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Abstract This paper focuses on the problem of feature

extraction and the classification of microvascular mor-

phological types to aid esophageal cancer detection. We

present a patch-based system with a hybrid SVM model

with data augmentation for intraepithelial papillary capil-

lary loop recognition. A greedy patch-generating algorithm

and a specialized CNN named NBI-Net are designed to

extract hierarchical features from patches. We investigate a

series of data augmentation techniques to progressively

improve the prediction invariance of image scaling and

rotation. For classifier boosting, SVM is used as an alter-

native to softmax to enhance generalization ability. The

effectiveness of CNN feature representation ability is dis-

cussed for a set of widely used CNN models, including

AlexNet, VGG-16, and GoogLeNet. Experiments are

conducted on the NBI-ME dataset. The recognition rate is

up to 92.74% on the patch level with data augmentation

and classifier boosting. The results show that the combined

CNN-SVM model beats models of traditional features with

SVM as well as the original CNN with softmax. The

synthesis results indicate that our system is able to assist

clinical diagnosis to a certain extent.

Keywords Microvascular type classification � Feature
representation � Convolutional neural network � Support
vector machine (SVM) � Data augmentation

1 Introduction

Feature design for image recognition has been studied for

decades. Powerful features, such as local binary pattern

(LBP) [1], scale-invariant feature transform (SIFT) [2],

speeded up robust features (SURF) [3], and histograms of

oriented gradients (HOG) [4], have been proposed to pro-

mote the development of classical computer vision and

pattern recognition tasks. However, these traditional

handcrafted features are unsatisfactory for distinctive tasks,

especially medical image processing.

Recently, deep learning using convolution neural net-

works (CNNs) has gained much success in visual recog-

nition tasks such as image classification and object

detection [5–8]. Since the descriptors acquired from these

neural networks (e.g., AlexNet [5] and OverFeat [6]) are

quite powerful, it is popular to treat these CNNs, trained on

large natural image datasets (e.g., ImageNet [9]), as generic

feature extractors. By reusing the knowledge gained from

past related tasks [10–12], it is now much easier to tackle

more challenging tasks such as image retrieval [5],

semantic segmentation [13], fine grained recognition [14],

and emotion recognition [15].

Support vector machine (SVM) is popular for classifi-

cation, particularly for medical signal processing [16–18].

For recognition, great attention has been paid to the fusion

of neural networks and SVM. The benefits of their com-

bination have been confirmed by prior works on pedestrian

detection [19], face recognition [20], and handwritten digit

recognition [21]. Razavian et al. [14] use an off-the-shelf
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CNN representation with linear SVM to address recogni-

tion tasks. The results suggest it to be a strong competitor

to more sophisticated and highly tuned state-of-the-art

methods on various datasets.

Another way to advance recognition is called data

augmentation [22], where transformations such as defor-

mation and translation [5] have led to significant

improvements in prediction accuracy and system

robustness.

This paper focuses on the recognition of intraepithelial

papillary capillary loops (IPCLs), a kind of esophageal

microvessel, whose types are closely related to the depth of

tumor invasion of esophageal squamous cell carcinoma.

While the recognition results are meaningful for cancer

detection and treatment [23], the task suffers from chal-

lenges such as inter-class similarity, intra-class variety, and

data imbalance. Hence, efficient feature representations,

strong classifiers are desired.

In this paper, we propose a CNN-SVM model for the

recognition of IPCLs. The model is tested on the NBI-ME

dataset (Sect. 2.2). The key idea of our method is to train a

specialized CNN called NBI-Net to extract robust hierar-

chical features from image patches and provide them to

SVM classifiers. We also investigate the feature represen-

tation ability of deep models and examine the character-

istics of narrowband imaging (NBI) images through data

augmentation. Comparisons with traditional feature

extractors and a plain CNN model show that the proposed

model outperforms them.

2 Related Work

With poor prognosis when diagnosed at an advanced stage,

esophageal cancer ranks as the sixth most common cause

of cancer-related death [23].

NBI is a technology that enhances vessel imaging based

on the spectral absorption of hemoglobin. Recent devel-

opments in narrowband imaging with magnified endoscopy

(NBI-ME) and medical image processing technologies

allow clear visualization of the esophageal microvascular

structure, facilitating cancer detection in the early stage

[24, 25].

2.1 IPCL Type Definition

In clinical practice, IPCLs are observed as brown loops on

NBI-ME images. Their types demonstrate characteristic

morphological changes (Fig. 1) according to the cancer

infiltration. The microvessel types are classified into four

classes according to the magnified endoscopy diagnostic

criteria for esophageal cancer proposed by the Japan

Esophageal Society [26] and researchers [24]. The types,

illustrated in Fig. 2, are defined as follows:

• Type A normal vessels, or vessels with slight dilation

and tortuosity

• Type B1 dilated and tortuous vessels of various

diameters and shapes and with intact loop formation

• Type B2 irregularly and dendritically branched vessels

with no loop formation

• Type B3 obviously thicker vessels than surrounding

ones

2.2 Image Acquisition and Annotation

Our NBI-ME dataset contains 261 full-size images of 67

patient cases captured from January 2013 to February 2015

at the Department of Gastroenterology, the First Affiliated

Hospital of Anhui Medical University. Confirmed by

biopsy of esophagectomy specimens, image regions were

manually annotated after collection. Besides giving a scalar

label type, label curves were carefully drawn on each

original full-size image.

2.3 Task Challenges

Data problems are sometimes the bottleneck in a pattern

recognition system. For NBI image acquisition, non-uni-

form illumination and camera noise result in a reduction of

image quality. In addition, the magnification of NBI ima-

ges changes with the distance from the tissue to the camera

lens. Thus, parts of raw images must be discarded due to

image distortion.

The classification task suffers from inter-class similarity

and intra-class variety (Fig. 3). Medically, tumors progress

gradually and continuously from low to high grade. How-

ever, IPCLs are factitiously classified into four discrete

types so that it is sometimes difficult to distinguish two

Fig. 1 Morphological changes of vessels [23]

Type A Type B1 Type B2 Type B3

Fig. 2 Illustration of typical IPCL types [26]
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adjacent types. The texture pattern of IPCLs varies from

case to case, leading to highly intra-class variety.

In addition, data imbalance is a problem for model

optimization. For instance, a class with fewer training

samples is easily belittled when the optimal target is

minimizing the training error of the whole dataset. As

lesions for B2 and B3 are much fewer than those for A and

B1, to mitigate data imbalance, we simplified the problem

to a three-class (A, B1, and B2_B3) classification task, on

condition that types B2 and B3 have much in common.

2.4 Conventional Features

According to clinical experience, texture and shape play

crucial roles in microvascular morphological type recog-

nition. Conventional features, namely pyramid histogram

of words (PHOW) [27], LBP, and pyramid histogram of

oriented gradient (PHOG), are used in our experiments.

PHOW, an effective texture feature, is a combination of

SIFT and the bag of words model. Variants of dense SIFT

descriptors, extracted at multiple scales, are clustered into

visual words and the histograms of these words are treated

as descriptions of images. PHOG is similar but describes

shape. LBP is a set of local descriptors that capture the

appearance of an image cell (a small neighborhood around

a pixel), recording local pixel intensity difference.

2.5 Support Vector Machine

SVM was originally proposed for binary classification.

Supposing a training set S ¼ fxi; yig, where feature vector

xi 2 Rd and label scalar yi 2 f�1; 1g, the soft margin SVM

tries to find a hyperplane that satisfies the following con-

strained optimization:

arg min
w;n;b

1

2
wT � wþ C

Xn

i¼1

ni ð1Þ

subject to:
yiðwT � xi þ bÞ� 1� ni
ni � 0; i ¼ 1; 2; . . .;m

�
ð2Þ

where w is the weight vector for x, b is the intercept of the

hyperplane, vector n contains the slack variables, and C is

the adjustable penalty parameter controlling the trade-off

between the maximization of the margin and the mini-

mization of the classification error.

By importing a kernel function, SVM is able to solve a

nonlinear separable problem by transforming the feature

vector into a high-dimensional space.

3 Architecture

We want to design a data-adaptive and customer-friendly

system to aid clinical diagnosis. For real-time recognition,

a batch processing program is required to train and test

images parallelly at a constrained time cost. Advanced

CNNs, sped up by a GPU, are an excellent match for this

job.

The flow diagram of our system is shown in Fig. 4. In

our system, image patches are generated from marked

regions for the CNN by a greedy patch-generating algo-

rithm (GPGA) and the locations of all patches are recorded

for further synthesis via Gaussian-weighted voting. The

CNN functions as a trainable feature extractor and the

SVM acts as a predictor.

3.1 Greedy Patch-Generating Algorithm

Since fixed-size image patches are required by the CNN,

we employ a GPGA to take advantage of marked regions

following these two rules:

• Rule 1, most (C95%) of a patch must be bounded

within the label curve, e.g., patches A and B in Fig. 5a

(a) typical patches

A

B1

B2_B3

(b) confusable patches

Fig. 3 a Typical and b confusable patches
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• Rule 2, the area-overlapping-percentage of any two

patches should be exempted from too high (B75%),

e.g., patches C and E in Fig. 5b.

Rule 2 can be achieved by invalidating a smaller gray

area (e.g., mC for patch C, mD for patch D) around the

upper-left point of previously generated patches. These

gray areas are then marked unreachable for new patches.

3.2 Convolutional Neural Network

We build our network following the popular three-stage

designs (i.e., convolutional layers, pooling layers, and fully

connected layers) with modifications, including rectified

linear units (ReLU), local response normalization (LRN),

and dropout, to prevent overfitting.

The input layer size is one of the most important

parameters when building a CNN. For example, the typical

5-layer LeNet-5 [28] handles 28 9 28 images and the

8-layer AlexNet takes images of size 256 9 256. A deeper

and wider network is expected to learn richer hierarchical

features, but needs a larger number of training samples and

more iterations for fine-tuning. Limited by the amount of

data,1 it is difficult to train and tune a large network.

By taking account of our patch size and sample mag-

nitude (see Sect. 4 for details), we started from a five-layer

model. Inspired by AlexNet and GoogLeNet [8], we

increased the kernel size of the first convolutional layer

(conv1) from 5 to 7 to widen the filter ‘‘sight’’ and placed a

max pooling layer (pool1) with a size of z� z = 3� 3 and

stride s = 2. A larger kernel also could speed up training

and decrease CNN depth. We set s\z and obtained an

overlapping pooling layer to reduce overfitting. Smaller

convolutional and pooling kernel sizes were chosen, as

features of higher abstraction would be captured by the

second convolutional layer (conv2). The last three layers

were 1024-d, 128-d, and 3-d fc layers (fc1 to fc3), with

softmax as the output function. The width of each layer

was tuned according to the system demand analysis. The

architecture of our CNN and the blob shape before fc layers

are summarized in Fig. 6 and Table 1.

Layers conv1, conv2, ip1, and ip2 were equipped with

ReLU [29] to avoid gradient vanishing and speed up con-

vergence. In addition, we used dropout in the fully con-

nected layers, with a dropout probability of 0.5, to help

prevent units from co-adapting and generate more robust

features by learning on different random subsets [5, 30].

Our system was built with Caffe [31], a powerful deep

learning framework developed by the Berkeley Vision and

Learning Center (BVLC), with the NVIDIA CUDA

cuDNN [32] library and trained on a single NVIDIA GPU.

4 Experiments

We selected a patch width of 64 as a trade-off between

accuracy and data proportion. About 6.5 k patch samples

were generated using GPGA. The performance was mea-

sured using average precision (AP) on the patch level.

In addition to CNN, we implemented extractors of

PHOW, LBP, and PHOG. Raw RGB patches were directly

fed to each feature extractor. No pre-processing method

was applied except mean component removal in CNN.

When applying the cross-validation strategy for testing

model performance, we sliced the dataset on the case level

rather than the patch level because images from the same

patient case were similar in texture pattern and patches

were generated with an overlap.2 The classification accu-

racy in table was the aggregated accuracy of all folds.

The time cost depended on the dataset and model

complexity, and could be sensitive to programming and

hardware. In this work, we trained our models on NVIDIA

GPUs (GTX 980 and GTX 970). During the CNN training

stage, we used an initial learning rate of 0.01 or 0.005 and

scheduled two tenfold decreases for fine-tuning. The

models were iterated with 50 epochs (about 30,000

patches features predictionsCNNfull-size
images SVM synthesis 

resultsGPGA

Fig. 4 Flow diagram of proposed system

Fig. 5 Schematic of greedy patch-generating algorithm

1 Although a data augmentation can help increase the number of

patches, the data distribution is still limited.

2 It may be cheating to distribute patches from the same case or the

same full-size image to the training set and testing set concurrently.
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gradient steps). Most models finished in several minutes,

but the largest one took about 2 h due to data

augmentation.

A GPU-accelerated SVM [33, 34] has been suggested to

deal with high-dimensional feature vectors. Principal

component analysis (PCA) is optional and should be

carefully used for dimensionality reduction.

In Sect. 4.1, we examine the characteristics and distri-

bution of the NBI dataset and improve the precision of

NBI-Net via data augmentation. The CNN representation

ability analysis and performance comparison of models are

respectively presented in Sects. 4.2 and 4.3.

4.1 Data Augmentation

To be robust, a model for pattern recognition should make

predictions that are invariant to various inputs of a given

label. A straightforward approach is to collect a large

number of training samples with abundant variation,

regardless of the difficulties in data collection and labeling.

Another way to deal with this problem is data aug-

mentation, which is achieved by adding sample replicas

with label preservation. Various kinds of affine transform

may take effect depending on the characteristics and dis-

tribution of a dataset. We apply rescaling, rotation, and

flipping on the full-size images and used Caffe embedded

cropping for patches. We prioritized operation on the

image level over that on the patch level because operation

on the image level could afford more randomness of data

augmentation benefited from our GPGA.

4.1.1 Rescaling

The NBI images were acquired on different scale factors.

The non-normalized scale factor may confuse our model

and weaken generalization ability. For rescaling, as shown

in Fig. 7a, images were rescaled on a spatial pyramid

using:

di

dj
¼ ki�j ð3Þ

where di is the length of the side for mode Si. The factor k

was set to
ffiffiffi
2

p
from experience.

4.1.2 Rotation and Flipping

Unlike natural images (e.g., images of human faces or

buildings), there is no clear principal direction of NBI

images. Rotation and flipping were introduced to

strengthen rotational invariance. In this work, the dataset

was augmented via roughly rotating each image by every

90 degree and doubled by flipping. This produced eight

modes, as shown in Fig. 7b.

4.1.3 Cropping

Cropping was implemented by randomly shifting on both

horizontal and vertical lines in the training stage. For

testing, patches were cropped at the center, as shown in

Fig. 7c. The length proportion of a cropping was 56/64 for

Convolution
kernel:7
stride:2

conv2
256 filters

pool2
256 filters

ip1-ip2-ip3
1024-128-3

Pooling
kernel:3
stride:2

Convolution
kernel:3
stride:1

Pooling
kernel:2
stride:2

Fully 
Connected

conv1
64 filters pool1

64 filters

input
data

Fig. 6 Architecture of

proposed NBI-Net

Table 1 Blob shapes of

proposed NBI-Net model
Input data conv1 pool1 conv2 pool2

Default 3 9 64 9 64 64 9 29 9 29 64 9 14 9 14 256 9 12 9 12 256 9 6 9 6

Cropped 3 9 56 9 56 64 9 25 9 25 64 9 12 9 12 256 9 10 9 10 256 9 5 9 5
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NBI-Net, 227/256 for AlexNet, and 224/265 for VGG-16

or GoogLeNet.

Table 2 shows the configurations and relations of

models A-I. Model A, NBI-Net without any data aug-

mentation, acted as the baseline in this test. The steady

increase in the recognition rates of models A, G, and H

shows that rotation and flipping operations were effective.

Unlike rotation and flipping, which have high priority, the

scaling operations had to be picked carefully, as models

A-F show. While the robustness of CNN was improved

with rescaling modes S4 and S6, modes S3 and S7 seem to

introduce a lot of noise, which confused models E and F,

resulting in a decrease in accuracy. The intensity of the

rescaling should be gradually increased. For all NBI-Net

models, cropping did not improve accuracy, as it did for

models trained on ImageNet, such as AlexNet (see

F0 F1 F2 F3

F4 F5 F6 F7

(a) Rescaling

(b) Rotation and Flipping

(c) Cropping 

Size
Cropping for training Cropping for testing 

S5

S7

S3

Fig. 7 Illustration of data augmentation with a rescaling, b rotation and flipping, and c cropping

Table 2 Configurations of datasets under augmentation and CNN average precision

NBI-Net

model

Rescaling

mode

Rotation/flipping

mode

Data

complexity

AP w/o

cropping

Compared to

base

AP

w/cropping

Compared to

base

S5 F0 1 90.03 (Base) 89.42 -0.61

B S4–S5 F0 91.3 90.28 0.25 89.63 -0.40

C S5–S6 F0 93.6 91.45 1.42 89.45 -0.58

D S4–S6 F0 93.9 91.87 1.84 90.62 0.59

E S4–S7 F0 910.2 90.43 0.40 88.69 -1.34

F S3–S6 F0 93.9 91.65 1.62 90.13 0.10

G S5 [F0–F7]/2 94 91.42 1.39 90.11 0.08

H S5 F0–F7 98 91.80 1.77 90.00 -0.03

I S4–S6 F0–F7 93.9 9 8 92.31 2.28 91.24 1.21

‘‘[]/2’’ represents a random 50% downsampling

The top results have been styled with bold and italic

The best results of comparative group are styled with italic
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Table 3). Although cropping reduces precision, it may

prevent overfitting in the visualization of model losses.

Model I without cropping (NBI-Net Aug), which is a

combination of models D and H, was best, improving

accuracy by 2.28% against the baseline.

4.2 CNN Feature Descriptor Analysis

The ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) has become the standard benchmark for object

recognition. It contains millions of images belonging to

thousands of object categories. State-of-the-art models

AlexNet, VGG-16, and GoogLeNet are all top winners of

this challenge. While models trained on ImageNet can be

transferred well to natural image sets such as Caltech-101,

there is currently no clear understanding of how they will

do on medical image sets.

The ImageNet dataset consists of thousands of object

classes, with only a small number resembling an NBI

scene. A comparison was made between pre-trained mod-

els and our NBI-Net trained on the NBI image set. For

testing, NBI patches were fed to CNN feature extractors.

Since features from fully connected layers are more dis-

criminative than those from convolutional layers [12],

linear SVMs were applied after fully connected layers.

According to Table 3, all CNN models have a recog-

nition rate of at least 85%. This indicates that stacked

convolutional networks show obvious adaptability to fea-

ture descriptions.

The accuracy of VGG-16 Cropping, the best performing

generic model trained on ImageNet, is close to that of NBI-

Table 3 Average precision of CNN models with linear SVMs

Model Feature layer Avg

fc1 fc2 fc3

AlexNet 87.14 88.48 87.29 87.64

AlexNet Cropping 87.91 88.93 87.99 88.28

VGG-16 89.20 90.02 89.65 89.62

VGG-16 Cropping 89.88 91.67 90.68 90.74

GoogLeNet 85.62 86.20 – 85.91

GoogLeNet Cropping 87.57 86.83 – 87.20

NBI-Net (model A) 90.93 90.64 91.21 90.93

NBI-Net Aug (model I) 92.87 92.38 92.97 92.74

Layer ‘‘fc1’’ is first fully connected layer before softmax or layer

before softmax1 in GoogLeNet, or named ‘‘fc6’’ in AlexNet

Principal component analysis (PCA) here is optional and should be

carefully used for dimensionality reduction

The top results have been styled with bold and italic

The best results of comparative group are styled with italic

Table 4 Average precision of

models using SVM and

dimension of features

Feature extractor Average precision Average precision Feature dimension

(Linear SVM) (SVM with RBF kernel)

PHOW 80.24 85.16 4000

LBP 82.39 82.90 928

PHOG 49.04 62.60 680

AlexNet Cropping 88.28 88.12 4096/4096/3

VGG-16 Cropping 90.74 90.49 4096/4096/3

GoogLeNet Cropping 87.20 87.33 1000/1000

NBI-Net Aug 92.74 92.70 1024/128/3

The top results have been styled with bold and italic

The best results of comparative group are styled with italic

(a) patches (b) feature maps 

Fig. 8 a Patches and b their feature maps from conv-1 layer of NBI-

Net

Table 5 Accuracy of NBI-Net models with softmax and linear SVM

Model Softmax Linear SVM Classifier boosting

NBI-Net 90.03 90.93 0.90

NBI-Net Aug 92.31 92.74 0.43

CNN = NBI-Net with softmax

CNN-SVM = NBI-Net with linear SVM

Aug (Augmentation) is optional for both CNN and CNN-SVM

The top results have been styled with bold and italic
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Net trained on the NBI dataset. The results imply a simi-

larity between natural and medical images in terms of basic

feature representation. Starting from a pre-trained model

for IPCL recognition is thus worthy of consideration.

4.3 Model Comparison

Here, we only compare models; feature fusion and model

ensembles are beyond the scope of this study.

Some key parameters of the experiments are as follows.

The PHOW feature was extracted from the 2-level spatial

pyramid f4� 4; 2� 2g with 200 visual words. The PHOG

feature was obtained from the 4-level pyramid f8� 8; 4�
4; 2� 2; 1� 1g with 8 angle bins. Uniform-58 LBP was

applied to each cell of size 16� 16. For the CNN, we took

the output of fully connected layers ip1, ip2, and ip3. Both

linear SVM and SVM with a radial basis function (RBF)

kernel were used in the experiments except for the original

CNN (CNN-softmax group). For multiclass problems, we

adopted the one-against-one strategy for SVMs. The class

that received the most votes won.

In Table 4, the results show that CNN models with

linear SVM are equivalent to CNN models with SVM with

the RBF kernel, which means that CNN features are almost

linearly separable whereas conventional features are not.

Linear SVM was used for further study in consideration of

algorithm complexity.

A comparison among rows shows that CNN features

significantly outperform conventional handcrafted features.

It can also be verified from the visualization of middle-

layer feature maps (shown in Fig. 8) that CNN features fit

the ‘‘disorganized’’ IPCL pattern very well, which is dif-

ficult to achieve using manual design.

A comparison between hybrid CNN-SVM (NBI-Net

with linear SVM) and plain CNN (NBI-Net with softmax)

is shown in Table 5. The fusion of CNN and SVM slightly

boosted accuracy by 0.90% (0.43% with Aug). The gain is

mainly due to the use of a different optimization criterion.

The learning algorithm of softmax is based on empirical

risk minimization, which attempts to minimize the pre-

diction loss on the training set. In contrast, SVM aims to

minimize the generalization error by using structural risk

minimization principles for the testing set. As a result of a

maximized margin, the generalization ability of SVM is

greater than that of softmax.

A combination of data augmentation and classifier boost-

ing improved accuracy by 2.71% (=92.74% - 90.03%) and

led to a high recognition rate of 92.74%. Figure 9 shows the

synthesis results and the original mark curves; our system

offers correct prediction in most regions. Thus, our system

may be able to assist clinical judgement to a certain extent.

5 Conclusion and Future Work

In this paper, a patch-based system with a hybrid CNN-

SVM model was proposed for IPCL recognition to aid

clinical diagnosis. The performance of the CNN model was

improved by data augmentation and classifier boosting.

Experimental results show that features learned by the

CNN beat manually designed features in terms of effi-

ciency and linear separability. A switch from softmax to

SVM appears to be beneficial for generalization ability.

A

B2_B3

B1

A

B1

B2_B3

manual mark

prediction mark

Fig. 9 Synthesis results for full-size images. Representative images of labels A, B1, and B2_B3 are placed in first, second, and third rows,

respectively. Recognized IPCL regions are colored in green/blue/red for types A/B1/B2_B3
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For future work, the IPCL recognition precision will be

further increased by using a larger dataset, better understanding

of IPCLs types, and the fine-tuning of pre-trainedCNNmodels.

Open Access This article is distributed under the terms of the
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tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were
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