred in 1 patient in the no OCP group and 

in 2 patients in the OCP group (P=0.64 by Pearson). A sixteen-day reduction in median 

length of hospitalization was noted for the infants that received oral colostrum priming (40 

days) as compared to infants that did not (56 days, p = 0.04). Of note, this reduction in 

length of hospitalization was not accompanied by a reduced time to 100 ml/kg/day of enteral 

feedings among infants that were primed compared to infants who were not primed 

(p=0.40). The number of days from the last dose of caffeine recorded to the day of discharge 

[median duration 20 days (No OCP) vs 22 (OCP), p = 0.41] did not support the hypothesis 

that the OCP group had a reduced number of events that might have shortened the length of 

hospitalization. We also measured the duration from attainment of full PO feeds to discharge 

[6 days (No OCP) vs 5 days (OCP), p = 0.55], and the time to full PO feeds [47 days (No 

OCP) vs 39 days (OCP), p = 0.25]. There was only one death in the cohort (in the OCP 

group). No adverse events were noted among patients in either group during the course of 

the study.

Oral colostrum priming had minimal effects on salivary immune related peptides

Salivary peptide measurements were available on unprimed (n = 35) and primed (n = 30) 

patients. However, no differences in maternal or neonatal variables between groups were 

noted on the smaller cohort (Supplemental table 1). Furthermore, not all scouted peptide 

Romano-Keeler et al. Page 5

J Perinatol. Author manuscript; available in PMC 2017 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sequences (Supplemental table 2) were detectable in neonatal samples. Detectable salivary 

peptide representation changed over time (Supplemental table 3). Specifically, we found 

increases in peptides corresponding to lactoferrin, immunoglobulin A, and lysozyme C and 

decreases in S100A7 and alpha defensin 5 at 8–9 days of life as compared to 1–2 days of life 

(P<0.05 by Wilcoxon rank test). No differences were detected between groups prior to OCP 

(DOL 1–2), which suggested the randomization process reduced starting variability (Table 

2). A comparison of salivary peptide representation at DOL 8–9 in neonates that received 

OCP versus neonates that did not revealed a difference in the second peptide sequence for 

alpha defensin 1 (P<0.05 by Wilcoxon rank test). Spearman correlation between peptides is 

shown in Supplemental Figure 2. The percentage of saliva samples analyzed that were 

obtained following saline irrigation due to a lack of recoverable saliva were similar between 

groups [47% of OCP and 54% of control measurements, p = 0.48 by Fisher’s exact test].

Oral bacterial diversity and overall composition was not altered by oral colostrum priming

Collection of saliva samples for determination of the oral microbiota samples was added to 

the study protocol after more than half of the subjects had been recruited. As such, these 

measurements were only available on a smaller cohort of randomized patients (n = 14 

unprimed, n = 14 primed). Although this is a much smaller cohort, it is the largest 

randomized cohort with oral microbiota determination after OCP at the time of writing 

(Supplemental table 4). Alpha diversity as measured by Shannon index was unchanged 

between OCP and no OCP groups. However, bacterial diversity significantly dropped over 

time (nonparametric two sample t-test with Montecarlo permutations, p<0.05) in patients 

across both treatment groups (Figure 2). No significant differences were observed in the 

overall composition of samples according to treatment (ANOSIM R= −0.007, p= 0.58); 

however, we found the microbiota composition was impacted by time (ANOSIM R= 0.339, 

p < 0.001). Principal Coordinate Analysis (PCoA) of unweighted Unifrac distance matrices 

were visualized as 3-D plots and demonstrated clustering of patients based on time point and 

not by treatment group (Figure 3A/B). Predicted functional data mirrored compositional data 

clustering by time point and not by treatment (Supplemental figure 3).

OCP marginally impacted bacterial taxa representation

Group comparison analyses carried out between samples in treatment versus control groups 

showed 80 Operational Taxonomic Units (OTUs) significantly (Kruskal Wallis p< 0.05) over 

or under represented between treatment groups. The differences however were not 

significant when statistical values were corrected for multiple comparisons (FDR) (Figure 

3C). Of those 80 OTUs, 69 were not assigned to known bacteria while 21 were assigned to 

known taxa. Of the 21 assigned taxa, 15 were decreased in the OCP group and included 

Streptococcus, Bifidobacterium and unclassified Enterobacteriaceae. A total of 214 OTUs 

were significantly altered in response to time, of which 189 were not assigned to a known 

bacterial species. Significant increases (Kruskal Wallis FDR corrected p < 0.05) were 

observed in the genera Staphylococcus and Streptococcus in both the OCP and control 

groups at DOL 8–9. However, abundance of Streptococcus decreased at DOL 30 only in the 

OCP group. Further BLAST analysis confirmed that one of the two Streptococcus OTUs 

differentially represented was highly similar to the human oral bacteria20. Both OCP and 
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non-OCP groups had a temporary decrease in the relative abundance of Lactobacillus at 

DOL 8–9.

Discussion

Oral colostrum priming appears safe and may be associated with meaningful clinical 

benefits in preterm infants. Our findings contribute to our understanding of the beneficial 

effects through a characterization of the salivary immuno-microbial environment among 

patients randomized to receive OCP or no priming. Although we detected no statistically 

significant differences in the oral immuno-microbial environment between groups, we found 

a significant reduction in the length of stay (40 versus 56 days) for infants that received OCP 

as compared to infants that did not. This finding was not associated with differences between 

groups in starting time for enteral feeds, time to achieve full feeds, total days intubated, 

necrotizing enterocolitis, or sepsis. An unusual length of stay did not occur in our control 

group and thus does not explain the reduction in the length of stay we showed associated 

with OCP. A study of length of stay stratified by birth weight and gestational age in 30 UK 

NICUs found a median of 48–55 days for 1000–1250 gram infants born at 29 to 30 weeks 

with or without the need for respiratory support in the first 12 hours of life21. Other potential 

etiologies that might contribute to a difference in length of hospitalization between groups 

are the age at last significant apneic or bradycardic spell and the age when full oral feeding 

are achieved. On retrospective chart review, we did not find a difference in the number of 

days from the last dose of caffeine to discharge or the duration from attainment of full PO 

feeds to discharge. The number of days to full PO feeds was lower for infants that received 

OCP, but the result did not reach statistical significance. These variables would be important 

to consider in any future multi-center trials of OCP. Although a reduction in length of stay 

associated with OCP should be confirmed in larger randomized multicenter studies, OCP 

carries little risk and implementation should be considered.

The oral cavity is a portal for commensal and pathogenic bacteria to gain access into both 

the respiratory and digestive tracts22. Saliva is a proxy for the oral cavity’s microbiota23, 24 

and bacteria are stable in saliva, despite constant exposure to a matrix of antimicrobial and 

bacterial-promoting agents25. Of note, the neonatal fecal microbiota can be significantly 

modified by antimicrobial exposure22, 26 and the presence of an abnormal microbiota can be 

associated with a host of childhood diseases states including inflammatory bowel disease, 

obesity, and autism27, 28. Though the gut microbiota demonstrates some degree of resiliency 

after antibiotic exposure, many antibiotic-induced derangements in bacterial composition 

may persist for long periods of time29, 3031. Importantly, we did not find statistically 

significant differences in the number of antibiotic days between groups of patients in our 

study with microbiota data. Thus, the hypothesis that oral bacterial diversity might have 

been altered by OCP but was attenuated by antimicrobial exposure was not supported by our 

findings. As shown in Table 1, the proportion of mothers who most likely would have 

received antibiotics prior to birth for either latency (premature rupture of membranes) or 

perioperative prophylaxis (C-section) was almost identical between groups. Although the 

possibility of pre- or peri-natal antimicrobial exposure difference between groups exists, the 

likelihood is low.
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Composition of the oral microbiota of infants in our study correlates well with previous 

findings32. A recent study showed that the microbiota of infants delivered via C-section and 

exposed to maternal vaginal fluids resembled those of vaginally delivered infants, especially 

during the first week of life33. As in our study, the bacterial diversity of newborns was 

highest at birth (anal and oral sites) but rapidly declined. The author’s hypothesized that the 

drop in oral microbial diversity post-partum was the result of oral exposure to mother’s milk. 

Although we studied exclusively preterm infants, the group that received OCP in our study 

demonstrated only a marginal modification of the oral microbiota as a result of the 

treatment. Specifically, both groups showed increased abundances of Staphylococcus (most 

likely originating from the mother or caregivers’ skin) at DOL 8–9 as previously reported34, 

which decreased in both groups at DOL 30. Conversely, the genus Streptococcus was also 

significantly increased at DOL 8–9 but its abundance decreased only in the OCP group at 

DOL 30. Although further BLAST analysis did not allow for the full taxonomic 

classification of the Streptococcus OTUs altered in our study, this could be of relevance as a 

recent similar study with premature infants reported that one infant in their control group 

developed necrotizing enterocolitis at day 21 with blood culture positive for Streptococcus 
bovis, while a second infant had late onset group B Streptococcus sepsis at 6 weeks of life10.

Limitations and future directions

Our study is not without limitations. We restricted our investigation to infants <32 weeks 

gestation at birth. The protocol (volume, frequency, and duration) of oral colostrum priming 

used in our study was different than the regimens used in previous studies and may have 

contributed to differences in the findings between studies. We did not collect microbiota data 

on all recruited study subjects nor did we characterize the microbiota of the mother’s 

colostrum which could impact the oral environment35. However, once we initiated oral 

microbiota collection, we prospectively collected samples from patients in both groups. We 

also do not have environmental swabs from the neonatal intensive care unit, which may 

contribute to the development of the oral microbiota. However, microbial exposures are 

inevitable and if OCP does not modify the colonization that follows these exposures, its 

utility to modify infectious risk related to colonization may be limited. We feel a reduction 

in length of hospitalization is an important clinical and economic outcome to consider 

following a benign inexpensive intervention that warrants further consideration and study.

Conclusion

Although OCP did not modify the salivary peptides we examined nor overall oral bacterial 

diversity and composition, randomized infants that received OCP had a significantly reduced 

length of hospitalization, which has not previously been described. Given the safety and 

availability of this simple intervention, a reduction in length of stay with OCP warrants 

further investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. CONSORT diagram
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Figure 2. The impact of oral colostrum priming on diversity of the oral microbiota
Shannon diversity index by group and time point. OCP-oral colostrum priming. Time points: 

1 (1–2 days of life), 2 (8–9 days of life), 3 (30 days of life). Box represents 25th ad 75th 

percentiles, line represents median, whiskers represent maximum and minimum, and plus 

signs represent outliers.
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Figure 3. Unweighted unifrac principal coordinate analysis (PCoA) of oral microbiota by time 
point and time point/ treatment group
A. PCoA by sample time point. 1–2 days of life (n=28): white; 8–9 days of life (n=28): blue; 

30 days of life (n=18): black. B. PCoA analysis by sample time point and treatment group. 

1–2 days of life: white (n=14, no OCP), light grey (n=14, OCP); 8–9 days of life: light blue 

(n=14, no OCP), blue (n=14, OCP); 30 days of life: dark grey (n=11, no OCP), black (n=7, 

OCP). C. Bacterial taxa represented by group and time point. OCP-oral colostrum priming. 

Time points: 1 (1–2 days of life), 2 (8–9 days of life), 3 (30 days of life). Only the most 

relevant taxa are represented in the genus figure (bottom portion of C.).
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Table 1

Maternal and neonatal characteristics

No OCP OCP P-value

Maternal Characteristics N = 51 N = 48

Age, median (quartiles) 26 (21, 30) 25 (23, 29) 0.571

Race

African American 25% 40% 0.372

White 69% 58%

More than one 4% 2%

Unknown, not reported 2% 0%

Ethnicity 0.682

Hispanic or Latino 14% 17%

Parity, median (quartiles) 2 (1, 2) 2 (1, 2) 0.421

Gestation (multiple) 20% 19% 0.912

Prenatal care (n=98) 92% 100% 0.0452

Mode of delivery 0.532

SVD 25% 31%

Caesarian section 75% 69%

Anesthesia 0.492

Epidural 75% 83%

General 16% 8%

Hypertension (n=98) 29% 38% 0.352

Diabetes 4% 17% 0.0352

Tobacco use(n=97) 16% 21% 0.52

Premature rupture of membranes* 25% 25% 0.952

Amniotic fluid description (n=98)

Clear 84% 91% 0.492

Bloody 14% 6%

Meconium 2% 2%

Antenatal steroids 88% 90% 0.832

Neonatal characteristics

Gestational age (weeks), median (quartiles) 29 (28, 30) 30 (27, 31) 0.252

Birth weight (grams), median (quartiles) 1170 (905–1340) 1272 (988, 1602) 0.121

Male 41% 50% 0.382

5 minute Apgar score, median (quartiles) 7 (6, 8) 7 (6, 8) 0.741

Surfactant 59% 71% 0.212
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No OCP OCP P-value

Total days intubated 1 (0, 5) 1 (0, 3) 0.971

Early onset bacteremia 2% 0% 0.332

Late onset bacteremia 6% 2% 0.342

Antimicrobial exposure, days, median (quartiles) 7 (3, 9) 3 (2, 8) 0.111

Age at feeding initiation (days), median (quartiles) 2 (2, 3) 2 (2, 3) 0.671

Initial feeding type 0.972

Expressed breast milk 69% 71%

Donor breast milk 29% 27%

Formula 2% 2%

Days to 100ml/kg/day enteral feeds, median
(quartiles)

11 (9, 19) 11 (8, 15) 0.391

Type of feeds at discharge

Unfortified breast milk 4% 6% 0.12

Fortified breast milk 41% 60%

Formula only 55% 33%

Necrotizing enterocolitis (≥stage 2) 2%, n=1 4%, n=2 0.642

Days to discharge, median (quartiles) 56 (41, 74) 40 (31, 76) 0.0381

1
Wilcoxon rank test;

2
Pearson test,

*
>18 hours prior to delivery
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