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Abstract

Recent studies have demonstrated the intimate relationship between depression and

immune disturbances. Aware of the efficacy limits of existing antidepressant drugs and the

potential anti-inflammatory properties of propentofylline, we sought to evaluate the use of

propentofylline as a depression treatment. We used a rat model of depression induced by

repetitive lipopolysaccharide (LPS) administrations. We have studied sickness behavior, by

assessing daily body weight, open field behavior, and TNF-α plasmatic levels. Anxiety-like

behavior (light-dark test), depressive-like behavior (forced swim test), plasmatic levels of

the brain-derived neurotrophic factor (BDNF, depression biomarker), and central glial fibril-

lary acidic protein (GFAP) expression (an astrocyte biomarker) were also evaluated. LPS

induced body weight loss, open field behavior impairments (decreased locomotion and rear-

ing, and increased immobility), and increased TNF-α levels in rats, compared with control

group. Thus, LPS induced sickness behavior. LPS also increased the immobility and

reduced climbing in the forced swim test, when compared with the control group, i.e., LPS

induced depressive-like behavior in rats. Propentofylline prevented sickness behavior after

four days of consecutive treatment, as well as prevented the depressive-like behavior after

five days of consecutive treatments. Propentofylline also prevented the increase in GFAP

expression induced by LPS. Neither LPS nor propentofylline has influenced the anxiety and

BDNF levels of rats. In conclusion, repetitive LPS administrations induced sickness behav-

ior and depressive-like behavior in rats. Propentofylline prevented both sickness behavior

and depressive-like behavior via neuroinflammatory pathway. The present findings may

contribute to a better understanding and treatment of depression and associated diseases.
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Introduction

Depression is a complex mood disorder, characterized by loss of interest or pleasure, anhedo-

nia, apathy, poor concentration, low energy, disturbed sleep and appetite, reduced social and

sexual interest, among other symptoms [1, 2]. It is estimated that 40 to 60% of suicides are

directly linked to depression [3, 4]. Over 15% of all adults will experience at least one episode

of major depression at some point in their lifetime, being women more affected than men

(20% vs. 10%) [5, 6]. The costs related to this disorder represent an economic burden of tens of

billions of dollars per year [7]. Therefore, depression has been considered as the disease of this

century.

Unfortunately, little is still known about the etiology and pathophysiology of depression. It

is regarded as a disorder of multifactorial causes, including genetic factors, stressful events, dis-

eases, hormonal imbalance, and drug abuse [2, 8]. Although the monoaminergic (serotonin

and noradrenaline) hypothesis is well recognized and accepted, and is also the basis for sup-

porting antidepressants prescription, it fails to explain and treat many aspects of depression

[9]. Smith [10] proposed the macrophage theory of depression, which states that the excessive

secretion of interleukin (IL)-1 and other products of macrophages are involved in the patho-

genesis of depression. In this sense,https://translate.google.com/?tr=t&hl=pt-BR some patients

diagnosed with depression have increased levels of cytokines such as tumor necrosis factor

(TNF-α) and IL-6 in the blood [11]. Hepatitis C or cancer patients treated with interferon

alpha (IFN-α) also developed depression [12]. Moreover, even low doses of lipopolysaccharide

(LPS) administered to volunteer subjects are able to increase serum levels of proinflammatory

cytokines and induce anhedonia, which is one of the main symptoms of depression [13]. LPS

is an endotoxin that mimics infection by gram-negative bacteria by activating the immune sys-

tem to release cytokines, such as TNF-α, IL-1β, and IL-6 [14–16].

Based on these neuroimmune aspects, many drugs have been tested for the treatment of

depression, especially the use of anti-inflammatory drugs [9]. For example, the cyclooxygen-

ase-2 inhibitor celecoxib, that inhibits proinflammatory cytokines production, has therapeutic

effects in depressive patients treated with reboxetine [17]. Similar results were found with the

association of celecoxib with fluoxetine [18]. TNF-α inhibitors, such as etanercept and inflixi-

mab reduce depressive symptoms in patients with psoriasis and Crohn’s disease and have been

examined as potential treatments for depressive patients [19, 20]. In this sense, due to the

potential anti-inflammatory characteristics of propentofylline, we proposed it as a candidate

for depression treatment. Propentofylline (3-methyl-1-(5’-oxohexyl)-7-propylxanthine), a

xanthine derivative, presents strong neuroprotective, antioxidant and some anti-inflammatory

effects [21, 22]. Clinically, it has shown efficacy in degenerative vascular dementia and as a

potential adjuvant treatment to Alzheimer’s disease, schizophrenia, and multiple sclerosis [21].

Propentofylline acts as a glial modulator and inhibits macrophagic TNF-α production [23].

Because of the efficacy limitation of existing antidepressant drugs, the objective of this

study was to test propentofylline as a potential antidepressive-like effect inductor evaluated in

the forced swim test. We used a rat model of depressive-like behavior induced by repetitive

LPS administrations [24–27]. First, we evaluated sickness behavior induction and remission

based on the model described by Dantzer et al. [26], evaluating daily body weight, daily open

field behavior, and TNF-α plasmatic levels. Anxiety-like behavior was evaluated with the light-

dark test. Depressive-like behavior was evaluated with the forced swim test. Besides TNF-α
[11], the brain-derived neurotrophic factor (BDNF) has also been considered as a depression

biomarker [28, 29] and its plasmatic levels were evaluated. Lastly, expression of glial fibrillary

acidic protein (GFAP), which is an astroglial pathology biomarker in neurological diseases

[30], was evaluated in the medial prefrontal cortex, nucleus accumbens, and hippocampus.
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Materials and Methods

Ethics statement

The present study was carried out in strict accordance with the recommendations of the Guide

for the Care and Use of Laboratory Animals of the National Institutes of Health [31]. The pro-

tocol was approved by the Committee on the Ethics of Animal Experiments of the Paulista

University, Brazil (Permit Number: 296/14). All efforts were made to minimize suffering,

reduce the number of animals used, and utilize alternatives to in vivo techniques when avail-

able. The experiments were also performed in accordance with good laboratory practice proto-

cols and quality assurance methods.

Animals

A total of 40 Wistar male rats (Rattus norvegicus) with 95–115 days of age and weighing 305–

375 g from the School of Veterinary Medicine (University of Sao Paulo, Sao Paulo, Brazil)

were used. They were housed in polypropylene cages (45.5 X 34.5 X 20 cm; 5 rats per cage)

with microisolator system (Tecniplast, Buguggiate, Italy), controlled temperature (22˚C ± 2˚C)

and humidity (55–65%) with artificial lighting (12-hr light/12-hr dark cycle, lights on at 7:00

AM). The animals had free access to irradiated rodent chow (BioBase, Águas Frias, Brazil) and

filtered water. Sterilized and residue-free wood shavings were used for animal bedding.

Treatments and groups

Rats were treated with propentofylline solution and/or LPS solution and/or their vehicle, as

described below. Propentofylline was administered at 12.5 mg/kg/day single dose (Agener

União Quı́mica, Sao Paulo, Brazil, 20 mg/mL solution) by intraperitoneal (i.p.) route [22]. Rats

received propentofylline for five consecutive days. LPS (from Escherichia coli; Sigma, St. Louis,

USA, serotype 0127: B8) was dissolved in sterile saline (1 mg/mL LPS in a 0.9% NaCl solution)

and administered i.p. at a dose of 1 mg/kg/day, based on Bay-Richter et al. [24] studies. This

dose is considered able to induce sickness behavior for at least 24 hours, without sepsis [24].

Rats received LPS for two consecutive days, on days 3 and 4 of propentofylline treatment. Ster-

ile saline solution (0.9% NaCl) was administered as vehicle/control groups. Each rat schedule

with saline treatment received a 0.1 mL/100 g, i.p., of saline solution.

The rats were randomly divided into four groups (n = 10 per group). (1) SAL+SAL (control

group), rats that received saline solution for five consecutive days. On days 3 and 4 they also

received an additional saline dose 1 hour after the first injection. (2) SAL+LPS (LPS group),

rats that received saline solution for five consecutive days. On days 3 and 4 they also received a

LPS dose 1 hour after the saline injection. (3) PPF+LPS, rats that received propentofylline solu-

tion for five consecutive days. On days 3 and 4 they also received a LPS dose 1 hour after the

propentofylline injection. (4) PPF+SAL (propentofylline group), rats that received propento-

fylline solution for five consecutive days. On days 3 and 4 they also received a saline dose 1

hour after the propentofylline injection.

Sickness behavior

Sickness behavior is normally a temporary state characterized by adaptive behavioral- and

neuroimmune-specific changes orchestrated by the host to fight the invading microorganism

and heal more quickly, as well as to reduce exposure of the sick animal to predation and con-

tamination of their colony [32, 33]. Some of the most typical symptoms of the sickness behav-

ior are prostration, decreases in exploratory activity and in feeding behavior, weight loss, and

increase of peripheral proinflammatory cytokines levels (such as TNF-α) [34, 35]. Thus, we
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evaluated the open field general activity and body weight of rats daily, as well as the plasmatic

TNF-α levels.

Body weight (g) was evaluated daily throughout the five days of treatment. Open field

behavior was evaluated three times, 1 hour after the LPS/vehicle injections (days 3 and 4) and

24 hours after the last LPS/vehicle injection (day 5). The open-field apparatus is used to evalu-

ate exploratory/motor behaviors [36]. It consisted of a round wooden arena (96 cm diameter,

29 cm high walls) that was painted gray with an acrylic washable cover and subdivided into 25

parts. Each rat was individually placed in the center of the apparatus, and the following param-

eters were evaluated over a period of 5 min: locomotion frequency (number of floor units

entered with all four paws), rearing frequency (number of times the rodents stood on their

hind legs), and total immobility time (s). The testing room, which was isolated from the exper-

imenter, was a small room with dim lighting. A video camera mounted above the arena was

used to collect the data. The apparatus was washed with a 5% alcohol/water solution before

placement of the animals to obviate possible biasing effects from odor cues left by a previous

rat.

Anxiety-like behavior

Immediately after the last open field test (day 5), rats were observed in a light-dark apparatus

to evaluate anxiety-like behavior [37]. This model is based on the innate aversion of rodents to

bright places, generating an inherent conflict between their exploratory drive to a novel place

and their avoidance of the lit compartment [37, 38]. The apparatus consisted of an acrylic

box (80 cm length, 40 cm width, 30 cm high) containing two compartments (separated by a

door with 13 x 8 cm): dark room with black walls and floor (34 cm length), and light room,

with white walls and floor (44 cm length) and illuminated with white fluorescent lamp (15W,

4100K). Each rat was individually placed in the center of the light room, facing the wall oppo-

site to the door. The following parameters were evaluated over a period of 5 min: dark side

entry latency (s), total time (s) spent in the dark side, total time (s) spent in the light side, and

rearing frequency. The testing room, which was isolated from experimenter, was a small room

with dim lighting. A video camera mounted above the arena was used to collect the data. The

apparatus was washed with a 5% alcohol/water solution before placement of the animals to

obviate possible biasing effects from odor cues left by previous rat.

Depressive-like behavior

Immediately after the light-dark test (day 5), rats were observed in the forced swim test to eval-

uate depressive-like behavior. This test is the most widely used tool for assessing antidepres-

sant activity preclinically [39]. It is based on the observation that rats, following initial escape-

oriented movements, develop an immobile posture when placed in an inescapable cylinder of

water. The immobility is thought to reflect a failure of persistence in escape-directed behavior

(i.e., behavioral despair) [39]. In this model, the longer the rats remain immobile and not

trying to escape (such as climbing), the more they are considered to exhibit depressive-like

behavior. The apparatus consisted of a round transparent acrylic arena (46 cm height, 20 cm

diameter) containing 30 cm water at 23˚C ± 1˚C. Each rat was individually and gently placed

on the water surface, and the following parameters were evaluated over a period of 7 min: first

immobility latency (s), total immobility (s), and total time (s) spent climbing. Immobility was

considered the absence of active behavior, i.e., when the rat was not swimming or climbing,

remaining passively floating, or performing only minimal movements necessary to keep the

nose above the water. The water in the cylinder was changed after each animal observation to

avoid olfactory cues left by the previous rat.
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Plasmatic evaluations

Immediately after the forced swim test (day 5), rats were decapitated and the trunk blood was

collected in conical tubes that contained 10% ethylenediaminetetraacetic acid (EDTA). The

samples were centrifuged (3.500 RPM, 15 min, 15˚C), and plasma was obtained. Plasma sam-

ples of each animal were aliquoted and stored in different microtubes for separate analyses of

TNF-α and BDNF using enzyme-linked immunosorbent (ELISA) commercial kits in duplicate

and according to the manufacturer’s instructions.

TNF-α was quantified using the DuoSet R&D Systems kit (cat. no. DY510, Minneapolis,

USA). TNF-α is considered a biomarker of sickness behavior [35, 40] and depression [11].

BDNF levels were determined using a Promega kit (cat. no. G7610, Madison, USA). BDNF

has also been considered as a depression biomarker [28, 29]. In both cases, the results are

expressed in pg/ml.

Astrocyte GFAP immunohistochemistry

Simultaneously with the blood collection, the brains of the rats were collected and fixed in 10%

buffered formalin for 48 h. Coronal sections of each brain were made to reach the medial pre-

frontal cortex, the nucleus accumbens, and the hippocampus. These brain areas are involved

in the pathophysiology of depression, with studies of both depressive patients and mice models

of depression (unpredictable chronic mild stress) [41, 42]. Incidentally, it has been postulated

that dysfunctions of glial cells, especially astrocytes, play a critical role in the pathogenesis of

depression [42]. GFAP immunohistochemical procedure using the avidin-biotin peroxidase

complex (ABC) method was performed as described previously [43]. We used polyclonal rab-

bit anti-GFAP immunoglobulin (1:1000; Z0334, Dako, Glostrup, Denmark) as the primary

antibody and biotinylated secondary antibody (K0690, Dako Universal LSAB 2 System, HRP,

Glostrup, Denmark). Eight photomicrographs from each individual prefrontal cortex and hip-

pocampus section, and four from each nucleus accumbens section were made using a 40x

objective. The area of astrocytes and their processes, marked in brown, was automatically cal-

culated, in pixels, using Metamorph software (Molecular Devices, Sunnyvale, USA) calibrated

with digital color filters that regulated red, green, and blue bits such that only positive cells

were included and background staining was excluded from the measurement.

Statistical analysis

Homogeneity and normality was verified using a Bartlett’s test. One-way analysis of variance

(ANOVA) followed by Newman-Keuls’s multiple comparison test was used to compare the

parametric data among the four groups. For analysis that includes evaluations in consecutive

days, two-way ANOVA followed by Newman-Keuls’s multiple comparison test was used. The

results are expressed as the mean ± SEM. In all cases, the results were considered significant if

p< 0.05.

Results

As shown in S1 Table, we found significant effect for treatment, days, and interaction factors

for the body weight analysis. LPS (SAL+LPS group) reduced the body weight in the second

day of administration and 24 hours after the last LPS administration, compared with the con-

trol (SAL+SAL) group, i.e., at days 4 and 5 of the experiment (Fig 1). Propentofylline treatment

together with LPS (PPF+LPS group) prevented the body weight loss induced by LPS both at

days 4 and 5, compared with SAL+LPS group, reaching the same levels exhibited by the
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control group. Propentofylline alone (PPF+SAL group) increased the body weight compared

with the control group only at day 2.

S1 Table also shows a significant effect for treatment, days, and interaction factors for the

locomotion and immobility analysis in the open field. For the rearing parameter, we found a sig-

nificant effect only for treatment and days factors. LPS (SAL+LPS group) reduced the locomo-

tion and rearing frequencies and increased immobility time in the second day of administration

and 24 hours after the last LPS administration, compared with the control group, i.e., at days 4

and 5 of the experiment (Fig 2). Propentofylline treatment together with LPS (PPF+LPS group)

prevented the locomotion reduction and the immobility increase induced by LPS at day 4, com-

pared with SAL+LPS group, reaching the same levels exhibited by the control group. Although

there was a strong effect for propentofylline when together with LPS in the open field, prevent-

ing the behavioral impairments induced by LPS, propentofylline alone (PPF+SAL group)

resulted only in a slight behavioral effect. PPF+SAL decreased the rearing frequency compared

with the control group only at day 4, not changing locomotion and immobility parameters.

The light-dark performance was different between groups for both the dark and light side

total times, and the rearing frequency, but not for the dark side entry latency (S2 Table). Pro-

pentofylline treatment together with LPS (PPF+LPS group) decreased the time spent in the

dark side, increasing the time spent in the light side, compared with the LPS (SAL+LPS) group

(Fig 3). Although we observed an effect for propentofylline when together with LPS, compared

Fig 1. Body weight. Effects of LPS (1 mg/kg/day) and propentofylline (12.5 mg/kg/day) on the body weight of adult male rats. SAL+SAL, saline

injection at days 1–5 and another saline injection 1 h later at days 3–4; SAL+LPS, saline injection at days 1–5 and LPS injection 1 h later at days

3–4; PPF+LPS, propentofylline injection at days 1–5 and LPS injection 1 h later at days 3–4; PPF+SAL, propentofylline injection at days 1–5 and

saline injection 1 h later at days 3–4 (n = 10 per group). *p < 0.05 and **p < 0.01, SAL+LPS vs. SAL+SAL; #p < 0.05, SAL+LPS vs. PPF+LPS;
+p < 0.05, SAL+SAL vs. PPF+SAL (two-way ANOVA followed by the Newman-Keuls test). The data are expressed as the mean ± SEM.

doi:10.1371/journal.pone.0169446.g001
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with SAL+LPS group in the light-dark test, LPS or propentofylline alone (SAL+LPS and PPF

+SAL groups) did not influence the anxiety-like parameters, compared with control group.

When analyzing the motor/exploratory parameter in the light-dark test, we found a decrease

in rearing frequency induced by LPS (SAL+LPS) group, compared with control group. This

motor/exploratory impairment induced by LPS in the light-dark test was the same as found in

the open-field test.

The forced-swim performance was different between groups for the immobility and total

climbing time, but not for the first immobility latency (S2 Table). LPS (SAL+LPS group)

increased the immobility time and reduced the climbing time, compared with the control group

(Fig 4). Propentofylline treatment together with LPS (PPF+LPS group) prevented the immobil-

ity and climbing impairments induced by LPS, compared with SAL+LPS group, reaching the

same levels exhibited by the control group. Propentofylline alone (PPF+SAL group) did not

interfere with the depressive-like parameters, compared with the control group.

Fig 2. Open-field behavior. Effects of LPS (1 mg/kg/day) and propentofylline (12.5 mg/kg/day) on the open-field behaviors in adult

male rats. SAL+SAL, saline injection at days 1–5 and another saline injection 1 h later at days 3–4; SAL+LPS, saline injection at days

1–5 and LPS injection 1 h later at days 3–4; PPF+LPS, propentofylline injection at days 1–5 and LPS injection 1 h later at days 3–4;

PPF+SAL, propentofylline injection at days 1–5 and saline injection 1 h later at days 3–4 (n = 10 per group). ***p < 0.001, SAL+LPS

vs. SAL+SAL; #p < 0.05 and ##p < 0.01, SAL+LPS vs. PPF+LPS; ++p < 0.01, SAL+SAL vs. PPF+SAL (two-way ANOVA followed by the

Newman-Keuls test). The data are expressed as the mean ± SEM.

doi:10.1371/journal.pone.0169446.g002
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The plasmatic TNF-α levels were different between groups (S2 Table). LPS (SAL+LPS

group) increased the TNF-α levels, compared with the control group (Fig 5). Propentofylline

treatment together with LPS (PPF+LPS group) resulted in similar TNF-α levels as those of con-

trol group, thus, preventing the TNF-α increase induced by LPS. Propentofylline alone (PPF

+SAL group) did not interfere with the plasmatic TNF-α levels, compared with the control

group. The plasmatic BDNF levels did not vary significantly among the four groups (Fig 5).

The medial prefrontal cortex, nucleus accumbens, and hippocampus GFAP expressions

were different between groups (S2 Table). LPS (SAL+LPS group) increased the GFAP expres-

sion in these brain areas, compared with the control group (Figs 6 and 7). Propentofylline

treatment together with LPS (PPF+LPS group) prevented the increased GFAP expression

induced by LPS in these brain areas, compared with SAL+LPS group. PPF+LPS reached the

same levels exhibited by the control group in the nucleus accumbens and hippocampus, but

not in medial prefrontal cortex. Propentofylline alone (PPF+SAL group) did not interfere with

the GFAP expression in these brain areas, compared with the control group.

Discussion

LPS induced body weight loss, open field behavior impairments (decreased locomotion and

rearing frequencies, and increased immobility time), and increased plasmatic TNF-α levels in

Fig 3. Anxiety-like behavior. Effects of LPS (1 mg/kg/day) and propentofylline (12.5 mg/kg/day) on the light-dark test in adult male rats. SAL

+SAL, saline injection at days 1–5 and another saline injection 1 h later at days 3–4; SAL+LPS, saline injection at days 1–5 and LPS injection

1 h later at days 3–4; PPF+LPS, propentofylline injection at days 1–5 and LPS injection 1 h later at days 3–4; PPF+SAL, propentofylline

injection at days 1–5 and saline injection 1 h later at days 3–4 (n = 10 per group). **p < 0.01 (one-way ANOVA followed by the Newman-Keuls

test). The data are expressed as the mean ± SEM.

doi:10.1371/journal.pone.0169446.g003
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rats, compared with control group. Thus, LPS induced sickness behavior 24 and 48 hours after

initial exposure. Repetitive LPS administration also increased the immobility time and reduced

the climbing time in the forced swim test, compared with the control group, i.e., LPS induced

Fig 4. Depressive-like behavior. Effects of LPS (1 mg/kg/day) and propentofylline (12.5 mg/kg/day) on the

forced-swim test in adult male rats. SAL+SAL, saline injection at days 1–5 and another saline injection 1 h

later at days 3–4; SAL+LPS, saline injection at days 1–5 and LPS injection 1 h later at days 3–4; PPF+LPS,

propentofylline injection at days 1–5 and LPS injection 1 h later at days 3–4; PPF+SAL, propentofylline

injection at days 1–5 and saline injection 1 h later at days 3–4 (n = 10 per group). *p < 0.05, **p < 0.01,

***p < 0.001 (one-way ANOVA followed by the Newman-Keuls test). The data are expressed as the

mean ± SEM.

doi:10.1371/journal.pone.0169446.g004

Fig 5. TNF-α and BDNF. Effects of LPS (1 mg/kg/day) and propentofylline (12.5 mg/kg/day) on TNF-α and

BDNF plasma levels in adult male rats. SAL+SAL, saline injection at days 1–5 and another saline injection 1 h

later at days 3–4; SAL+LPS, saline injection at days 1–5 and LPS injection 1 h later at days 3–4; PPF+LPS,

propentofylline injection at days 1–5 and LPS injection 1 h later at days 3–4; PPF+SAL, propentofylline

injection at days 1–5 and saline injection 1 h later at days 3–4 (n = 10 per group). **p < 0.01 (one-way ANOVA

followed by the Newman-Keuls test). The data are expressed as the mean ± SEM.

doi:10.1371/journal.pone.0169446.g005
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depressive-like behavior in rats. LPS inducing sickness behavior and depressive-like behavior

was expected [24, 26, 34, 35], and shows that the model applied in the present study was

adequate.

We induced sickness behavior and depressive-like behavior to study the potential beneficial

effect of propentofylline to treat them. Propentofylline prevented body weight loss and open

field behavior impairments induced by LPS after four days of consecutive treatment. Thus,

propentofylline prevented the sickness behavior. Similarly, propentofylline prevented the

impairments found in the forced swim test induced by LPS after five days of consecutive pro-

pentofylline treatment, i.e., it prevented the depressive-like behavior. In addition to the statisti-

cal difference between SAL+LPS and PPF+LPS groups, it is important to mention that all

analyzed parameters, including TNF-α levels, presented no statistical differences when com-

paring control (SAL+SAL) and PPF+LPS groups, corroborating the beneficial effect of propen-

tofylline to treat sickness behavior and/or depressive-like behavior.

Fig 6. GFAP photomicrographs. Effects of LPS (1 mg/kg/day) and propentofylline (12.5 mg/kg/day) on

central glial fibrillary acidic protein (GFAP) expression. Photomicrographs of the medial prefrontal cortex,

nucleus accumbens, and hippocampus analyzed by immunohistochemistry in adult male rats. SAL+SAL,

saline injection at days 1–5 and another saline injection 1 h later at days 3–4; SAL+LPS, saline injection at

days 1–5 and LPS injection 1 h later at days 3–4; PPF+LPS, propentofylline injection at days 1–5 and LPS

injection 1 h later at days 3–4; PPF+SAL, propentofylline injection at days 1–5 and saline injection 1 h later at

days 3–4.

doi:10.1371/journal.pone.0169446.g006

Propentofylline, Sickness Behavior and Depressive-Like Behavior

PLOS ONE | DOI:10.1371/journal.pone.0169446 January 5, 2017 11 / 18



Propentofylline, Sickness Behavior and Depressive-Like Behavior

PLOS ONE | DOI:10.1371/journal.pone.0169446 January 5, 2017 12 / 18



It was expected LPS inducing both sickness behavior and depressive-like behavior, because

several studies from different groups have already shown this scenario [26, 27, 34, 35]. There

are studies with different doses, other species, and other behavioral and molecular tests reveal-

ing similar results [24, 26, 27, 44–47]. This shows that the effect of LPS inducing sickness

behavior and depressive-like behavior is quite preserved. However, at the day rats were evalu-

ated in the forced swim test, those that received LPS still had impairments in locomotor activ-

ity in the open-field. This long-lasting effect may have influenced the performance of the

animals in the light-dark and forced swim tests, two behavioral assessments with a consider-

able locomotor component. Usually, studies refer this effect as “depressed locomotor activity”

[45, 46]. Thus, it is difficult to dissociate sickness behavior from depressive-like behavior in the

present study. This result should also be taken into account when extrapolating the antidepres-

sant activity of propentofylline.

We also studied the anxiety-like behavior in the light-dark test. All the anxiety-related

parameters, i.e., dark side entry latency, total time spent in the dark side, and total time spent

in the light side did not show statistical differences between LPS and control groups. There-

fore, LPS did not interfere with anxiety levels. This result is in accordance with our previous

study with acute LPS administration in rats [48]. Observing other behavioral parameters

related to anxiety (time spent in central and peripheral zones in an open field) there were no

differences between LPS and control groups. Presently, the only difference found in the light-

dark test between LPS and control group was a decrease in rearing frequency, which is a

motor/exploratory parameter (similar as in the open-field test), related to sickness behavior

[34]. Thus, LPS did not influence anxiety-like behavior, but motor/exploratory and motiva-

tional parameters.

Interestingly, although neither LPS nor propentofylline influenced the anxiety levels of rats,

propentofylline treatment together with LPS decreased the time spent in the dark side, increas-

ing the time spent in the light side of the light-dark apparatus, compared with the LPS group.

Thus, compared with LPS group, but not with control group, propentofylline treatment

together with LPS resulted in an anxiolytic effect.

In addition to proinflammatory cytokines, BDNF is being considered as a promising

peripheral depressive biomarker [28, 29]. BDNF is a small protein found throughout the cen-

tral nervous system, and peripheral blood. It regulates neuronal survival, morphology, devel-

opment, and function and plays a critical role in synaptogenesis and synaptic plasticity [49].

BDNF appears to be involved in the genesis of many depression cases; several depressive

patients present reduced BDNF levels [28, 29]. Moreover, a new class of antidepressant drugs

related to BDNF interference expression has been studied [29, 50].

Presently, we did not find effects for LPS and propentofylline in plasmatic BDNF levels.

Considering that both human and rat studies have demonstrated that BDNF levels in the

blood reflect BDNF levels in the brain [51, 52], we concluded that sickness behavior and

depressive-like behavior induced by repetitive LPS administration does not seem to be related

with the BDNF pathway. Likewise, the beneficial effect of propentofylline to treat sickness

behavior and depressive-like behavior was probably not a consequence of BDNF interferences.

Fig 7. GFAP expression. Effects of LPS (1 mg/kg/day) and propentofylline (12.5 mg/kg/day) on glial fibrillary

acidic protein (GFAP) expression in the medial prefrontal cortex, nucleus accumbens, and hippocampus,

analyzed by immunohistochemistry in adult male rats. SAL+SAL, saline injection at days 1–5 and another

saline injection 1 h later at days 3–4; SAL+LPS, saline injection at days 1–5 and LPS injection 1 h later at days

3–4; PPF+LPS, propentofylline injection at days 1–5 and LPS injection 1 h later at days 3–4; PPF+SAL,

propentofylline injection at days 1–5 and saline injection 1 h later at days 3–4 (n = 10 per group). *p < 0.05 and

***p < 0.0001 (one-way ANOVA followed by the Newman-Keuls test). The data are expressed as the

mean ± SEM.

doi:10.1371/journal.pone.0169446.g007
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The sickness behavior and depressive-like behavior found after repetitive LPS exposure

were related to peripheral and central immune pro-inflammatory activation. We showed that

LPS-treated rats presented elevated plasmatic TNF-α levels and GFAP expression in the medial

prefrontal cortex, nucleus accumbens, and hippocampus. Astrocytes are dynamic cells that

respond to changes in the central nervous system (CNS) by undergoing morphological and

functional alterations that affect neuronal activity [53]. In response to CNS insults, astrocytes

develop a hypertrophic or reactive phenotype termed astrogliosis [54], which is characterized

by the upregulation of specific structural proteins, such as GFAP and vimentin [55]. Data in

literature support the use of quantification of GFAP-immunolabelled areas in a predetermined

area of CNS tissue as a sensitive and reliable method for showing the presence or absence of

neuroinflammation to a wide range of injury stimuli [56, 57]. Thus, the present result of

increased GFAP expression suggests a neuroinflammatory response after LPS exposure.

Moreover, peripheral and central immune markers presently studied revealed that the ben-

eficial effect of propentofylline during sickness behavior and depressive-like behavior also hap-

pened through downregulation/attenuation of neuroinflammatory processes. TNF-α levels

and GFAP increase in expression were prevented after propentofylline treatment even when

rats received two high doses of LPS.

Even if propentofylline resulted in a beneficial effect during sickness behavior and/or

depressive-like behavior, when propentofylline was administered alone, i.e., without an

immune challenge, it resulted in some adverse effects. Consecutive propentofylline adminis-

tration without LPS exposure increased the body weight and decreased exploratory behavior

(rearing) in rats. This exploratory behavior decrease induced by propentofylline may be related

to its direct action in the central dopaminergic system. Propentofylline has been reported to

inhibit the release of dopamine during transient ischemia and modulate dopamine metabolism

in the striatum in rats [58]. Moreover, prior administration of propentofylline dramatically

abrogated the methamphetamine-induced dopamine peak effect [59]. They proposed that pro-

pentofylline may hamper the dopamine efflux through D2-autoinhibition. Thus, we would not

suggest propentofylline administration to healthy subjects, but exclusively to those presenting

sickness behavior and/or depressive-like behavior.

In conclusion, LPS administration induced sickness behavior and depressive-like behavior

in rats via neuroinflammatory pathway. Propentofylline prevented both sickness behavior and

depressive-like behavior, concerning behavioral and neuroimmune parameters. The present

findings may contribute to a better understanding and treatment of depression and associated

diseases.

Supporting Information

S1 Table. F and p of two-way analysis of variance. Statistical values of F and p of two-way

analysis of variance of body weight and open field general activity.

(DOCX)

S2 Table. F and p of one-way analysis of variance. Statistical values of F and p of one-way

analysis of variance of light-dark test, forced-swim test, plasmatic evaluations, and astrocyte

GFAP expression.

(DOCX)

Acknowledgments

The authors are grateful to Wilton Pereira dos Santos (UNIP) for technical support.

Propentofylline, Sickness Behavior and Depressive-Like Behavior

PLOS ONE | DOI:10.1371/journal.pone.0169446 January 5, 2017 14 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169446.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169446.s002


Author Contributions

Conceptualization: MMTM MCG MMB TBK.

Data curation: MMTM MCG TBK.

Formal analysis: MMTM MCG NQH MFMM EFB MMB TBK.

Funding acquisition: MCG MMB TBK.

Investigation: MMTM MCG DC CPC NQH MFMM EFB MMB TBK.

Methodology: MMTM MCG DC CPC NQH MFMM EFB MMB TBK.

Project administration: TBK.

Resources: EFB MMB TBK.

Supervision: EFB MMB TBK.

Validation: TBK.

Visualization: MMTM MCG DC CPC NQH MFMM EFB MMB TBK.

Writing – original draft: MMTM MCG TBK.

Writing – review & editing: MMTM MCG NQH MFMM EFB MMB TBK.

References
1. Thompson C, Ostler K, Peveler RC, Baker N, Kinmonth AL. Dimensional perspective on the recognition

of depressive symptoms in primary care: The Hampshire Depression Project 3. Br J Psychiatry. 2001;

179:317–23. Epub 2001/10/03. PMID: 11581111

2. Carroll LJ, Cassidy JD, Cote P. Factors associated with the onset of an episode of depressive symp-

toms in the general population. J Clin Epidemiol. 2003; 56(7):651–8. Epub 2003/08/19.

S0895435603001185 [pii]. PMID: 12921934

3. Clark DC. Suicide risk assessment and prediction in the 1990s. Crisis. 1990; 11(2):104–12. Epub 1990/

11/01. PMID: 2076610

4. Lonnqvist JK, Henriksson MM, Isometsa ET, Marttunen MJ, Heikkinen ME, Aro HM, et al. Mental disor-

ders and suicide prevention. Psychiatry Clin Neurosci. 1995; 49 Suppl 1:S111–6. Epub 1995/05/01.

5. Parker G, Brotchie H. Gender differences in depression. Int Rev Psychiatry. 2010; 22(5):429–36. Epub

2010/11/05. doi: 10.3109/09540261.2010.492391 PMID: 21047157

6. Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of

Disease Study. Lancet. 1997; 349(9063):1436–42. Epub 1997/05/17. S0140-6736(96)07495-8 [pii] doi:

10.1016/S0140-6736(96)07495-8 PMID: 9164317

7. Jenkins E, Goldner EM. Approaches to understanding and addressing treatment-resistant depression:

a scoping review. Depress Res Treat. 2012; 2012:469680. Epub 2012/05/10. PubMed Central PMCID:

PMC3337614. doi: 10.1155/2012/469680 PMID: 22570778

8. Colman I, Ataullahjan A. Life course perspectives on the epidemiology of depression. Can J Psychiatry.

2010; 55(10):622–32. Epub 2010/10/23. PMID: 20964941

9. Raedler TJ. Inflammatory mechanisms in major depressive disorder. Curr Opin Psychiatry. 2011; 24

(6):519–25. Epub 2011/09/08. doi: 10.1097/YCO.0b013e32834b9db6 PMID: 21897249

10. Smith RS. The macrophage theory of depression. Med Hypotheses. 1991; 35(4):298–306. Epub 1991/

08/01. PMID: 1943879

11. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in

major depression. Biol Psychiatry. 2010; 67(5):446–57. Epub 2009/12/18. S0006-3223(09)01229-3

[pii]. doi: 10.1016/j.biopsych.2009.09.033 PMID: 20015486

12. Loftis JM, Hauser P. The phenomenology and treatment of interferon-induced depression. J Affect Dis-

ord. 2004; 82(2):175–90. Epub 2004/10/19. S0165032704001442 [pii]. doi: 10.1016/j.jad.2004.04.002

PMID: 15488246

Propentofylline, Sickness Behavior and Depressive-Like Behavior

PLOS ONE | DOI:10.1371/journal.pone.0169446 January 5, 2017 15 / 18

http://www.ncbi.nlm.nih.gov/pubmed/11581111
http://www.ncbi.nlm.nih.gov/pubmed/12921934
http://www.ncbi.nlm.nih.gov/pubmed/2076610
http://dx.doi.org/10.3109/09540261.2010.492391
http://www.ncbi.nlm.nih.gov/pubmed/21047157
http://dx.doi.org/10.1016/S0140-6736(96)07495-8
http://www.ncbi.nlm.nih.gov/pubmed/9164317
http://dx.doi.org/10.1155/2012/469680
http://www.ncbi.nlm.nih.gov/pubmed/22570778
http://www.ncbi.nlm.nih.gov/pubmed/20964941
http://dx.doi.org/10.1097/YCO.0b013e32834b9db6
http://www.ncbi.nlm.nih.gov/pubmed/21897249
http://www.ncbi.nlm.nih.gov/pubmed/1943879
http://dx.doi.org/10.1016/j.biopsych.2009.09.033
http://www.ncbi.nlm.nih.gov/pubmed/20015486
http://dx.doi.org/10.1016/j.jad.2004.04.002
http://www.ncbi.nlm.nih.gov/pubmed/15488246


13. Eisenberger NI, Inagaki TK, Mashal NM, Irwin MR. Inflammation and social experience: an inflamma-

tory challenge induces feelings of social disconnection in addition to depressed mood. Brain Behav

Immun. 2010; 24(4):558–63. Epub 2010/01/02. S0889-1591(09)00564-9 [pii]. PubMed Central PMCID:

PMC2856755. doi: 10.1016/j.bbi.2009.12.009 PMID: 20043983

14. Hava G, Vered L, Yael M, Mordechai H, Mahoud H. Alterations in behavior in adult offspring mice follow-

ing maternal inflammation during pregnancy. Dev Psychobiol. 2006; 48(2):162–8. doi: 10.1002/dev.

20116 PMID: 16489598

15. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature.

2000; 406(6797):782–7. doi: 10.1038/35021228 PMID: 10963608

16. Kirsten TB, Lippi LL, Bevilacqua E, Bernardi MM. LPS exposure increases maternal corticosterone lev-

els, causes placental injury and increases IL-1β levels in adult rat offspring: relevance to autism. PLoS

One. 2013; 8(12):e82244. doi: 10.1371/journal.pone.0082244 PMID: 24312647

17. Muller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Muller B, et al. The cyclooxygen-

ase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, random-

ized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry. 2006; 11(7):680–4. Epub

2006/02/24. 4001805 [pii] doi: 10.1038/sj.mp.4001805 PMID: 16491133

18. Akhondzadeh S, Jafari S, Raisi F, Nasehi AA, Ghoreishi A, Salehi B, et al. Clinical trial of adjunctive cel-

ecoxib treatment in patients with major depression: a double blind and placebo controlled trial. Depress

Anxiety. 2009; 26(7):607–11. Epub 2009/06/06. doi: 10.1002/da.20589 PMID: 19496103

19. Tyring S, Gottlieb A, Papp K, Gordon K, Leonardi C, Wang A, et al. Etanercept and clinical outcomes,

fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet.

2006; 367(9504):29–35. Epub 2006/01/10. S0140-6736(05)67763-X [pii]. doi: 10.1016/S0140-6736

(05)67763-X PMID: 16399150

20. Persoons P, Vermeire S, Demyttenaere K, Fischler B, Vandenberghe J, Van Oudenhove L, et al. The

impact of major depressive disorder on the short- and long-term outcome of Crohn’s disease treatment

with infliximab. Aliment Pharmacol Ther. 2005; 22(2):101–10. Epub 2005/07/14. APT2535 [pii]. doi: 10.

1111/j.1365-2036.2005.02535.x PMID: 16011668

21. Sweitzer S, De Leo J. Propentofylline: glial modulation, neuroprotection, and alleviation of chronic pain.

Handb Exp Pharmacol. 2011;(200):235–50. Epub 2010/09/23. doi: 10.1007/978-3-642-13443-2_8

PMID: 20859798

22. Bondan EF, Martins Mde F, Menezes Baliellas DE, Monteiro Gimenez CF, Castro Poppe S, Martha

Bernardi M. Effects of propentofylline on CNS remyelination in the rat brainstem. Microsc Res Tech.

2014; 77(1):23–30. Epub 2013/11/05. doi: 10.1002/jemt.22308 PMID: 24185688

23. Jung S, Donhauser T, Toyka KV, Hartung HP. Propentofylline and iloprost suppress the production of

TNF-alpha by macrophages but fail to ameliorate experimental autoimmune encephalomyelitis in Lewis

rats. J Autoimmun. 1997; 10(6):519–29. Epub 1998/02/06. S0896-8411(97)90159-1 [pii]. doi: 10.1006/

jaut.1997.0159 PMID: 9451591

24. Bay-Richter C, Janelidze S, Hallberg L, Brundin L. Changes in behaviour and cytokine expression upon

a peripheral immune challenge. Behav Brain Res. 2011; 222(1):193–9. Epub 2011/04/07. S0166-4328

(11)00263-4 [pii]. doi: 10.1016/j.bbr.2011.03.060 PMID: 21466824

25. Frenois F, Moreau M, O’Connor J, Lawson M, Micon C, Lestage J, et al. Lipopolysaccharide induces

delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and

hypothalamus, that parallel the expression of depressive-like behavior. Psychoneuroendocrinology.

2007; 32(5):516–31. Epub 2007/05/08. S0306-4530(07)00063-7 [pii]. PubMed Central PMCID:

PMC1978247. doi: 10.1016/j.psyneuen.2007.03.005 PMID: 17482371

26. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and

depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008; 9(1):46–56. Epub

2007/12/13. nrn2297 [pii]. PubMed Central PMCID: PMC2919277. doi: 10.1038/nrn2297 PMID:

18073775

27. Yirmiya R. Endotoxin produces a depressive-like episode in rats. Brain Res. 1996; 711(1–2):163–74.

Epub 1996/03/04. 0006-8993(95)01415-2 [pii]. PMID: 8680860

28. Hashimoto K, Shimizu E, Iyo M. Critical role of brain-derived neurotrophic factor in mood disorders.

Brain Res Brain Res Rev. 2004; 45(2):104–14. Epub 2004/05/18. S0165017304000189 [pii]. doi: 10.

1016/j.brainresrev.2004.02.003 PMID: 15145621

29. Drzyzga LR, Marcinowska A, Obuchowicz E. Antiapoptotic and neurotrophic effects of antidepressants:

a review of clinical and experimental studies. Brain Res Bull. 2009; 79(5):248–57. Epub 2009/06/02.

S0361-9230(09)00100-2 [pii]. doi: 10.1016/j.brainresbull.2009.03.009 PMID: 19480984

30. Petzold A. Glial fibrillary acidic protein is a body fluid biomarker for glial pathology in human disease.

Brain Res. 2015; 1600:17–31. Epub 2014/12/30. S0006-8993(14)01711-9 [pii]. doi: 10.1016/j.brainres.

2014.12.027 PMID: 25543069

Propentofylline, Sickness Behavior and Depressive-Like Behavior

PLOS ONE | DOI:10.1371/journal.pone.0169446 January 5, 2017 16 / 18

http://dx.doi.org/10.1016/j.bbi.2009.12.009
http://www.ncbi.nlm.nih.gov/pubmed/20043983
http://dx.doi.org/10.1002/dev.20116
http://dx.doi.org/10.1002/dev.20116
http://www.ncbi.nlm.nih.gov/pubmed/16489598
http://dx.doi.org/10.1038/35021228
http://www.ncbi.nlm.nih.gov/pubmed/10963608
http://dx.doi.org/10.1371/journal.pone.0082244
http://www.ncbi.nlm.nih.gov/pubmed/24312647
http://dx.doi.org/10.1038/sj.mp.4001805
http://www.ncbi.nlm.nih.gov/pubmed/16491133
http://dx.doi.org/10.1002/da.20589
http://www.ncbi.nlm.nih.gov/pubmed/19496103
http://dx.doi.org/10.1016/S0140-6736(05)67763-X
http://dx.doi.org/10.1016/S0140-6736(05)67763-X
http://www.ncbi.nlm.nih.gov/pubmed/16399150
http://dx.doi.org/10.1111/j.1365-2036.2005.02535.x
http://dx.doi.org/10.1111/j.1365-2036.2005.02535.x
http://www.ncbi.nlm.nih.gov/pubmed/16011668
http://dx.doi.org/10.1007/978-3-642-13443-2_8
http://www.ncbi.nlm.nih.gov/pubmed/20859798
http://dx.doi.org/10.1002/jemt.22308
http://www.ncbi.nlm.nih.gov/pubmed/24185688
http://dx.doi.org/10.1006/jaut.1997.0159
http://dx.doi.org/10.1006/jaut.1997.0159
http://www.ncbi.nlm.nih.gov/pubmed/9451591
http://dx.doi.org/10.1016/j.bbr.2011.03.060
http://www.ncbi.nlm.nih.gov/pubmed/21466824
http://dx.doi.org/10.1016/j.psyneuen.2007.03.005
http://www.ncbi.nlm.nih.gov/pubmed/17482371
http://dx.doi.org/10.1038/nrn2297
http://www.ncbi.nlm.nih.gov/pubmed/18073775
http://www.ncbi.nlm.nih.gov/pubmed/8680860
http://dx.doi.org/10.1016/j.brainresrev.2004.02.003
http://dx.doi.org/10.1016/j.brainresrev.2004.02.003
http://www.ncbi.nlm.nih.gov/pubmed/15145621
http://dx.doi.org/10.1016/j.brainresbull.2009.03.009
http://www.ncbi.nlm.nih.gov/pubmed/19480984
http://dx.doi.org/10.1016/j.brainres.2014.12.027
http://dx.doi.org/10.1016/j.brainres.2014.12.027
http://www.ncbi.nlm.nih.gov/pubmed/25543069


31. NCR. National Research Council. Committee for the Update of the Guide for the Care and Use of Labo-

ratory Animals. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington (DC): National

Academies Press; 2011. 248 p.

32. Kent S, Bluthe RM, Kelley KW, Dantzer R. Sickness behavior as a new target for drug development.

Trends Pharmacol Sci. 1992; 13(1):24–8. PMID: 1542935

33. Hart BL. Biological basis of the behavior of sick animals. Neurosci Biobehav Rev. 1988; 12(2):123–37.

PMID: 3050629

34. Larson SJ, Dunn AJ. Behavioral effects of cytokines. Brain Behav Immun. 2001; 15(4):371–87. doi: 10.

1006/brbi.2001.0643 PMID: 11782104

35. Dantzer R, Kelley KW. Twenty years of research on cytokine-induced sickness behavior. Brain Behav

Immun. 2007; 21(2):153–60. doi: 10.1016/j.bbi.2006.09.006 PMID: 17088043

36. Patti CL, Frussa-Filho R, Silva RH, Carvalho RC, Kameda SR, Takatsu-Coleman AL, et al. Behavioral

characterization of morphine effects on motor activity in mice. Pharmacol Biochem Behav. 2005; 81

(4):923–7. Epub 2005/08/09. S0091-3057(05)00235-2 [pii]. doi: 10.1016/j.pbb.2005.07.004 PMID:

16083952

37. Campos AC, Fogaca MV, Aguiar DC, Guimaraes FS. Animal models of anxiety disorders and stress.

Rev Bras Psiquiatr. 2013; 35 Suppl 2:S101–11. Epub 2013/12/07. S1516-44462013000600006 [pii].

38. Crawley J, Goodwin FK. Preliminary report of a simple animal behavior model for the anxiolytic effects

of benzodiazepines. Pharmacol Biochem Behav. 1980; 13(2):167–70. Epub 1980/08/01. PMID:

6106204

39. Cryan JF, Markou A, Lucki I. Assessing antidepressant activity in rodents: recent developments and

future needs. Trends Pharmacol Sci. 2002; 23(5):238–45. Epub 2002/05/15. S0165-6147(02)02017-5

[pii]. PMID: 12008002

40. Connor TJ, O’Sullivan J, Nolan Y, Kelly JP. Inhibition of constitutive nitric oxide production increases

the severity of lipopolysaccharide-induced sickness behaviour: a role for TNF-alpha. Neuroimmunomo-

dulation. 2002; 10(6):367–78. Epub 2003/08/09. 71478 71478 [pii]. PMID: 12907844

41. Farooq RK, Isingrini E, Tanti A, Le Guisquet AM, Arlicot N, Minier F, et al. Is unpredictable chronic mild

stress (UCMS) a reliable model to study depression-induced neuroinflammation? Behav Brain Res.

2012; 231(1):130–7. Epub 2012/04/03. S0166-4328(12)00212-4 [pii]. doi: 10.1016/j.bbr.2012.03.020

PMID: 22465167

42. Smialowska M, Szewczyk B, Wozniak M, Wawrzak-Wlecial A, Domin H. Glial degeneration as a model

of depression. Pharmacol Rep. 2013; 65(6):1572–9. Epub 2014/02/21. PMID: 24553005

43. Joaquim AO, Coelho CP, Motta PD, Bondan EF, Teodorov E, Martins MF, et al. Transgenerational

effects of a hypercaloric diet. Reprod Fertil Dev. 2015. Epub 2015/08/26. RD15165 [pii].

44. Dantzer R. Cytokine, sickness behavior, and depression. Neurologic Clinics. 2006; 24(3):441–60. Epub

2006/08/01. S0733-8619(06)00029-6 [pii]. doi: 10.1016/j.ncl.2006.03.003 PMID: 16877117

45. de Paiva VN, Lima SN, Fernandes MM, Soncini R, Andrade CA, Giusti-Paiva A. Prostaglandins medi-

ate depressive-like behaviour induced by endotoxin in mice. Behav Brain Res. 2010; 215(1):146–51.

Epub 2010/07/27. S0166-4328(10)00516-4 [pii]. doi: 10.1016/j.bbr.2010.07.015 PMID: 20654654

46. Soncini R, de Souza DF, Neves AP, Braga DS, Andrade CA, Giusti-Paiva A. Dipyrone attenuates acute

sickness response to lipopolysaccharide in mice. Neurosci Lett. 2012; 516(1):114–8. Epub 2012/04/12.

S0304-3940(12)00468-5 [pii]. doi: 10.1016/j.neulet.2012.03.070 PMID: 22490882

47. Ribeiro DE, Maiolini VM, Soncini R, Antunes-Rodrigues J, Elias LL, Vilela FC, et al. Inhibition of nitric

oxide synthase accentuates endotoxin-induced sickness behavior in mice. Pharmacol Biochem Behav.

2013; 103(3):535–40. Epub 2012/10/11. S0091-3057(12)00280-8 [pii]. doi: 10.1016/j.pbb.2012.09.022

PMID: 23046850

48. Kirsten TB, Galvao MC, Reis-Silva TM, Queiroz-Hazarbassanov N, Bernardi MM. Zinc prevents sick-

ness behavior induced by lipopolysaccharides after a stress challenge in rats. PLoS One. 2015; 10(3):

e0120263. Epub 2015/03/17. PONE-D-14-45220 [pii]. PubMed Central PMCID: PMC4361539. doi: 10.

1371/journal.pone.0120263 PMID: 25775356

49. Binder DK, Scharfman HE. Brain-derived neurotrophic factor. Growth Factors. 2004; 22(3):123–31.

Epub 2004/11/03. PubMed Central PMCID: PMC2504526. doi: 10.1080/08977190410001723308

PMID: 15518235

50. Li N, He X, Zhang Y, Qi X, Li H, Zhu X, et al. Brain-derived neurotrophic factor signalling mediates anti-

depressant effects of lamotrigine. Int J Neuropsychopharmacol. 2011; 14(8):1091–8. Epub 2010/09/18.

S1461145710001082 [pii]. doi: 10.1017/S1461145710001082 PMID: 20846461

51. Katoh-Semba R, Wakako R, Komori T, Shigemi H, Miyazaki N, Ito H, et al. Age-related changes in

BDNF protein levels in human serum: differences between autism cases and normal controls. Int J Dev

Propentofylline, Sickness Behavior and Depressive-Like Behavior

PLOS ONE | DOI:10.1371/journal.pone.0169446 January 5, 2017 17 / 18

http://www.ncbi.nlm.nih.gov/pubmed/1542935
http://www.ncbi.nlm.nih.gov/pubmed/3050629
http://dx.doi.org/10.1006/brbi.2001.0643
http://dx.doi.org/10.1006/brbi.2001.0643
http://www.ncbi.nlm.nih.gov/pubmed/11782104
http://dx.doi.org/10.1016/j.bbi.2006.09.006
http://www.ncbi.nlm.nih.gov/pubmed/17088043
http://dx.doi.org/10.1016/j.pbb.2005.07.004
http://www.ncbi.nlm.nih.gov/pubmed/16083952
http://www.ncbi.nlm.nih.gov/pubmed/6106204
http://www.ncbi.nlm.nih.gov/pubmed/12008002
http://www.ncbi.nlm.nih.gov/pubmed/12907844
http://dx.doi.org/10.1016/j.bbr.2012.03.020
http://www.ncbi.nlm.nih.gov/pubmed/22465167
http://www.ncbi.nlm.nih.gov/pubmed/24553005
http://dx.doi.org/10.1016/j.ncl.2006.03.003
http://www.ncbi.nlm.nih.gov/pubmed/16877117
http://dx.doi.org/10.1016/j.bbr.2010.07.015
http://www.ncbi.nlm.nih.gov/pubmed/20654654
http://dx.doi.org/10.1016/j.neulet.2012.03.070
http://www.ncbi.nlm.nih.gov/pubmed/22490882
http://dx.doi.org/10.1016/j.pbb.2012.09.022
http://www.ncbi.nlm.nih.gov/pubmed/23046850
http://dx.doi.org/10.1371/journal.pone.0120263
http://dx.doi.org/10.1371/journal.pone.0120263
http://www.ncbi.nlm.nih.gov/pubmed/25775356
http://dx.doi.org/10.1080/08977190410001723308
http://www.ncbi.nlm.nih.gov/pubmed/15518235
http://dx.doi.org/10.1017/S1461145710001082
http://www.ncbi.nlm.nih.gov/pubmed/20846461


Neurosci. 2007; 25(6):367–72. Epub 2007/09/07. S0736-5748(07)00098-6 [pii]. doi: 10.1016/j.ijdevneu.

2007.07.002 PMID: 17804189

52. Karege F, Schwald M, Cisse M. Postnatal developmental profile of brain-derived neurotrophic factor in

rat brain and platelets. Neurosci Lett. 2002; 328(3):261–4. Epub 2002/07/31. S0304394002005293

[pii]. PMID: 12147321

53. Garcia-Caceres C, Yi CX, Tschop MH. Hypothalamic astrocytes in obesity. Endocrinol Metab Clin

North Am. 2013; 42(1):57–66. Epub 2013/02/09. S0889-8529(12)00127-2 [pii]. doi: 10.1016/j.ecl.2012.

11.003 PMID: 23391239

54. Levine JB, Kong J, Nadler M, Xu Z. Astrocytes interact intimately with degenerating motor neurons in

mouse amyotrophic lateral sclerosis (ALS). Glia. 1999; 28(3):215–24. Epub 1999/11/24. PMID:

10559780

55. Ridet JL, Alonso G, Chauvet N, Chapron J, Koenig J, Privat A. Immunocytochemical characterization of

a new marker of fibrous and reactive astrocytes. Cell Tissue Res. 1996; 283(1):39–49. Epub 1996/01/

01. PMID: 8581958

56. Brenner M. Role of GFAP in CNS injuries. Neurosci Lett. 2014; 565:7–13. Epub 2014/02/11. S0304-

3940(14)00090-1 [pii]. PubMed Central PMCID: PMC4049287. doi: 10.1016/j.neulet.2014.01.055

PMID: 24508671

57. Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neu-

robiomarker. Trends Neurosci. 2015; 38(6):364–74. Epub 2015/05/16. S0166-2236(15)00081-8 [pii].

PubMed Central PMCID: PMC4559283. doi: 10.1016/j.tins.2015.04.003 PMID: 25975510

58. Shimizu K, Ogino M, Yamaguchi N, Mitani S, Saito R, Kawase T, et al. Propentofylline (HWA285) inhib-

its the release of dopamine during transient ischemia and modulates its metabolism in rat striatum. Neu-

rosci Lett. 1993; 158(1):9–12. Epub 1993/08/06. 0304-3940(93)90599-G [pii]. PMID: 8233079

59. Gough B, Pereira FC, Fontes Ribeiro CA, Ali SF, Binienda ZK. Propentophylline increases striatal dopa-

mine release but dampens methamphetamine-induced dopamine dynamics: A microdialysis study.

Neurochem Int. 2014; 76:109–13. Epub 2014/07/23. S0197-0186(14)00159-4 [pii]. doi: 10.1016/j.

neuint.2014.07.003 PMID: 25049173

Propentofylline, Sickness Behavior and Depressive-Like Behavior

PLOS ONE | DOI:10.1371/journal.pone.0169446 January 5, 2017 18 / 18

http://dx.doi.org/10.1016/j.ijdevneu.2007.07.002
http://dx.doi.org/10.1016/j.ijdevneu.2007.07.002
http://www.ncbi.nlm.nih.gov/pubmed/17804189
http://www.ncbi.nlm.nih.gov/pubmed/12147321
http://dx.doi.org/10.1016/j.ecl.2012.11.003
http://dx.doi.org/10.1016/j.ecl.2012.11.003
http://www.ncbi.nlm.nih.gov/pubmed/23391239
http://www.ncbi.nlm.nih.gov/pubmed/10559780
http://www.ncbi.nlm.nih.gov/pubmed/8581958
http://dx.doi.org/10.1016/j.neulet.2014.01.055
http://www.ncbi.nlm.nih.gov/pubmed/24508671
http://dx.doi.org/10.1016/j.tins.2015.04.003
http://www.ncbi.nlm.nih.gov/pubmed/25975510
http://www.ncbi.nlm.nih.gov/pubmed/8233079
http://dx.doi.org/10.1016/j.neuint.2014.07.003
http://dx.doi.org/10.1016/j.neuint.2014.07.003
http://www.ncbi.nlm.nih.gov/pubmed/25049173

