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Experimental observation of anomalous topological
edge modes in a slowly driven photonic lattice
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Topological quantum matter can be realized by subjecting engineered systems to time-

periodic modulations. In analogy with static systems, periodically driven quantum matter can

be topologically classified by topological invariants, whose non-zero value guarantees the

presence of robust edge modes. In the high-frequency limit of the drive, topology is described

by standard topological invariants, such as Chern numbers. Away from this limit, these

topological numbers become irrelevant, and novel topological invariants must be introduced

to capture topological edge transport. The corresponding edge modes were coined anom-

alous topological edge modes, to highlight their intriguing origin. Here we demonstrate the

experimental observation of these topological edge modes in a 2D photonic lattice, where

these propagating edge states are shown to coexist with a quasi-localized bulk. Our work

opens an exciting route for the exploration of topological physics in time-modulated systems

operating away from the high-frequency regime.
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T
he discovery of the quantized Hall effect, and
its subsequent topological explanation, demonstrated the
important role topology can play in determining

the properties of quantum systems1–3. This realization led to
the development of topological band theory, where, in addition
to band index and quasimomentum, Bloch bands are also
characterized by a set of topological invariants. This topological
theory can be readily extended to periodically driven systems.
In the limit of fast driving, the topology of the system can still be
captured by the topological invariants used to describe static
systems4,5. Away from this high-frequency regime, however,
situations can arise where standard topological invariants
are zero, but yet, topologically protected edge modes are still
observed4,6–9. These anomalous topological edge modes have
no static analogue, and are associated with a distinct topological
invariant, which takes into account the full time evolution over
a driving period.

Subjecting a system to time-periodic modulations constitutes
a powerful method to engineer band structures with non-trivial
topological properties4,5,10–13, as recently demonstrated in cold-
atom experiments14–16 and photonics17,18. In this Floquet-
engineering approach, a static system, described by a
Hamiltonian Ĥ0, is driven periodically in time by a modulation
V̂ tð Þ¼V̂ tþTð Þ, the frequency of which shall be denoted
by o¼ 2p/T. The time-evolution operator over an arbitrary
long duration Dt¼ tf� t0 then takes the general form12,19

Ûðt0-tf Þ¼e� iK̂ tfð Þe� iDt Ĥeff eiK̂ t0ð Þ; where K̂ tþTð Þ¼K̂ tð Þ:
ð1Þ

Here the time-independent (effective) Hamiltonian Ĥeff describes
the time-averaged dynamics over the duration Dt, which can
be isolated by probing the system stroboscopically at discrete
times Dt¼T� integer. This effective Hamiltonian stems from
a rich interplay between the static system Ĥ0 and the
time modulation V̂ tð Þ (refs 12,13); its band structure
(the quasienergies or Floquet spectrum) can feature topological
properties, such as non-zero Chern numbers and chiral
edge modes4,5,10–13, in direct analogy with non-driven systems.
The time-evolution operator (equation (1)) also includes
the micro-motion operator K̂ tfð Þ, which describes the dynamics
that takes place within each period of the driving, that
is, when DtaT� integer. In the high-frequency regime of the
driving (o-N), observables are often only slightly affected by
the micro-motion. In this regime, the topological properties
of the driven system are then entirely captured by the effective
Hamiltonian Ĥeff . In particular, the observation of topological
edge modes can be directly related to the Chern numbers
associated with the effective band structure4,5. Such edge
modes were directly visualized in photonic realizations of
Floquet band structures17 (see also refs 20–23 for
other photonic implementations of standard topological
edge modes). Importantly, this is no longer the case away from
the high-frequency regime, when :o becomes comparable to the
typical energy scales of the system (for example, the bandwidth of
the effective band structure4,6–9,24–26). In this case, the micro-
motion strongly affects the time evolution of observables, and the
topological properties of the system can no longer be simply
related to the effective Hamiltonian only. In particular, the
presence of topological edge modes is now entirely ruled by a
distinct topological invariant, a winding number W that takes
into account the micro-motion6,7. As realized in refs 4,6, this
allows for the presence of topological edge modes even when the
Floquet bands resulting from Ĥeff are all associated with zero
Chern numbers: this singular situation defines the so-called
anomalous regime6, where the presence of topological edge

modes stems from the micro-motion, and not from time-
averaged dynamics only. This intriguing regime of periodically
driven systems has recently been investigated in a diverse range of
experimental platforms: topologically protected bound states
associated with non-trivial W were first demonstrated in a one-
dimensional photonic set-up realizing a discrete time quantum
walk27; more recently, ref. 28 reported on the observation of
anomalous edge modes in a designer surface plasmon platform.
Finally, ref. 29 considered a Thouless-pump approach to measure
W in a one-dimensional microwave network.

Here we demonstrate the first experimental observation
of anomalous topological edge modes in an ultrafast-laser-
inscribed photonic lattice. This fabrication technique enables the
realization of a photonic lattice where each bond is addressed
independently and dynamically, generating a rich band structure
with robust anomalous chiral edge modes and the potential
for perfectly localized bulk states.

Results
Theoretical background. The theory works in refs 4,6 introduced
conceptually simple models that exhibited such intriguing
Floquet topological structures, which appear away from
the high-frequency limit (Fig. 1a,b). The model in ref. 6 is a
square lattice with nearest-neighbour couplings, which are
engineered so that the couplings between a lattice site and its
four nearest neighbours are independently controllable. These
four couplings, denoted J1 through J4, are then varied in a
spatially homogeneous and time-periodic manner so that any
lattice site is, at any given moment, coupled to only one of its
nearest neighbours (Fig. 1c). The simplest demonstration of this
model is when the driving period T is split into four equal
steps, and T is selected such that a particle that is initially
localized on a certain site will be completely transferred to the
neighbouring site after a time T/4. Therefore, considering for
now a system without edges, this means that after one complete
period, any initial state is exactly reproduced, that is, the
propagator, Û Tð Þ, is the identity matrix (Fig. 1d). As a corollary,
the effective Hamiltonian in equation (1) is the zero matrix and
the Floquet spectrum consists of two degenerate flat bands at zero
energy. The bulk is completely localized, and the Chern numbers
associated with the effective Hamiltonian are necessarily trivial.
In a geometry with edges, however, it is found that there are
chiral propagating edge modes that are localized along the edge.
These occur because a particle launched at an edge cannot return
to its initial position and instead move one unit cell along the
edge (Fig. 1d), in direct analogy with the skipped cyclotron orbits
of quantum Hall systems.

As previously mentioned, the topological properties of slowly
driven systems are well captured by a winding number that
takes the full time evolution into account, including the micro-
motion6,7. For the two-band model introduced above, the
time-evolution operator at time t, where 0rtoT, may be
written as

Û k; tð Þ¼
X

n¼1;2

P̂n k; tð Þe� ifn k;tð Þ; ð2Þ

where P̂n k; tð Þ and e� ifn k;tð Þ are the projectors onto the
eigenstates and the corresponding eigenvalues of Û k; tð Þ,
respectively. The instantaneous energies, fn/T, are defined
modulo 2p/T, and we define the corresponding Floquet–
Brillouin zone to be in the range [� p/T, p/T]. In a driven
system, there are two types of degeneracy that can
occur within a driving period: inter-zone degeneracy, where
f1(k, t)¼f2(k, t), and degeneracy through the zone edge, where
f1(k, t)¼ � p and f2(k, t)¼ p. It is the existence of this
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latter type of degeneracy that profoundly alters the topological
picture of driven systems. Zone-edge singularities allow the
Chern number of the bands to change without the inter-zone
gap closing. Consequently, these zone-edge degeneracies can lead
to violations of the static bulk-edge correspondence30, so that
the Chern number of both Floquet bands are zero but yet
protected edge modes are still present4. The adequate topological
characterization of driven systems is captured by a winding
number that includes the changes in Chern numbers that
occur through the zone edge, within a period of the driving. In
a two-band driven system, there can be at most two bandgaps,
and for each of these bandgaps, there is a winding number Wm,
which has the form7

Wm¼
Xm

n¼1

Cn�
X

i

qZES
i ; m¼1; 2; ð3Þ

where Cn is the Chern number of the nth band at time T,
and where qi corresponds to the change in Chern number of the
lowest band that occurs in the ith zone-edge degeneracy.
This winding number directly gives the number, nedge(m),
of topologically protected chiral edge modes present in the mth
gap. This bulk-edge correspondence for driven systems can be
shown to have the form7

nedge mð Þ¼Wm¼
Xm

n¼1

Cn�
X

i

qZES
i : ð4Þ

The first term in the second equality of equation (4) is the
term that is found in static systems, while the second applies only
to driven systems. It is this term that is the source of the
anomalous edge modes analysed in this work, as it allows
the number of edge modes to be non-zero even if the standard
topological invariants, that is, the Chern numbers Cn, are zero
for all of the Floquet bands.

Proposed driving protocol. In this work, we experimentally
implement a variant of the model introduced in ref. 6. In

our model, the coupling of the first bond (J1) is different than
the following three bonds (J2;3;4¼~J), which are chosen so as
to satisfy J1T/4¼L1 and ~JT=4¼L2. This gives two controllable
experimental parameters, L1 and L2, that can be tuned
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Figure 1 | Slowly driven systems and photonic implementation. Sketch illustrating the high-frequency regime (a), and away from the high-frequency

regime (b), for a simple driven system, here represented by a rower. In the high-frequency regime, the micro-motion typically only slightly affects the

motion: the time evolution is well captured by time-averaged dynamics, which can be probed stroboscopically at discrete times Dt¼ T� integer. Away from

the high-frequency regime, the micro-motion can significantly affect the dynamics, and the time evolution is no longer well described by the time-averaged

Hamiltonian only. (c) The four different bonds present in the lattice (with coupling constants J1,2,3,4) and the cyclic driving protocol employed. (d) In the

simplest case where all bond strengths are equal, JT/4¼ p/2, chiral edge modes arise, while the bulk is localized (the evolution operator over one period of

the drive is trivial (identity) in the bulk). (e) Sketch illustrating how, using ultrafast laser inscription, different pairs of waveguides can be moved together to

turn on a coupling and then apart to switch it off. Within the paraxial approximation, this flexibility allows for a realization of the driving protocol shown

in c. In waveguide arrays, the propagation direction z plays a role analogous to time36. (f) White-light transmission micrograph of the facet of the laser-

fabricated photonic lattice. Note that the axes of the photonic lattice were rotated by 45� with respect to the vertical to obtain equal coupling constants

along the two axes (ref. 37). Here a is the lattice constant.
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Figure 2 | Topological phase diagram and band structures. (a) Phase

diagram for a generalization of the model in Fig. 1c, which allows the bond

J1 to be of a different strength to the bonds J2�4¼~J. Here L1¼ J1T/4 and

L2¼~JT=4. For each topological phase, we indicate three topological

invariants: the Chern number of the lowest Floquet band C1, the winding

number W1 of the gap centred around zero, and the winding number W2 of

the gap centred around p/T. The white regions indicate where anomalous

edge modes can be observed (C1¼0, W1,2a0). Note that C1¼W1�W2.

(b) Quasienergy spectrum for the parameters indicated by the black dot in

a. The spectrum was calculated for a strip-geometry aligned along the x

direction, and closed along the y direction (Fig. 1d). Red curves indicate

topological-edge modes dispersions, while black curves correspond to the

bulk bands. We note that the edge-modes velocity depends on the

orientation of the strip (not shown here). (c) Quasienergy spectrum for the

experimentally achieved parameters. The first Floquet–Brillouin zone is

taken to be defined in the range [�p/T, p/T].
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independently. We find that the interplay between these
two parameters produces a rich phase diagram, shown in
Fig. 2a, which demonstrates how this simple model can be used
to explore many different topological regimes (see Methods).
Each topological phase of this driven two-band system is
accurately labelled by the winding numbers associated with the
two bandgaps; in the phase diagram shown in Fig. 2a, we have
chosen W1 to be the winding number for the bandgap centred
around quasienergy zero and W2 for the bandgap centred around
p/T. In addition, we also provide the Chern number of the
lowest Floquet band C1, so as to highlight the aforementioned
anomalous regimes, where C1¼ 0 and W1,2a0.

As proposed in ref. 6, the simplest way to experimentally
demonstrate the existence of anomalous edge modes is to choose
the isotropic configuration L1¼L2¼ p/2. However, in this
case, the Floquet bulk bands are degenerate at e¼ 0, and an
arbitrary small variation in the parameters value can potentially
drive the system out from the anomalous regime; see the central
point (L1¼L2¼ p/2) of the phase diagram displayed in Fig. 2a.
Since such variations are expected to be present in our
experimental set-up, due to limited but unavoidable disorder,
an unambiguous realization of anomalous edge modes requires
instead to work deep within the anomalous regimes demarcated
in Fig. 2a. For the sake of experimental practicability, we aim
to focus on the anomalous edge modes that are predicted for
L1¼ 0 and L2¼p/2, as indicated by the black dot in Fig. 2a.
In this configuration, the blue bonds in Fig. 1c are never turned
on, while complete transfer of light can occur via the other three
bonds. These parameters are desirable as not only is the resultant
system located well within the anomalous regime (Fig. 2a)
but also the associated spectrum consists of two gapped flat bands
(Fig. 2b). In addition, the Floquet states have a simple analytical
form, and there are robust chiral edges states that can be excited
with unit efficiency, through the simple experimental technique
of single-site excitation.

Photonic implementation. The realization of this model requires
a high degree of control over the couplings present in the lattice.

Ultrafast-laser-inscribed arrays of optical waveguides with
three-dimensional geometry offer this control, as they allow
the coupling between lattice sites to be individually controlled;
see the sketch in Fig. 1e for a general situation with J1,2,3,4a0 and
Fig. 1f for an image (cross-section) of the actual experimental
set-up. In the experiment presented here, a lattice constant of
40 mm was chosen, such that the coupling between lattice sites
was insignificant over the maximum observable propagation
distance. To turn on the coupling between any two waveguides,
the inter-waveguide separation is reduced such that the two
waveguides propagate together for a 4.5 mm straight section,
with a centre-to-centre waveguide separation of 11 mm. After
this interaction region, the waveguides again separate in a reverse
manner. For a particular wavelength, the coupling that occurs
between two synchronously bending waveguides can be shown to
be equivalent to that of two straight waveguides with some
effective coupling constant (Supplementary Note 1). This effective
coupling can be controlled by changing the interaction length
and/or the separation of the waveguides; these parameters
are fixed upon writing the sample and so do not allow fine-tuning
of the coupling in situ. However, the wavelength of the light used
to excite the lattice is a tunable parameter that can be used
to control the effective coupling strength (see Methods). To
demonstrate the existence of anomalous edge modes, a lattice
of 63 sites, consisting of two driving cycles, was fabricated. This
lattice contains a single defect, namely, a missing lattice site on
the edge, which allows one to verify that the edge modes indeed
freely propagate around the system, irrespective of its shape.
It should be mentioned that the propagation of light waves along
the propagation direction (z) of the photonic lattice mimics
the time evolution of a particle moving in a tight-binding lattice,
within the paraxial approximation.

To characterize the bonds present in the lattice and
validate our theoretical model, we fabricated five sets of
each bond in isolation, inside the same substrate and
measured their behaviour as a function of the wavelength
of light (Supplementary Note 2). When characterized with
785 nm light, the mean and standard deviation (s.d.) of Li

(i¼ 2, 3, 4) were found to be L2¼p/2(1.16±0.04), L3¼p/

1 0.5 0
Intensity

a b c

d e f

Figure 3 | Experimental observation of anomalous topological edge modes. Experimentally measured output intensity distribution when the light is

launched at the lattice site indicated by the red circle. The figures display chiral edge modes (a–e) that are not scattered by corners (b) nor defects

(c,d) as well as a largely localized bulk state (f). The group velocity of the chiral edge modes along the bottom left edge of the lattice (e) is twice of that

along the top left edge (a), which stems from the bond J1 having a different strength to the other three bonds.
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2(1.15±0.04) and L4¼ p/2(0.85±0.03). For the bond J1, all the
light remains in the waveguide excited at the input, which
indicates no transfer of light (L1¼ 0). We also estimated the
value of L1 and its fluctuations, which were both found to be
insignificant, by analysing the exponential decay of evanescent

coupling as a function of the inter-waveguide separation. The
close proximity of these measured couplings to the aforemen-
tioned desired values suggests that anomalous edge modes should
be detected for an input wavelength of 785 nm. Indeed, the
quasienergy spectrum corresponding to these experimental values
(Fig. 2c) is similar to the ideal case (Fig. 2b). While a finite
dispersion of the bulk now becomes apparent, we note that the
velocity of the edge modes remains significantly larger compared
with the dispersion of the bulk. It should be noted that the non-
zero standard deviations indicate that there will be bond-strength
disorder within the lattice, while detailed numerical studies of
the experimental results also suggest the additional presence
of a small on-site (diagonal) disorder effect; the latter can
be phenomenologically modelled by a small random on-site
term. However, we verified that the topological properties of the
lattice are unaffected by these sources of disorder (Supplementary
Note 3).

Observation of anomalous edge modes. To experimentally
demonstrate the presence of anomalous topological edge modes,
785 nm light was launched at multiple locations around the edge
of the lattice; the red circles in Fig. 3 indicate the launch site.
If light is launched at the middle of an edge, as shown in Fig. 3a,
then at the output it is observed that the light has moved along
the edge with minimal penetration into the bulk. Moreover, if
the input position of the beam is moved further down the edge,
Fig. 3b, the close proximity of the launch site to the left
edge means that the light will encounter the corner of the lattice
during its evolution. This corner, as can be observed in the figure,
does not cause backscattering but instead the light simply turns
the corner and continues to propagate. This robustness is
also observed in Fig. 3c,d, which demonstrates the light moving
around a missing lattice site without backscattering or penetrating
into the bulk. These observations provide evidence for the
existence of protected chiral edge modes that can be almost
exclusively excited by single-site excitation. These experimental
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Figure 5 | Comparison between experiment and theory. (a) Same result as in Fig. 3a, but using a different colour-scale so as to highlight the low

intensities (bulk response). (b) Theoretical simulation of the intensity distribution, from a numerical resolution of the Schrödinger equation associated with

the Floquet (effective) Hamiltonian. (c) Relative light intensity at the lattice sites where light was detected at the output (see green circles in a,b), showing

the comparison between (a,b). Here the sites coordinates correspond to the axis orientation defined in Fig. 1f. (d) Same as Fig. 3f, and the corresponding

simulated intensity distribution is shown in e. (f) Comparison between d,e.

0 0.02 0.04 0.06

0 20 40 60

0 0.02 0.04 0.06

0 20 40 60

Eigenvalue number Eigenvalue number

OverlapOverlap

Q
ua

si
en

er
gy

Q
ua

si
en

er
gy

0

�/T

–�/T

0

�/T

–�/T

ba

Figure 4 | Quasienergy spectrum and the overlap. Numerically calculated

quasienergy spectrum for the 63-site lattice and the overlap, as a function

of this quasienergy, of two initial states with the Floquet eigenstates; these

two initial states correspond to the light input of Fig. 3a,f, respectively. The

filled blue squares correspond to the quasienergy of bulk Floquet states

whilst the empty blue squares correspond to edge modes. The grey

(resp. black) regions indicate the overlap with the edge (resp. bulk) states.

(a) A single-site excitation on the edge of the lattice (excited site

coordinates (4, 8)) predominately excites the topologically protected edge

modes, which thereby yield the robust chiral motion that is observed in

Fig. 3a. (b) The excitation of a bulk lattice site (excited site coordinates

(4, 5)) almost entirely excites the two bulk bands, resulting in the bulk

dynamics of Fig. 3f.
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observations are well complemented by a theoretical analysis,
which was obtained using the couplings extracted from the bond
characterization data. Figure 4 shows the quasienergy spectrum
for our lattice, as well as the overlap, as a function of this
quasienergy, of two different initial launch states with the
numerically calculated Floquet eigenstates. Figure 3a–e demon-
strates how launching in a single-edge site leads to an almost ideal
excitation of the edge modes with little probability for bulk modes
being excited (Fig. 4a), even when the launch site is close to a
defect or corner. Note that the residual excitation of the bulk,
predicted in Fig. 4a, was experimentally observed in Fig. 3a–e.
To highlight this fact, we show the relative output intensities at
various edge and bulk lattice sites in Fig. 5a–c, which shows good
agreement with a theoretical simulation. The latter was
performed by inserting the mean values of Ji extracted from the
experiment into the effective Hamiltonian, and resolving the
corresponding Schrödinger equation numerically.

The central result of these experimental images is that they
show the existence of edge modes propagating in a chiral
(unidirectional) manner, and which are not scattered by corners
nor defects. The absence of scattering provides strong evidence
that there is topological protection for these edge modes. From
the bond-strength measurements, combined with our theoretical
analysis of the corresponding model, we demonstrate that these
propagating states correspond to anomalous topological edge
modes.

The single-site excitation that is used in the experimental
set-up can also be exploited to probe the different edge modes
that are present in the lattice. Moving the input site onto the
bottom left edge (Fig. 3e) shows the light propagating with twice
the group velocity observed in Fig. 3a. This experimentally
demonstrates that, when the bond J1 is different to the other three
bonds, edge modes with different group velocities can be
observed. The exact dispersion relations of the edge modes
can be altered by modifying the strength of J1. The ability to tune
the group velocity could present a valuable experimental tool
for the future, which could allow, for instance, the investigation
of how the non-scattering behaviour of edge modes is modified
by the interplay between group velocity and non-linearity.

The behaviour observed when light is launched in the bulk
of the lattice (Fig. 3f) is markedly different to what occurs on
the edge with the input state being almost exactly reformed at the
output facet. This refocusing is due to the beating between the two
bulk bands that are separated by a bandgap of Bp/T. In an ideal
lattice, L2¼ p/2, the bulk bands would be dispersionless (Fig. 2b)
and so the initial state would continue to reform every two driving
cycles. In the experimental lattice, however, deviations of the bonds
strengths from the ideal case cause the bands to become dispersive
(Fig. 2c), which indicates that the initial state would eventually
disperse in lattices of very long propagation lengths; see also
Fig. 5d–f. These deviations could be addressed in future work by
careful optimization of the experimental set-up, so as to allow a
closer realization of the ideal model.

Discussion
The ability to easily excite edge modes, with almost unit
efficiency, and the possible co-existence of chiral edge modes
with a dispersionless bulk, are two particularly interesting features
of this slowly driven photonic system. These properties make this
lattice a promising platform for investigating topological trans-
port properties in response to perturbations, such as external
(engineered) fields, disorder31 and particle–particle interaction
(as generated by optical non-linearities).

We note that similar experimental results are reported in
ref. 32.

Methods
Fabrication and characterization. The photonic lattice with two driving periods
was fabricated inside a 70-mm-long glass (Corning Eagle2000) substrate using
the ultrafast laser inscription technique, where the refractive index profile of
each waveguide was controlled using the slit-beam shaping method33,34. The
glass substrate, mounted on x–y–z translation stages, was translated at 8 mm s� 1

through the focus of a 500 kHz train of 1,030 nm femtosecond laser pulses
to fabricate each waveguide. The laser inscription parameters were optimized to
produce waveguides that were single-mode and well confined in the measurement
wavelength range of 700–830 nm. To study the response of the edge modes in
the presence of a defect at the edge, the waveguide at the (8, 4) lattice site was not
fabricated. It should also be highlighted that the waveguide paths are designed
such that all waveguides exhibit identical bend radii at a given z, although the
direction of this bending is site-dependent. This ensures that there is minimal
site-dependent losses.

To measure the coupling constants, we fabricated five sets of each bond
separately inside the same substrate. These bonds (or couplers) were then
characterized in the wavelength range 705–795 nm, to obtain the variation of
the mean and s.d. of coupling strength with wavelength (see Supplementary Fig. 3
for details). To excite the lattices with different wavelengths, a photonic crystal
fibre35 was pumped by sub-picosecond laser pulses of 1,064 nm wavelength to
generate a broadband supercontinuum. A tunable monochromator placed after the
supercontinuum source was used to select narrow band (E3 nm) light, which
was coupled into an optical fibre (SMF-600). The fibre was then coupled to the
lattice sites. The output intensity distribution was observed using a CMOS camera
(Thorlabs DCC1545M). A polarizer passing only vertically polarized light is placed
in front of the camera to ensure that the measurements are not affected by
polarization-dependent coupling.

Coupling between synchronously bent waveguides. In our experiment
(Fig. 1e,f), we used synchronously bent waveguide pairs to turn the couplings
on and off. In the Supplementary Note 1, we show that the coupling between two
such bent waveguides is equivalent to an effective tight-binding coupling between
two straight neighbouring waveguides. Hence, the propagation of light waves in
our driven photonic lattice can be accurately described using a tight-binding
model within the paraxial approximation.

Computation of the topological phase diagram. In this section, the methodology
used to obtain the topological phase diagram in Fig. 2 is detailed; this method is
based on ref. 7, and we refer the reader to this reference for more details on
concepts related to the topological characterization of Floquet systems. The
calculation of the different phases is assisted by utilizing the property that the
topology of the system can only change when there is a gap closing between the
two bulk bands. The position of these gap-closing events can be found analytically
by diagonalizing the evolution operator at the end of the driving period. It is found
that for L1¼L2 and L2¼ 1

3(2p�L1), the system is gapless at quasienergy zero,
while for L2¼ 1

3(p�L1) and L2¼ 1
3(3p�L1), the system is gapless through the

fundamental zone edge. The position of these gap closings thereby divides the
phase space into the eight different sectors shown in Fig. 2. The topology within
these different sectors can then be defined by calculation of the winding numbers.
As discussed in equation (2), at any time t the evolution operator may be
diagonalized to yield the instantaneous Bloch bands of the driven system. The
eigenstates associated with these bands can be used to calculate an instantaneous
Chern number for that band. In accordance with equation (3), the winding number
can then be calculated by tracking changes in the Chern number of the lowest
band that occur through the zone edge throughout the driving period. This
procedure is illustrated in Supplementary Fig. 2a for the parameters L1¼ 1,
L2¼ 1.4, which shows how the instantaneous Chern number of the lowest band
changes throughout the driving period. It can be readily observed that that the
Chern number changes twice within a driving period and computing the spectra at
these times shows that the second of these changes occurs through the zone edge
(Supplementary Fig. 2b,c). This latter degeneracy causes the Chern number of the
lowest band to decrease by one. This topological transition through the zone
edge when combined with the Chern numbers of all the bands being zero at
t¼T implies, in accordance with equation (3), that both W1 and W2 are
equal to one.

Data availability. Raw experimental data are available through Heriot-Watt
University PURE research data management system (DOI: 10.17861/702555b8-
d1d4-4e4b-be88-e6a5b9794758).
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