Skip to main content
. 2017 Jan 6;7:2106. doi: 10.3389/fmicb.2016.02106

Table 4.

Selected review of heavy metal recovery from waste and wastewater sources.

Metal/s Source Process Mechanism/reaction Microorganism involved Recovery potential∗∗ Reference
Al, Mo, Ni, Va Hydrotreating catalysts Mesophilic bioleaching/chemical precipitation M0 + 2Fe3+ → M2+ + 2Fe2+ Mixed culture 65 (Al), 87 (Mo), 52 (Ni), 65 (V) Cibati et al., 2015
Cu, Ni, Zn, Pb, Ga, Sn Printed circuit boards Thermophilic bioleaching M0 + 2Fe3+ → M2+ + 2Fe2+ Mixed culture (dominating Leptospirillum, Acidithiobacillus, Sulfobacillus 99 (Cu), 84 (Ni), 99 (Zn), 3 (Pb), 43 (Ga), 7 (Sn) Guezennec et al., 2015
Cu Cu-Ag ores Mesophilic bioleaching Glutamate → Glutamic acid + Cu(s) → Cu2+(aq) Lysinibacillus sphaericus JG-A12, Bacillus sp. JG-B12, Bacillus sp. JG-B5T 20–43 Kostudis et al., 2015
Fe Synthetic wastewater Chelation Bioproduction of pyoverdin (Pyo, C56H88N18O22).
Pyo + Fe(III)(aq) → Complex Pyo-Fe(III)
Pseudomonas fluorescens 99 Renard et al., 2005
Pt, Pd, Rh Spent automotive catalysts Mesophilic bioleaching Glycine → CN- + NaOH → NaCN
2Pt + 8NaCN + O2 + 2H2O → 2Na2[Pt(CN)4] + 4NaOH
Chromobacterium violaceum 92.1 (Pt), 99.5 (Pd), 96.5 (Rh) Shin et al., 2015
Ni, V, Mo Decoked spent petroleum catalyst Mesophilic bioleaching S0 + 1.5O2 + H2O (b) → H2SO4
Mox + H2SO4 → MSO4 + H2O
Acidithiobacillus thiooxidans 79 (Ni), 90 (V), 88(Mo) Srichandan et al., 2014
As(III), Fe (II) Synthetic wastewater Oxidation/Precipitation Fe(II) + O2 → Fe(III)(aq) → jarosite: [K, Na, NH4]Fe3(SO4)2(OH)6)
As(III)(aq) + jarosite → As-Jarosite
Mixed culture (Acidithiobacillus ferroxidans, Acidithiobacillus ferrivorans, Leptospirillum ferriphilum, Leptospirillum ferrooxidans) 99.5 Ahoranta et al., 2016
Cu(II), Fe(II) Acid mine drainage Reduction/Precipitation Lactate + SO42- → biomass + H2O + CO2 + S2-
Cu2+ + Fe2+ + 2S2- → CuS + FeS
SRB Mixed culture 99 (Cu), 97 (Fe) Chen et al., 2009
Fe, As, Cu, Cd, Zn, others Acid mine drainage Oxidation/Precipitation/Reduction/Precipitation Fe(II) + O2 → Fe(III)(aq) → schwertmannite: Fe8O8(OH)6
As(III)(aq) + schwermannite → As-schwermannite
Glycerol + SO42- + H+ → S2- + CO2 + H2O
S2- + M2+ → MS
First stage: Ferrovum mixofaciens. Second stage: SRB Mixed culture 99.9 (Cd, Cu), 50 (Ni), 99.9 (Fe), 99.9 (As) Hedrich and Johnson, 2014
Cd, Cu, Mn, Zn Synthetic wastewater Bioaccumulation Direct bioaccumulation inside the cells Chlorella minutissima 33.7 (Zn), 21.2 (Mn), 35.4 (Cd), 3.3 (Cu) mg/g Yang et al., 2015
Pb Lead-zinc mine tailings Bioaccumulation/biomineralization Pb2 + → Ca2.5Pb7.5(OH)2(PO4)6 (Pb-hydroxiapatite) Bacillus cereus 226 mg/g Chen et al., 2016
Au Au-containing industrial wastewater Biosorption Direct biosorption onto EPS Cyanothece sp., Nostoc sp., Rhodopseudomonas palustris, Rhodobacter sphaeroides 318 (Cyanothece), 64 (Nostoc), 80 (R. palustris), 45 (R. sphaeroides) mg/g Colica et al., 2012
Fe Barren head leaching effluent Oxidation/precipitation Fe2 + (aq) + O2 +2H+ → Fe3+(s) + 2H2O Mixed culture (dominating Leptospirillum ferriphilum and Ferromicrobium acidiphilum) 5–40 Nurmi et al., 2009
As Synthetic wastewater Reduction/precipitation As(V) + SO42- + Ethanol → As(III) + S2- +Biomass → As2S3 + AsS Anaerobic mixed culture 91.2 Rodriguez-Freire et al., 2016

M, Metal; (aq), aqueous; (s), solid. ∗∗Data is in (%) except where specified.