Table 4.
Selected review of heavy metal recovery from waste and wastewater sources.
Metal/s | Source | Process | Mechanism/reaction∗ | Microorganism involved | Recovery potential∗∗ | Reference |
---|---|---|---|---|---|---|
Al, Mo, Ni, Va | Hydrotreating catalysts | Mesophilic bioleaching/chemical precipitation | M0 + 2Fe3+ → M2+ + 2Fe2+ | Mixed culture | 65 (Al), 87 (Mo), 52 (Ni), 65 (V) | Cibati et al., 2015 |
Cu, Ni, Zn, Pb, Ga, Sn | Printed circuit boards | Thermophilic bioleaching | M0 + 2Fe3+ → M2+ + 2Fe2+ | Mixed culture (dominating Leptospirillum, Acidithiobacillus, Sulfobacillus | 99 (Cu), 84 (Ni), 99 (Zn), 3 (Pb), 43 (Ga), 7 (Sn) | Guezennec et al., 2015 |
Cu | Cu-Ag ores | Mesophilic bioleaching | Glutamate → Glutamic acid + Cu(s) → Cu2+(aq) | Lysinibacillus sphaericus JG-A12, Bacillus sp. JG-B12, Bacillus sp. JG-B5T | 20–43 | Kostudis et al., 2015 |
Fe | Synthetic wastewater | Chelation | Bioproduction of pyoverdin (Pyo, C56H88N18O22). Pyo + Fe(III)(aq) → Complex Pyo-Fe(III) |
Pseudomonas fluorescens | 99 | Renard et al., 2005 |
Pt, Pd, Rh | Spent automotive catalysts | Mesophilic bioleaching | Glycine → CN- + NaOH → NaCN 2Pt + 8NaCN + O2 + 2H2O → 2Na2[Pt(CN)4] + 4NaOH |
Chromobacterium violaceum | 92.1 (Pt), 99.5 (Pd), 96.5 (Rh) | Shin et al., 2015 |
Ni, V, Mo | Decoked spent petroleum catalyst | Mesophilic bioleaching | S0 + 1.5O2 + H2O (b) → H2SO4 Mox + H2SO4 → MSO4 + H2O |
Acidithiobacillus thiooxidans | 79 (Ni), 90 (V), 88(Mo) | Srichandan et al., 2014 |
As(III), Fe (II) | Synthetic wastewater | Oxidation/Precipitation | Fe(II) + O2 → Fe(III)(aq) → jarosite: [K, Na, NH4]Fe3(SO4)2(OH)6) As(III)(aq) + jarosite → As-Jarosite |
Mixed culture (Acidithiobacillus ferroxidans, Acidithiobacillus ferrivorans, Leptospirillum ferriphilum, Leptospirillum ferrooxidans) | 99.5 | Ahoranta et al., 2016 |
Cu(II), Fe(II) | Acid mine drainage | Reduction/Precipitation | Lactate + SO42- → biomass + H2O + CO2 + S2- Cu2+ + Fe2+ + 2S2- → CuS + FeS |
SRB Mixed culture | 99 (Cu), 97 (Fe) | Chen et al., 2009 |
Fe, As, Cu, Cd, Zn, others | Acid mine drainage | Oxidation/Precipitation/Reduction/Precipitation | Fe(II) + O2 → Fe(III)(aq) → schwertmannite: Fe8O8(OH)6 As(III)(aq) + schwermannite → As-schwermannite Glycerol + SO42- + H+ → S2- + CO2 + H2O S2- + M2+ → MS |
First stage: Ferrovum mixofaciens. Second stage: SRB Mixed culture | 99.9 (Cd, Cu), 50 (Ni), 99.9 (Fe), 99.9 (As) | Hedrich and Johnson, 2014 |
Cd, Cu, Mn, Zn | Synthetic wastewater | Bioaccumulation | Direct bioaccumulation inside the cells | Chlorella minutissima | 33.7 (Zn), 21.2 (Mn), 35.4 (Cd), 3.3 (Cu) mg/g | Yang et al., 2015 |
Pb | Lead-zinc mine tailings | Bioaccumulation/biomineralization | Pb2 + → Ca2.5Pb7.5(OH)2(PO4)6 (Pb-hydroxiapatite) | Bacillus cereus | 226 mg/g | Chen et al., 2016 |
Au | Au-containing industrial wastewater | Biosorption | Direct biosorption onto EPS | Cyanothece sp., Nostoc sp., Rhodopseudomonas palustris, Rhodobacter sphaeroides | 318 (Cyanothece), 64 (Nostoc), 80 (R. palustris), 45 (R. sphaeroides) mg/g | Colica et al., 2012 |
Fe | Barren head leaching effluent | Oxidation/precipitation | Fe2 + (aq) + O2 +2H+ → Fe3+(s) + 2H2O | Mixed culture (dominating Leptospirillum ferriphilum and Ferromicrobium acidiphilum) | 5–40 | Nurmi et al., 2009 |
As | Synthetic wastewater | Reduction/precipitation | As(V) + SO42- + Ethanol → As(III) + S2- +Biomass → As2S3 + AsS | Anaerobic mixed culture | 91.2 | Rodriguez-Freire et al., 2016 |
∗M, Metal; (aq), aqueous; (s), solid. ∗∗Data is in (%) except where specified.