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Abstract

Selection of informative genes is an important problem in gene expression studies. The

small sample size and the large number of genes in gene expression data make the selec-

tion process complex. Further, the selected informative genes may act as a vital input for

gene co-expression network analysis. Moreover, the identification of hub genes and module

interactions in gene co-expression networks is yet to be fully explored. This paper presents

a statistically sound gene selection technique based on support vector machine algorithm

for selecting informative genes from high dimensional gene expression data. Also, an

attempt has been made to develop a statistical approach for identification of hub genes in

the gene co-expression network. Besides, a differential hub gene analysis approach has

also been developed to group the identified hub genes into various groups based on their

gene connectivity in a case vs. control study. Based on this proposed approach, an R pack-

age, i.e., dhga (https://cran.r-project.org/web/packages/dhga) has been developed. The

comparative performance of the proposed gene selection technique as well as hub gene

identification approach was evaluated on three different crop microarray datasets. The pro-

posed gene selection technique outperformed most of the existing techniques for selecting

robust set of informative genes. Based on the proposed hub gene identification approach, a

few number of hub genes were identified as compared to the existing approach, which is in

accordance with the principle of scale free property of real networks. In this study, some key

genes along with their Arabidopsis orthologs has been reported, which can be used for Alu-

minum toxic stress response engineering in soybean. The functional analysis of various

selected key genes revealed the underlying molecular mechanisms of Aluminum toxic

stress response in soybean.
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Introduction

With the advent of fast and cheaper genome sequencing technologies, huge genomic data is

being generated and deposited in public domain databases over the years by different research

organizations across the globe [1, 2]. Most of these datasets are related to expression of genes

from various experiments conducted to understand behavior of biological mechanism of spe-

cies under biotic and abiotic stresses. In due course of time huge gene expression data is gener-

ated through microarray experiments under these stresses. Integration and analysis of data

generated by microarray experiments for the same stress or related conditions is essential to

enhance the sensitivity of the hypothesis under consideration for drawing valid conclusions

[3]. For instance, meta-analysis of microarray data pertaining to different experiments in rice

and Arabidopsis revealed the presence of highly connected key genes that are central to the

plant defense system under various biotic and abiotic stresses [4, 5].

Usually, microarray data are used for gene selection and modules detection in genetic net-

work analysis, which suffers from the inherent limitation of its high dimensionality, i.e. the

number of genes is much larger than the number of subjects/samples [6]. Therefore, it is

important to select most relevant genes related to stresses/conditions from thousand(s) of

genes with the help of appropriate computational approach(s). In this regard, Volcano plot

method [7] is quite popular among the researchers in which genes are selected by considering

their relevance with their classes. However, such method may not be sufficient to discover

some complex relationships among genes for a certain trait or condition [8]. Besides, several

statistical and machine learning methods, viz. t-score, F-score, Information Gain (IG) mea-

sure, Random Forest (RF) and Support Vector Machine-Recursive Feature Elimination

(SVM-RFE) [7, 9–13] have also been used for gene selection. However, in these methods genes

are selected by considering only their relevance with classes. In such case, there is a possibility

that genes which are spuriously associated with the classes may also get selected.

In order to understand the interrelationship among the selected genes, identification of

gene modules and key genes responsible for a particular stress/condition, analysis of gene co-

expression networks need to be carried out. Weighted Gene Co-expression Network Analysis

(WGCNA) [14] is a latest and popular technique used to decipher co-expression patterns

among genes. The WGCNA approach typically deals with the identification of gene modules

by using the gene expression levels that are highly correlated across samples [14]. This tech-

nique has been successfully utilized to detect gene modules in Arabidopsis, rice, maize and

poplar for various biotic and abiotic stresses [5, 15–18]. Further, this approach also leads to

construction of Gene Co-expression Network (GCN), a scale free network, where, genes are

represented as nodes and edges depict associations among genes [14, 19]. In such network,

highly connected genes are called hub genes, which are expected to play an important role in

understanding the biological mechanism of response under stresses/conditions [20–24]. Iden-

tification of hub genes will also help in mitigating the stress in plants through genetic engineer-

ing. The existing approaches [21–24] have mainly focused on hub gene identification, based

only on gene connection degrees in the GCN. Moreover, these techniques select such genes

empirically without any statistical criteria. Besides, few approaches can be found in the litera-

ture for the identification of hub nodes in a scale free network [22–24].

Aluminum (Al) toxic stress is a major impediment to the crop production on acidic soils

that affects about 30–40% of the world’s arable lands [25]. Soybean (Glycine max L.), that pro-

vides major source of proteins, unsaturated fats, carbohydrate and fibers, is one of the most

important legume crop, capable of providing nutritional security to the global population. Soy-

bean is preferably grown on acidic soil and its productivity is significantly reduced by Al toxic

stress. In acidic soil, Al stress causes rapid inhibition in root growth and subsequently inhibits
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water and nutrient uptake by plants. This increases the susceptibility of plants to other envi-

ronmental stresses and results in reduction of crop productivity [26]. Under heavy pressure of

population explosion and global warming, achieving nutritional security in general and pro-

tein security in particular through enhancing the productivity of soybean is of paramount

importance. However, the underlying mechanisms for Al toxic stress response in plants in

general and soybean in particular are not so clearly deciphered till now [27].

In this study, a statistical technique i.e. Bootstrap SVM-RFE (Boot-SVM-RFE) is proposed

for selection of informative genes. In this technique, genes are selected after reducing the effect

of spurious associations between genes and classes. The performance of the proposed gene

selection technique is found to be better than the existing techniques, while compared by

using three different datasets. Further, a statistical approach for identification of hub genes in

the GCN was also proposed. Again, this approach is evaluated on the genes selected from the

above datasets and found to be superior in terms of scale free property of biological network.

Besides, an R package has been developed based on the proposed hub gene identification

approach. Further, an attempt has been made to integrate and analyze the gene expression

datasets generated by different experiments for the identification of Al toxic stress responsive

genes in soybean, by using the proposed techniques. Hub genes responsible for Al toxic stress

have been identified and their functional analysis has been done.

Materials and Methods

The soybean microarray experimental datasets under Al stress were collected from Gene

Expression Omnibus with platform GPL4592 (http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GPL4592). This platform contains 3855 experimental samples on 37,593 probes gen-

erated using Affymetrix Soybean Genome Array. Out of these samples, 80 samples related to

Al stress were collected for further study. Initially, raw CEL files of these collected samples

were processed using Robust Multichip Average (RMA) algorithm available in affy Bioconduc-

tor package of R [28–30]. This includes background correction, quantile normalization and

summarization by the median polish approach [31]. Then the microarray experimental sam-

ples with mean� 7.1 and standard deviation� 2.5 were selected, as uniformity of colors in

the correlation plot was observed for these parameters setting (S1 Fig). Through this process,

78 samples (generated over 3 different experiments) were selected. The descriptions about the

selected samples are given in S1 Document. The log2 scale transformed expression data from

the RMA for these selected experimental samples were used for further statistical analysis.

Bootstrap support vector machine- recursive feature elimination

technique (Boot-SVM-RFE)

Here, we propose a technique i.e. Boot-SVM-RFE for selection of informative genes from high

dimensional gene expression dataset. In this approach, a Non-Parametric (NP) hypothesis test-

ing procedure was used for the identification of informative genes based on their statistical sig-

nificance. Earlier, SVM-RFE method was used for ranking of genes from gene expression data

for identification of cancer responsible genes [13]. In this algorithm, genes are individually

eliminated based on their least significance in classification during SVM training. The objec-

tive function, J for this classification problem is defined as:

J ¼ kwk2
=2 ð1Þ

where, w is kernel width computed by SVM. The Optimal Brain Damage algorithm [32] was

used to approximate the change in J, after deletion of i-th gene from the dataset. Further,

expanding J (up to second order) with the help of Taylor series approximation [6], the value of
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J was given by

DJðiÞ ¼ ð1=2Þ
@2J
@w2

i

ðDwiÞ
2

ð2Þ

where, Δwi is change in weight due to removing i-th gene from existing dataset and ΔJ(i) is

used as weight pruning criterion.

It may be noted here that, the cost function J is a quadratic function of wi and both are

directly proportional to each other. Hence, measurement of either wi or J provides equivalent

information. Keeping this in view w2
i is used as the ranking criterion for evaluating impact of i-

th gene on this classification [6]. In this process, genes are eliminated with the smallest w2
i iter-

atively in a backward elimination manner and ranked gene list is prepared at the end. More-

over, most of the gene selection methods are sensitive to small permutation of experimental

conditions [13]. The ranking of genes based on high dimensional expression data may also

lead to the selection of spurious genes and make the selection process unreliable [33]. There-

fore, it is essential to select genes based on statistical testing instead of their ranks. Keeping in

view the above fact, a test statistic has been proposed for selecting informative genes.

In this testing procedure, n bootstrap samples each of sizem are selected randomly with

replacement to construct a training set for SVM from availableM samples in a dataset. Then

SVM-RFE procedure was applied to each of these n bootstrap samples to get n list of genes

along with their ranks. Therefore, each of genes will have n number of ranks (one for each

bootstrap). Let a score function i.e. Rank Score (Rij) is defined to convert these ranks of each

gene into corresponding score in each bootstrap sample, as

Rij ¼
N þ 1 � pij

N
ð3Þ

where, N represents total number of genes considered in the dataset and pij (1� pij� N) is the

ranked position of i-th gene in j-th bootstrap sample. After getting the rank scores of all genes

over n bootstrap samples, following proposed hypothesis needs to be tested for selection of

informative genes.

H0 : i � th gene is not informative ði:e: Ri � QÞ

H1 : i � th gene is informative ði:e: Ri > QÞ

where, Q be the second quartile.

For i-th gene, Rj(i) (N-1� Rj(i)� 1) is the rank score for j-th bootstrap sample (j = 1, 2, . . ., n).

Further, Rj(i) is a random variable (rv). Since, Rj(i) is a function of rank, therefore, its empirical

distribution is symmetric about the second quartile. So, without loss of generality, we defined

another variable rj (for fixed i) as:

rj ¼ R
ðiÞ
j � Q ð4Þ

In order to test the statistical significance (H0 vs.H1) for gene i, the rj’s are arranged in

ascending order of their magnitude and subsequently, the ranks 1, 2, . . ., n are assigned, keep-

ing in mind their original signs. Let T+ be the sum of the ranks of positive rj’s and T− be the

sum of the ranks of negative rj’s. Now for finding distribution of test statistic T+, another
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variable Z(k) is defined as:

ZðkÞ ¼
1 if the jrjjhas rank k ð> 0Þ

0 else
ð5Þ

(

Here, k = {1, 2, . . .n}. Now, the variables Z(k) are independent Bernouli variates and its

order of moments can be obtained as:

EðZðkÞÞ ¼
n
2

n � 1

k � 1

 !

Bðk; n � kþ 1Þ ð6Þ

Var ðZðkÞÞ ¼ EfZðkÞð1 � EðZðkÞÞÞg ð7Þ

Then, the first two moments of the statistic (T+) can be written as:

EðTþÞ ¼
Xn

k¼1

kEðZðkÞÞ ð8Þ

VarðT þÞ ¼
Xn

k¼1

k2fEðZðkÞÞð1� EðZðkÞÞÞg ð9Þ

Let Ri be expected rank score for i-th gene over all bootstrap samples. Under the simple null

hypothesisH0: Ri = Q againstH1: Ri> Q the expressions in Eqs 8 and 9 can be written as

EH0
ðTþÞ ¼

1

2

X

k

k ¼
nðnþ 1Þ

4
ð10Þ

VarH0
ðTþÞ ¼

1

4

X

k

k2 ¼
nðnþ 1Þð2nþ 1Þ

24
ð11Þ

As the number of bootstrap samples are quite large, then under Linberg’s cental limit theo-

rem [34, 35], T+ follows normal distribution asymptotically, i.e.

Tþ � EH0
ðTþÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarH0

ðTþÞ
q � Nð0; 1Þ ð12Þ

Based on test statistic (Eq 12) underH0, it can be tested that whether a gene is informative

or not. This procedure was repeated for other genes. The performance of the proposed tech-

nique for selection of informative genes was compared with respect to existing techniques viz.
SVM-RFE, t-score, F-score, RF and IG on gene expression data of Al stress in soybean, salinity

and cold stress in rice (Table 1). In order to assess the performance of genes selection tech-

niques, the fixed number of top ranked genes selected through these techniques were used in

SVM classifier to discriminate the class labels of samples between stress (+1) and control (-1).

In this case, SVM-Classification Accuracy (CA) was computed through a sliding window size

technique. Here, the window sizes (number of sorted genes) were taken as 50, 100, . . ., 500

with sliding length of 50. The performance of these techniques was adjudged on the basis of

CA and it’s co-efficient of variation (CV).

Statistical Approaches for Gene Co-Expression Network Analysis

PLOS ONE | DOI:10.1371/journal.pone.0169605 January 5, 2017 5 / 24



Gene co-expression network analysis

GCNs were constructed by using gene co-expression measure that depicts association among

genes [23, 36]. Let xi be the expression profile of i-th gene, i.e. the expression values of i-th gene

across all the microarray samples. Then, gene co-expression similarity measure sij between i-th
and j-th gene is computed as the absolute value of Pearson’s Correlation Co-efficient (PCC)

[14, 23], which is given by:

sij ¼ jcor ðxi; xjÞj 8 i 6¼ j ¼ 1; 2; . . . ; G ð13Þ

The adjacency score (aij) between i-th gene and j-th gene is defined in terms of sij [18] as:

aij ¼ sij
b ð14Þ

where, β (�1) is soft threshold power, determined by using the concept of scale free property

of biological networks [23]. The detail methodology for determination of the soft threshold

power has been discussed elaborately by Zhang and Horvath (2005) [14]. This soft threshold

approach leads to a weighted GCN that satisfies the scale free property of biological networks.

For both Al stress and control conditions, the value of β was taken as 8 for calculation of

adjacency score (S2 Fig), with best approximation to scale free criteria [36] using R2> 0.80

through fitting of Power law model. In order to identify the gene modules (i.e. group of tightly

co-expressed genes) within the selected informative genes, the Topological Overlap Matrix

was constructed based on the adjacency scores [14]. The BlockWiseModules function available

inWGCNA package [19] of R was executed to identify these modules. For this purpose, various

parameters like module size, deep split level and tree merge cut height was set at 20–30, 4 and

0.15–0.25 respectively. In order to find the consensus modules showing co-expression patterns

of genes across stress and control conditions, the function blockwiseConsensusModules was

used with parameter settings 8, 30 and 0.15 as power, minimum module size and merge cut

height respectively.

Proposed statistical approach for identification of hub genes

In network theory, a node is defined as hub node [20–24], if its connection degree is greater

than average connection degree of the network [21]. In the existing approach, a gene is

declared as hub gene based on an indicator function [21, 23], i.e.Hubi = [I(ki > τ)] and num-

ber of hub genes (NHub) in the genetic network is calculated as NHub ¼
X

i

½Iðki > tÞ�,

where,Hubi: hub status of i-th gene (i.e.1 or 0); ki: connection degree of i-th gene; τ: threshold

value i.e. average connection degree of the network. This technique selects hub genes empiri-

cally based on only observed gene connectivity without taking into account any statistical con-

sideration. Therefore, an alternate statistical approach based on statistical significance of gene

connectivity was proposed for detection of hub genes in the GCN. The proposed statistical

approach is described as follows:

Table 1. Microarray studies used in comparative analysis.

Data descriptions #GEO Series # Genes # Samples # Classes

Salt stress in Rice 6 6637 70 2 (stress: 1 and control: -1)

Cold stress in Rice 5 8839 100 2 (stress: 1 and control: -1)

Al stress in Soybean 4 15510 68 2 (stress: 1 and control: -1)

# GEO series: Number of GEO series; # Genes: Number of genes; #Samples: Total number of microarray samples; # Classes: Number of classes

doi:10.1371/journal.pone.0169605.t001
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The Weighted Gene Score (WGS) for i-th gene in terms of weighted gene connectivity (aij)
can be written as:

WGSi ¼
X

j

aij 8 i 6¼ j ¼ 1; 2; . . . ; G ð15Þ

where,WGSi represents the relative importance of i-th gene based on its connections to the

remaining genes in GCN. For the purpose of hub gene identification, following hypotheses are

constructed.

H0 : WGSi � m i:e: i � th gene in the GCN is not a hub gene

H1 : WGSi > m i:e: i � th gene in the GCN is a hub gene

where, μ is average connection degree of the complete network model. Here in order to get the

distribution of the test statistic underH0, a resampling procedure was used. In this procedure,

mmicroarray samples were selected randomly with equal probability fromMmicroarray sam-

ples to construct one subsample (for one GCN) (m�M). Then statistical measures (Eqs 13–

15) were applied to get WGS for each gene in that GCN. This procedure was repeated large

number of times say S to get S sets of WGS. In this study, S = 500 was taken to get 500 random

GCNs under stress and control conditions separately. For testingH0 vs.H1, a NP test statistic

was proposed to test significance of the WGS for each gene, i.e. for testing whether WGS of a

gene is greater than the average connection degree of the complete network or not. The pro-

posed procedure for testing the hypothesis is as follows:

Let for a particular gene (i),WGSk(i) be the WGS for k-th subsample (k = 1, 2,. . ., S). Here

WGSk(i) ‘s are rvs. So, without loss of generality, another variable Xk can be defined as:

Xk ¼WGS
ðiÞ
k � m ð16Þ

In order to test the statistical significance of connectivity for gene i, the Xk’s are arranged in

ascending order of their magnitude and subsequently, the ranks 1, 2, . . ., S are assigned, keep-

ing in mind the original signs of Xk. LetW+ be the sum of the ranks of positive Xks andW– be

the sum of the ranks of negative Xks. The distribution of the test statistic (W+) underH0 can be

obtained by following the above approach to get the distribution of T+ in Boot-SVM-RFE. Fur-

ther, under large number of subsamples (S = 500), following the central limit theorem the dis-

tribution ofW+ is approximately standard normal, i.e.

Wþ � EH0
ðWþÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarH0

ðWþÞ
q � Nð0; 1Þ ð17Þ

The procedure was repeated for each gene in the GCN and the statistical test was applied to

identify hub gene based on significance values for both control and stress conditions

separately.

Algorithm:
Step 1: Beginwith all genes(nodes)in the GCN
Step 2: Constructa data set say Tk with m samplesrandomlytaken from M micro-
arraysamples
Step 3: CalculateWGS for all genes
Step 4: RepeatStep 2 and 3 S timesto get S sets of WGS for each gene
Step 5: Take a particulargene (i-th gene)alongwith its WGS
Step 6: Test the hypothesisfor i-th gene and obtainits p-value
Step 7: Repeatthe Step 5–6 for all genes(i = 1, 2, . . ., G)
Step 8: Rank the p-valuesand selectthe hub genes
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The proposed hub gene identification approach for the GCNs constructed under two con-

trasting conditions (stress vs. control) can be called as Differential Hub Gene Analysis

(DHGA). By this approach, the identification of hub genes is possible in both these GCNs

based on statistical test of significance. On the basis of p-values, genes in the GCNs under

either condition can be grouped into various groups, viz. Housekeeping Hub Genes (HHG),

Unique Hub Genes (UHG) for stress, UHG for control, Non-hub genes based on a decision

matrix (Table 2).

Modeling of Module Interaction Network

A Module Interaction Network (MIN) can be defined as a digraph, where modules are nodes

or units and edges depict regulatory relationships among the modules. Most of the approaches

available in literature for modelling of genetic networks are not applicable to the gene expres-

sion data due to the problem of high dimensionality [37]. It is biologically required to consider

gene module as a functional unit [18, 20]. Further, these modules can be taken as unit to study

the interaction among the gene modules. The expression levels of the modules can be calcu-

lated as:

Md ðtÞ ¼

X

Gene i2 module d

GiðtÞ
,

nd
where 1 � d � D; 1 � t � T ð18Þ

where,Md (t): expression level of d-thmodule (d = 1, 2,. . ., D) at time t (t = 1, 2, . . ., T), Gi (t):
expression level of i-th gene at time t, nd: number of genes present in d-thmodule.

For Al stress data, all the selected microarray samples obtained through meta-analysis

belong to time series experiments (the gene expression values were measured over 5 time

points e.g. 0, 2, 12, 48 and 72 hours) (S1 Document). Further, the bspline method of data inter-

polation was used to interpolate the module expression values up to 50 time points in the inter-

val of [0, 72 hours]. Then, we modeled the expression level of module d at time t as a linear

regression with the expression levels of other modules at time (t−1). The model which depicts

the interaction between these modules can be written as:

MdðtÞ ¼ b0 þ
X

d 6¼h

bhMh ðt � 1Þ þ ε ð19Þ

where, the βh s are regression coefficients and ε is the random noise with mean 0 and variance

σ2. To compute the regression coefficients, which depicts the interaction among the modules,

Bayesian Model Averaging (BMA) [38] algorithm was executed. Further, the posterior proba-

bilities for each module interaction were calculated by using iterative BMA algorithm [39].

The module interactions were arranged in descending order by the value of posterior probabil-

ities and significant module interactions were selected by fixing proper threshold. The MIN

was constructed by using RCytoscape package [40].

Table 2. Decision matrix for differential hub gene analysis.

Sl. No. Stress Condition Control Condition Descriptions

1 p value < α p value < α Housekeeping hub gene

2 p value < α p value > α Unique hub gene for stress condition

3 p values > α p value < α Unique hub gene for control Condition

4 p value > α p value > α Not a hub gene

p-value: Obtained statistical hub gene significance value; α: Desired level of statistical significance

doi:10.1371/journal.pone.0169605.t002
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Results

Performance analysis of Boot-SVM-RFE

In order to study the performance of the proposed Boot-SVM-RFE technique, the top 1000

genes obtained based on ranking from each of the gene selection techniques were used for clas-

sification of crop microarray samples into control and stress classes through SVM classifier.

The CAs were measured for each sliding window size over 5 fold cross validation. The CAs for

different sliding window sizes is given in Table 3. It is observed that for Al stress data, the CAs

of Boot-SVM-RFE are higher than that of other techniques viz. SVM-RFE, t-score, F-score,

RF and IG for the sliding window sizes 50, 100, 150, 200, 250 and 300. However, for higher

window sizes i.e. 350, 400, 450 and 500, the CAs for Boot-SVM-RFE are at par with that of

SVM-RFE but higher than that of t-score, F-score, RF and IG (Table 3). In general the perfor-

mance of Boot-SVM-RFE is highest followed by SVM-RFE, RF, IG, F-score and t-score with

respect to CA values for Al stress. However, in case of salinity and cold stress, the performance

of Boot-SVM-RFE is observed to be better than other gene selection techniques irrespective

of sizes of sliding window (Table 3). The order of the performance of different gene selection

techniques in case of salinity stress is Boot-SVM-RFE > SVM-RFE > F score> RF > F

score > t score > IG, whereas, in case of cold stress the order of performance is Boot-

SVM-RFE> RF> IG> SVM-RFE > F score> t score (Table 3). From this performance anal-

ysis, it can be seen that the performance of the proposed Boot-SVM-RFE is consistently better

over other contemporary techniques across different datasets related to abiotic stresses.

Further, it is also observed that Boot-SVM-RFE has less CV for most of the sliding window

sizes with respect to other five techniques when applied to the datasets of these three stresses

(Table 3).

Selection of informative genes for Al stress in soybean

Since the Boot-SVM-RFE was found to be superior as compared to other gene selection tech-

niques, it was further employed to select informative genes for Al stress in soybean. In order

to get a robust and minimal set of informative genes, the fold change in Volcano plot was

replaced with–log10 (p-values) obtained from Boot-SVM-RFE and then a gene selection plot

was constructed. The threshold values for Y and X-axis of the gene selection plot were fixed as

4 and 2.5 respectively, which lead to selection of 981 genes (Fig 1). The consensus sequences of

these 981 genes obtained from GeneChip Soybean Genome Array of Affymetrix were then

used to identify the Arabidopsis orthologs [41] and it was found that 554 genes have unique

orthologs in Arabidopsis (Fig 1). Further, the annotations of these selected genes were obtained

from SoyBase (http://soybase.org) [42]. A brief description about these selected genes is given

in S1 Table.

Functional analysis of selected genes for Al stress in soybean

The Gene Ontology (GO) enrichment analysis of the 981 selected genes was performed by

using AgriGO [43], a plant-specific GO term enrichment analysis tool. It is observed that most

of the selected genes are responsible for transition metal ion binding, metal ion binding, cation

binding, ion binding, etc. (Fig 2A). These molecular functions (MF) might be activated due to

high concentration of Al ions in water or soil. Two other MF i.e. oxido-reductase (redox) and

kinase activities are also present in these selected genes (Fig 2A). The significant behavior of

the genes in redox activity might be related to electron transport in complex chemical reac-

tions that balances the charges during ion transport. The redox activity might also be related to

Reactive Oxygen Species (ROS) that are produced in response to oxidative stress due to water
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deficit during abiotic stress like Al toxic stress [44]. In biological process categories, such as cel-

lular nitrogen compound metabolic process, amine metabolic process, cellular amino acid and

derivative metabolic process, oxoacid metabolic process, organic acid metabolic process, car-

boxylic acid metabolic process, cellular ketone metabolic process and ion transport activity,

the number of selected genes is more as compared to other biological processes (Fig 2A). It

may be inferred that some of these chosen genes are involved in ion transport activities,

Table 3. Comparison of Boot-SVM-RFE with other competitive algorithms for different sliding window sizes.

Boot-SVM-RFE SVM-RFE t-Score F-Score IG RF

WS CA CV CA CV CA CV CA CV CA CV CA CV

Aluminum stress gene expression data in Soybean

50 95.629 2.622 93.421 2.778 89.127 5.342 89.820 4.081 90.859 3.146 92.105 3.719

100 96.199 2.926 92.249 4.297 90.789 4.008 91.667 3.303 92.251 3.910 92.471 3.929

150 96.279 3.020 94.362 3.215 90.480 2.386 91.950 3.501 92.337 4.341 93.040 2.889

200 97.724 2.182 96.135 2.619 90.378 3.748 91.776 3.608 94.408 4.594 93.572 2.584

250 96.737 2.356 93.544 2.905 91.404 2.767 91.667 4.260 93.070 2.417 93.860 3.461

300 97.086 2.203 95.335 2.770 91.635 3.845 91.447 3.775 94.549 3.489 95.771 2.861

350 97.862 2.606 97.470 2.431 91.397 4.904 92.915 4.150 94.737 4.049 94.737 3.586

400 97.930 1.842 97.368 1.911 92.982 2.031 93.311 2.974 94.627 3.998 95.724 2.563

450 97.249 2.599 97.129 2.332 93.062 2.009 92.943 3.541 95.096 2.239 95.813 2.934

500 97.763 2.011 97.632 2.273 93.289 3.669 93.421 3.814 94.342 4.314 96.316 3.075

Mean 97.046 95.464 91.454 92.092 93.627 94.340

Salinity stress gene expression data in Rice

50 97.218 1.927 94.015 3.382 90.000 3.346 93.684 4.498 90.150 5.200 93.684 2.401

100 98.175 1.203 96.984 1.742 92.778 2.613 94.444 2.690 92.222 3.242 94.841 2.375

150 98.319 0.924 95.731 1.402 92.773 3.054 95.378 1.874 93.697 2.474 95.462 2.065

200 98.482 0.832 96.786 2.052 93.571 2.493 95.804 2.071 93.304 1.651 95.446 2.363

250 98.190 1.162 97.810 1.218 93.333 2.432 96.286 2.157 93.333 2.432 95.905 1.856

300 98.265 0.842 97.449 1.742 94.490 3.015 96.653 1.244 93.265 2.118 96.327 1.813

350 98.352 0.545 96.923 1.455 95.055 1.693 96.692 1.419 93.187 1.421 96.154 1.407

400 98.571 0.000 96.619 1.151 94.167 2.543 97.143 1.659 94.286 2.238 95.952 1.533

450 98.571 0.000 97.273 1.386 93.636 2.399 97.922 1.197 94.416 1.258 95.714 2.111

500 97.000 1.465 96.857 1.942 95.000 2.270 97.000 2.018 94.286 1.428 95.286 1.742

Mean 98.114 96.645 93.480 96.101 93.215 95.477

Cold stress gene expression data in Rice

50 96.328 1.830 94.947 2.031 94.000 1.701 94.579 2.153 94.526 2.322 94.526 2.221

100 97.175 1.387 95.778 2.043 94.333 2.356 95.889 1.820 95.722 2.209 95.611 2.224

150 97.507 0.932 96.471 1.762 94.235 2.236 95.235 1.983 95.824 1.760 96.294 2.080

200 98.482 0.832 97.000 1.304 95.500 1.622 95.875 1.861 96.250 1.615 97.375 2.368

250 98.190 1.162 96.067 1.906 95.333 1.969 95.933 1.446 96.333 1.472 96.267 2.051

300 98.265 0.842 96.000 1.634 95.786 1.487 96.014 1.935 96.143 1.255 96.643 1.855

350 96.785 0.554 96.923 1.296 95.923 1.163 96.062 1.247 96.154 1.432 97.923 1.742

400 98.881 0.687 95.567 2.027 95.667 1.433 96.667 1.273 96.000 1.740 97.333 1.752

450 98.777 0.383 95.545 1.432 95.818 1.671 95.909 1.185 97.727 1.033 97.545 1.855

500 97.679 1.454 96.700 1.545 94.500 1.433 95.100 1.353 97.300 1.078 97.300 1.594

Mean 97.807 96.100 95.110 95.726 96.197 96.681

Boot-SVM-RFE: Bootstrap SVM-RFE; RF: Random forest; IG: Information gain measure; WS: Sliding window Sizes; CA: Classification accuracy; CV: Co-

efficient of Variation in CA

doi:10.1371/journal.pone.0169605.t003
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i.e. involved in transporting the ions outside the cell to maintain the proper pH in the cell [45].

In case of cellular components, chosen genes are related to transcription factor complex, cyto-

plasmic membrane-bounded vesicle, membrane-bounded vesicle, cytoplasmic vesicle, vesicle

and nucleoplasm part (Fig 2A). It can be seen that the maximum number of the genes is related

to vesicle and membrane, which is consistent with the detoxifying mechanism of metal ions

available in Al stress condition, especially in sequestration by vacuole [46, 47]. Some of the

selected genes present on membrane are found to be involved in transporting of metal ions

outside the cell or to the vacuole to maintain pH and transmembrane proton gradient [48].

Gene co-expression network analysis for Al stress in soybean

Using WGCNA, the selected 981 genes were divided into 19 and 18 modules (including grey

colour module, which is the module of the non-modular genes) for Al stress and control condi-

tions respectively (Fig 3). In both the cases, module represented by turquoise colour contains

maximum number of genes, hence designated as the largest module for either condition.

Based on the expression profiles of these selected genes for both Al stress and control condi-

tions, 23 consensus modules (set of genes with similar co-expression patterns) were obtained.

Fig 1. Gene selection plot for selection of informative genes for Al stress in soybean. The horizontal axis represents negative logarithm of statistical

significance values obtained from Boot-SVM-RFE. The vertical axis shows the negative logarithm of statistical significance values from t-test. Green dots

indicate selected probes with–log (p-value) from Boot-SVM-RFE� threshold of 2.5 and t-test–log (p-value)� threshold of 4. Red stars indicate the

selected probes which have Arabidopsis orthologs. Blue dots indicate unselected probes.

doi:10.1371/journal.pone.0169605.g001
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The matching of various modules for either condition with the consensus modules can be visu-

alized from Fig 3 in terms of their colours. The extent of crosstalk between the various modules

of consensus vs. control and consensus vs. stress conditions is given in S3 Fig. Further, the long

length of branch in the dendrogram and high intensity of red colour in heat maps (S4 Fig)

showed that the genes belong to same module have higher degree of co-expression as com-

pared to genes present outside the module. The module memberships (number of genes

Fig 2. Functional enrichment analysis of selected genes and hub genes under Al stress. The GO term enrichment analysis of 981 selected

informative genes (A) and hub genes (B) for Al stress condition using Agrigo is shown for different gene ontology categories (CC, MF and BP). For (A), the

GO terms are chosen whose p-values < 0.008 and FDR values (false discovery rate) < 0.6. For (B), the GO terms are chosen whose p-values < 0.1 and

FDR values < 0.8.

doi:10.1371/journal.pone.0169605.g002

Fig 3. Clustering dendrogram of selected genes and gene modules under Al stress and control condition. The correspondence between

Consensus Modules (CM) with modules under Stress (SM) (A) and control (NM) (B) conditions is represented.

doi:10.1371/journal.pone.0169605.g003
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present) of each module and their underlying molecular functions under Al stress condition

are given in Table 4. It is observed that, every module is significantly annotated with GO

terms, except gene modules represented by green-yellow and grey colour (Table 4). So, it can

be inferred that functions of genes present within these two modules are still largely unknown.

Furthermore, 19 identified modules (including grey module) were used as functional unit to

model the MIN. The posterior probabilities of each module interactions were computed (using

iBMA algorithm) and used to construct the MIN for Al stress as shown in Fig 4. It is seen that

modules 1 and 18 are interacting with most of the modules in the MIN (Fig 4). Thus, these

modules along with their members may play a significant role in Al stress response in soybean.

Performance analysis of proposed hub gene detection approach

Based on the existing approach (i.e. WGS alone), 39.05% and 36.91% genes in the GCN are

detected as hub genes in soybean for stress and control conditions respectively (Table 5). Thus,

Table 4. List of gene modules along with their gene and hub gene memberships under Al stress condition.

SN Module G AO HG UHG Molecular Functions

1 Black 40 25 11 4 Monooxygenase activity, iron ion binding, heme binding, tetrapyrrole binding, oxidoreductase activity, cation

binding ion binding,transition metal ion binding

2 Blue 137 68 0 0 Protein kinase activity, kinase activity, phosphotransferase activity, alcohol group as acceptor

3 Brown 100 68 38 32 Iron ion binding, hydrolase activity, acting on ester bonds, metal ion binding, cation binding, ion binding,

transcription factor activity, DNA binding, protein kinase activity, phosphotransferase activity, transition metal

ion binding, oxidoreductase activity, kinase activity

4 Cyan 29 23 0 0 Metal ion binding, cation binding, ion binding, transition metal ion binding, nucleic acid binding

5 Green 58 32 0 0 Protein kinase activity, phosphotransferase activity, protein serine /threonine kinase activity, protein tyrosine

kinase activity, kinase activity

6 Green-

yellow

33 17 3 3 Unknown

7 Grey 9 4 0 0 Unknown

8 Grey60 21 11 0 0 Binding

9 Light cyan 23 13 1 1 Binding

10 Light-green 16 11 0 0 Catalytic activity

11 Magenta 35 16 7 6 Hydrolase activity

12 Midnight-

blue

24 11 5 3 Catalytic activity Binding

13 Pink 37 18 0 0 Nucleotide binding, ATP binding, adenyl ribonucleotide binding, purine nucleoside binding, nucleoside binding,

adenyl nucleotide binding

14 Purple 34 20 0 0 Adenyl ribonucleotide binding adenyl nucleotide binding purine nucleoside binding, nucleoside binding, purine

ribonucleotide binding, ribonucleotide binding, nucleotide binding

15 Red 54 28 20 2 Oxidoreductase activity

16 Salmon 31 15 0 0 Hydrolase activity, nucleotide binding

17 Tan 31 19 12 8 Hydrolase activity

18 Turquoise 185 106 86 45 Primary active transmembrane transporter activity, zinc ion, binding protein kinase activity, ATPase activity,

cation transmembrane transporter activity, transition metal ion binding, metal ion binding, active

transmembrane transporter activity, phosphotransferase activity, ATPase activity, cation binding, ion binding,

ion transmembrane transporter activity, transferase activity, kinase activity

19 Yellow 84 49 45 26 Oxidoreductase activity

Total 981 554 228 130

SN: Serial number of module; grey module: genes which do not belong to any module are shown with grey colour; Module: module represented by colours;

G: Number of genes belongs to the modules; AO: Number of Arabidopsis orthologs genes belong to each module; HG: Number of hub genes belong to

each module; UHG: number of hub genes unique to stress

doi:10.1371/journal.pone.0169605.t004
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large proportions of genes are identified as hub genes in the GCN based on the existing

approach, which contradicts the scale free property of biological networks (as GCN is a scale

free network) [20, 36]. Similar findings are observed for salinity and cold stresses in rice

(Table 5). However, in case of proposed approach (computing p-values) only 23.24% and

Fig 4. Module interaction network for gene modules under Al stress. The network consists of 19 nodes and 70 edges (regulatory

relations). To remove the weak interaction among the modules, a threshold value for posterior probability is fixed at 0.2.

doi:10.1371/journal.pone.0169605.g004
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19.14% of genes in the GCN are found to be hub genes in soybean (for p value< 1E-10) for

stress and control situations respectively (Table 5). Moreover, the number of hubs can be fur-

ther reduced by decreasing the level of significance in the proposed approach. This indicates

that the proposed approach will be able to identify relatively small subset of genes as hubs in

the GCN i.e. fewer WGS are statistically significant. Similar results were obtained for the salin-

ity and cold stresses in rice (Table 5).

The distributions of WGS (i.e. are heavy right tailed distributions) contain lower and upper

values, which are not much discriminated between low and high connection degree of genes

(Fig 5). On the contrary, from the distribution of p-values, the genes with high connection

degrees are well separated from that of low connection degrees in the GCN (Fig 6). In other

words, the distinction between statistically strongly and weakly connected genes in the GCN

can be better seen from Fig 6 than Fig 5. Further, the results obtained from the proposed

DHGA approach for two contrasting conditions (stress vs. control) are given in Table 6. The

DHGA approach allowed grouping of 187 (stress) and 208 (control) hub genes of rice in the

GCN into HHG (141), UHG to salinity stress (46) and UHG to control (67) (Table 6). Similar

interpretations can be made for Al stress in soybean and cold stress in rice.

Differential hub gene analysis for Al stress condition in soybean

Following the above approach, 228 and 187 genes were identified as hub genes whose p-values
were� 1E-10 for Al stress and control conditions of soybean respectively (Table 6). From the

DHGA result, it is seen that 98 hub genes are common whereas 130 and 89 hub genes are

unique for Al stress and control conditions respectively (Fig 7C). The mapping of the HHG

and UHGs in soybean to Arabidopsis genome leads to the identification of corresponding Ara-
bidopsis orthologs genes (Fig 7C). The GCNs constructed for these two differential conditions

(Al stress vs. control) in soybean along with the positions of hub genes and UHGs are shown

in Fig 7.

The functional analysis of the selected hub genes under Al stress revealed their associated

cellular mechanisms. From the GO analysis (in cellular components), it is observed that most

of the hub genes are present in plastid, vacoule, membrane bounded vacuole, cytoplasmic vac-

uole (Fig 2B), mainly responsible for pumping out ions from the cell. In MF category, majority

Table 5. Comparison of proposed and existing approach in terms of predicted hub genes.

Existing Approach Proposed Approach

Data sets # HG % HG p value < 1E-5 p value < 1E-10

# HG % HG # HG % HG

Salinity stress in rice

Rice (Salinity stress) 214 38.49 187 33.63 165 29.66

Rice (Control) 229 41.19 208 37.41 180 32.36

Al stress in soybean

Soybean (Al stress) 383 39.05 331 33.74 228 23.24

Soybean (Control) 362 36.91 285 29.05 187 19.14

Cold stress in rice

Rice (Cold stress) 301 46.3 265 40.7 234 36

Rice (Control) 242 37.23 208 32 162 24.09

# HG: Number of hub genes;

% HG: Percentage of hub genes in the gene co-expression network;

Two thresholds for p value are taken as 1E-5 and 1E-10

doi:10.1371/journal.pone.0169605.t005

Statistical Approaches for Gene Co-Expression Network Analysis

PLOS ONE | DOI:10.1371/journal.pone.0169605 January 5, 2017 15 / 24



of the hub genes were found to be involved in nucleic acid, cation ion, metal ion and zinc ion

binding activities (Fig 2B), which may be responsible for fixing metal ions. Further, a large por-

tion of the hub genes were found to be responsible for nitrogen compound metabolic process,

response to stress and chemical stimulus, defense response and signal transduction under bio-

logical process category.

The module membership of the hub genes as well as UHG under Al stress showed that

most of the hub genes under Al stress condition belong to turquoise (86), yellow (45) and

brown (38) modules (Table 4). Similarly, out of 130 UHG, mainly 45, 32 and 26 are the mem-

bers of turquoise, brown and yellow colour modules respectively. Interestingly, it can be seen

that the blue colour module contains the second highest number of selected genes (137), but

have no hub genes, while the brown colour module is the third largest module (100 genes) con-

tains 38 hub genes out of which 32 are UHG for Al stress. Further, brown colour module is

found to be associated with various important functions like ion binding, redox activity, kinase

Fig 5. Distribution of WGS in complete networks under stress and control conditions. The distributions of WGS of genes in GCNs for Al stress (A)

and control (B) conditions in soybean are shown. The distributions of WGS of genes in GCNs for salinity stress (C) and control (D) conditions in rice are

shown. For all these cases, the distributions are heavy tailed.

doi:10.1371/journal.pone.0169605.g005
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activity, phosphortransferase activity (Table 4), which are important for the abiotic stress

response in plants [45]. From the molecular biology point of view, the brown colour module

along with its members seems to be very important for breeding Al stress resistant varieties. A

brief description about hub genes and UHG for Al stress condition is provided in S2 and S3

Tables respectively.

Fig 6. Distribution of p-values under stress and control conditions. The distributions of p-values of genes in GCNs for Al stress (A) and control (B)

conditions in soybean are shown. The distributions of p-values of genes in GCNs for salinity stress (C) and control (D) conditions in rice are shown. Genes

with low p-values represent highly interacting genes in the GCN.

doi:10.1371/journal.pone.0169605.g006

Table 6. Groups of hub genes predicted using DHGA approach.

Data # Housekeeping hub #UHG stress #UHG control # Non hub # Total genes

Soybean (Al stress vs. control) 98 130 89 566 981

Rice (Salt stress vs. control) 141 46 67 161 556

Rice (Cold stress vs. control) 124 141 84 177 650

#Housekeeping Hub: Number of hub genes common to stress and control; #UHG stress: Number of hub genes unique to stress; #UHG control: Number of

hub genes unique to control; #Non hub: Number of genes which are not hub gene in the GCN; #Total genes: Total number of genes in GCN

doi:10.1371/journal.pone.0169605.t006
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Discussion

The proposed Boot-SVM-RFE technique was found to be superior for selection of informative

genes from high dimensional gene expression data. This approach is also advantageous over

classical gene selection techniques like t-test and F-score, as it does not require any distribu-

tional assumptions about the data. In this technique, a p-value was assigned to each gene and

genes with lower p-values were considered as informative for the particular condition/trait

under investigation. The selection of informative genes based on p-values is scientific as well

statistically meaningful to experimental biologists as compared to other techniques. Further,

the bootstrap procedure used in this technique was expected to remove the spurious associa-

tions of the genes with their classes. The comparative analysis showed that the Boot-SVM-RFE

performed better than existing techniques i.e. SVM-RFE, t-score, F-score, RF and IG in terms

of CA. Besides, its performance can be considered as robust due to the lower CV values in CA

for all window sizes.

The proposed statistical approach for hub gene identification allowed the ranking and selec-

tion of candidate hub genes in the GCN, based on an assessment of the statistical significance

of the gene connections. This was done with a randomized resampling based procedure where

statistical significance values were calculated based on the NP test, which does not require

Gaussian assumptions of data. Further, genes with lower p-values represent highly connected

genes in the GCN and thus designated as hub genes. Moreover, the randomisation procedure

used in this approach allows one to test, whether the observed gene connectivity is greater than

expected gene connectivity value by chance (i.e. rejection of null hypothesis of random associa-

tion). This was also able to remove the spurious association among genes, as these associations

are measured on the basis of PCC. It seems to be more statistically convincing to select hub

genes based on p-values rather than WGS alone, because in comparison to WGS, the p-values
provides a reliable measure of gene connectivity based on a statistical criterion (lower p-value
indicates high gene connectivity and vice-versa). Further, the detected hub genes tend to have

Fig 7. Gene Co-expression Networks for two differential conditions in soybean. The GCNs are constructed for Al stress (A) and control (B) conditions

respectively. The nodes with red colors represent the housekeeping hub genes, green color nodes represent UHG and blue color nodes represent the non-

hub genes. (C) Venn diagram of hub genes in the GCNs constructed under Al stress (A) and control (B) conditions in soybean. The number of orthologous

genes found in Arabidopsis corresponding to unique and common hub genes in soybean is also shown.

doi:10.1371/journal.pone.0169605.g007
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higher connection degrees and are widely separated from the genes with low connection

degrees in the GCN. Moreover, based on this approach a few as well as important genes were

identified as hubs in the GCN as compared to existing approach, which is in accordance with

the scale free property of biological networks.

Using DHGA approach, genes in the GCN were grouped into various categories likeHHG,

non-hubs, UHG for stress and control based on the computed p-values for these two contrast-

ing conditions. These identified hub genes may be considered as biomarkers for further stud-

ies, including analysis of their involvement in diverse cellular mechanisms. Further, the HHG

can be used for the maintenance of basal cellular functions that are essential for the existence

of a cell [49], whereas, UHG can be used in stress response engineering in crops for developing

stress tolerant cultivars.

Understanding Al stress response mechanism in soybean is of paramount importance for

plant breeders to develop Al stress tolerant cultivars. In public domain databases, there are few

samples available related to Al stress in soybean, which have been generated over varying

experimental conditions by multiple studies. Thus, meta-analysis was performed to combine

these datasets and the meta-data was used for further statistical analysis. Then, developed tech-

niques were applied to identify the responsible genes to understand stress response mechanism

in this crop. It has been reported that there are two main processes involved in Al stress

response in plants (i) exclusion of Al ions from root cells and (ii) detoxification of Al ions in

the plant cells [50]. Some selected genes were found to be involved in transporting of metal

ions outside the cell, which might be associated with the first process. The function like redox

activity related to electron transport under chemical reactions that balances the charges during

metallic ions transport [45], might be associated with the second process. The redox activity

might also be related to ROS generation that is produced in plants in response to Al stress. Fur-

ther, ROS also seriously disrupts normal metabolism of cell through peroxidation of lipids

[51], proteins and nucleic acids [52]. The increased redox activity is consistent with activation

of the anti-oxidative enzymes such as catalase, ascorbate peroxidase and guaiacol peroxidase

under abiotic stress condition [53]. The activities under BP taxonomy like cellular glucan and

cellular amino acid metabolic processes are known to increase in plants in response to various

abiotic stresses [54] and other reported biological processes need to be studied in the context

of Al toxic stress. The role of phosphotranferase activity in conferring tolerance against abiotic

stresses like drought and salt in rice and Arabidopsis are well established [55]. The role of stress

induced organic acid synthesis in conferring Al tolerance in higher plants are also well

reported [56]. These processes might be related to detoxification of Al ions, which occurs rap-

idly after exposure to Al stress in plants [57].

dhga R Software package

In order to facilitate the use of proposed hub gene detection and DHGA approaches, we have

developed an R software package which includes dhga R package accompanying documenta-

tion and model real data examples. This package can be freely downloaded from https://

cran.r-project.org/web/packages/dhga. This software is capable of providing weighted adja-

cency matrix, edge list, node list for constructing GCN, p-values for gene connections along

with weighted gene scores, etc. It also able to identify hub genes and perform differential hub

analysis in the GCN based on the proposed approaches. Also the outputs provided by this

can be directly used as inputs for gene co-expression networks construction software like

Cytoscape, Visant, etc. However, it is difficult to construct GCN using this software package

on R-platform.
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Conclusions

This investigation has some contributions to gene co-expression analysis. First, a statistically

sound Boot-SVM-RFE gene selection technique was proposed for the selection of informative

genes from high dimensional gene expression data. Second, a new statistical approach was pro-

posed for the identification of hub genes in a GCN. Third, the proposed DHGA approach may

be used to group genes in the GCN into various categories based on their gene connectivity.

Fourth, a statistical modelling approach was employed to find the interaction among the gene

modules. Moreover, the proposed Boot-SVM-RFE and DHGA approach can be used for other

case vs. control genomic studies including NGS expression study. This study also throws some

light to understand the mechanism of Al stress response in soybean and some key important

genes were reported. Moreover, functional enrichment analysis of these key genes revealed

their associated intracellular functions under Al stress. This information revealed in this study

on various molecular mechanisms like biosynthesis of secondary metabolites and stress spe-

cific roles of certain plant products may be useful for mitigation of Al stress in plants, particu-

larly in soybean. These identified genes can act as potential targets for bio-engineering of Al

toxic stress response in soybean.
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S1 Document. Descriptions about the GEO series and selected GEO samples for Al stress.

(DOCX)

S1 Fig. Heat map of correlation among selected microarray samples. It can be seen that the

correlation is� 0.9 and hence the samples are said to be homogeneous though they were gen-

erated across different experimental conditions.

(TIF)

S2 Fig. Analysis of network topology for gene co-expression network. Here, Y-axis indicates

scale-free fit index (model fit value) and X-axis represents various soft-thresholding powers.

The red line indicates soft power at which the scale-free fit index cut-off value 0.85 and mean

connectivity value 40 is reached.

(TIF)

S3 Fig. Crosstalk between the modules for consensus, Al stress and control conditions. The

extent of crosstalk between the Consensus Modules (CM) and modules found under stress (SM)

and control (NM) condition are shown in matrices form. Each row of the Table corresponds to

modules under individual condition (labeled by color names as well as text along with the num-

ber of genes in the modules), and column corresponds to consensus modules. Numbers in the

Table indicate gene counts in the intersection of the corresponding modules. The figures in vari-

ous colors in the Table showed the highest values.

(TIF)

S4 Fig. Dendrograms and heatmaps of selected informative genes divided into tightly co-

expressed gene modules under Al stress and control condition. The heat map depicts the

correlations among the 981 genes detected by gene selection plot from microarray gene

expression profiling under stress (A) and control (B) conditions. The intensity of deep red col-

our in the heat map shows the strong correlation among genes present in the module.

(TIF)
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