Skip to main content
. 2017 Jan 6;7:1975. doi: 10.3389/fpls.2016.01975

FIGURE 12.

FIGURE 12

Schematic models showing Cd2+ influx through plasma membrane (PM) Ca2+ channels that stimulated by H2O2 and H+-ATPase in Paxillus involutus-ectomycorrhizal (MAJ and NAU) and non-mycorrhizal (NM) Populus × canescens roots under Cd2+ stress. High external Cd2+ facilitates the rapid movement of Cd2+ along its electrochemical gradient into fungal and plant cells. Cd2+ ions penetrated the ectomycorrhizal fungal hyphae and poplar roots through PM Ca2+ channels and other metal transporters or channels. The PM Ca2+ channels mediate the entry of Ca2+ in the absence of Cd2+ (-Cd) while allow the entry of Cd2+ in the presence of Cd2+ ions (+Cd). The Cd2+-permeable Ca2+ channels were activated by H2O2 and H+-pumping activity. Thus the Cd2+-elicited H2O2 and active H+-pumps favored the Cd2+ influx through Ca2+ channels in NM roots and P. involutus-ectomycorrhizas. In ectomycorrhizas, Cd2+ enriched in hyphae is thought to be delivered to the host roots. Moreover, the colonization of P. × canescens roots with the fungal strains MAJ and NAU stimulates H2O2 production and increases H+-pumping activity, and thus accelerates Cd2+ entry through Ca2+ channels under excessive Cd2+. Cd2+ ions competitively enter Ca2+ channels, and thus diminish the entry of Ca2+, leading to a marked Cd2+ enrichment in ectomycorrhizal roots under Cd2+ stress.