Skip to main content
. 2016 Dec 10;36(6):755–764. doi: 10.1007/s40846-016-0182-4

Table 4.

Average precision of models using SVM and dimension of features

Feature extractor Average precision Average precision Feature dimension
(Linear SVM) (SVM with RBF kernel)
PHOW 80.24 85.16 4000
LBP 82.39 82.90 928
PHOG 49.04 62.60 680
AlexNet Cropping 88.28 88.12 4096/4096/3
VGG-16 Cropping 90.74 90.49 4096/4096/3
GoogLeNet Cropping 87.20 87.33 1000/1000
NBI-Net Aug 92.74 92.70 1024/128/3

The top results have been styled with bold and italic

The best results of comparative group are styled with italic