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ABSTRACT

RNA-binding proteins play many essential roles in
the regulation of gene expression in the cell. Despite
the significant increase in the number of structures
for RNA–protein complexes in the last few years,
the molecular basis of specificity remains unclear
even for the best-studied protein families. We have
developed a distance and orientation-dependent
hydrogen-bonding potential based on the statistical
analysis of hydrogen-bonding geometries that are
observed in high-resolution crystal structures of
protein–DNA and protein–RNA complexes. We ob-
serve very strong geometrical preferences that reflect
significant energetic constraints on the relative place-
ment of hydrogen-bonding atom pairs at protein–
nucleic acid interfaces. A scoring function based on
the hydrogen-bonding potential discriminates native
protein–RNA structures from incorrectly docked
decoys with remarkable predictive power. By incor-
porating the new hydrogen-bonding potential into a
physical model of protein–RNA interfaces with full
atom representation, we were able to recover native
amino acids at protein–RNA interfaces.

INTRODUCTION

The interactions of DNA- and RNA-binding proteins with
nucleic acids play central roles in gene expression and its
regulation. If we had available proteins that could control
these interactions at will, we could interfere with gene expres-
sion pathways and gain a much better understanding of gene
expression networks. Combinatorial methods such as phage
display have been used to engineer DNA-binding proteins with
new specificity, but inevitably have limitations (1,2) and have
met only limited success when they were applied to RNA-
binding proteins (3,4). If we understood the principles of
nucleic acid recognition better, we could then use rational
approaches to design new RNA- and DNA-binding proteins.
By establishing a design cycle involving both computational
design and experimental validation, we would also be able
to examine the molecular origin of recognition. The first

requirement to the development of computational tools to
design new RNA-binding proteins is a physical model capable
of reliably quantifying the molecular interactions responsible
for affinity and specificity between proteins and RNA.

A number of authors have recently analyzed protein–nucleic
acid interfaces computationally using visualization and statis-
tical tools analogous to those used with proteins (5–18). In
these important studies, common interaction patterns between
amino acids and nucleotides were reported. The relative roles
of packing, hydrogen-bonding and electrostatic interactions in
molecular recognition were described as well. In some cases, it
was possible to attribute interaction propensities (e.g. arginine–
guanine, etc.) to specific patterns of hydrogen-bonding and
electrostatic interactions (5,9). However, no systematic
attempt has so far been made to correlate these geometrical
preferences with quantitative estimates of the relative contri-
bution of each interaction to the total free energy of binding.
Computational studies on protein–nucleic acid interactions
remain very few when compared with the body of theoretical
and experimental work dedicated to understanding interac-
tions within protein cores and at protein–protein interfaces,
and to redesigning new protein structures and interfaces (19–
31). In other words, the knowledge encoded in the ever-
growing database of protein–nucleic acid structures remains
to be exploited in the quantitative dissection of energetic
features responsible for affinity and specificity and in the
development of predictive tools to be used in protein design.

The strong orientational character of hydrogen-bonding
interactions (32) makes them particularly important in deter-
mining the specificity of protein recognition and folding (33).
Protein–nucleic acid interfaces are significantly more polar
compared to protein–protein interfaces and to protein cores
(10): interactions involving ion pairs and hydrogen bonds
should play a key role in dictating specificity between proteins
and nucleic acids (7–9,34). However, the quantitative descrip-
tion of the orientational features of hydrogen-bonding inter-
actions from the first principles is not straightforward. For
example, the direction of the lone electron pair cannot simply
be assumed by the hybridization of the acceptor, because
hydrogen-bond formation may perturb the hybridization
state of the acceptor atom (35,36). Most current force fields
used in molecular dynamics simulations describe hydrogen
bonds through a combination of Coulomb and Lennard–
Jones interactions with refined atomic charges and lack
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explicit directionality (37–39). Furthermore, differences in
entropy costs associated with freezing exposed and buried
side chains or solvent-dependent effects are difficult to model.

An attractive approach to the description of hydrogen-
bonding interactions relies on the statistical examination of
hydrogen bonds observed in high-resolution crystal structures
(40–42). The statistical preferences observed experimentally
can then be converted into a mean-field potential by inverting
Boltzmann statistics (43). The mean-field potentials relate the
probabilities of occurrence of atom–atom interactions in a
database to the energies of these interactions (43–46) and
incorporate implicitly environmental effects such as solvation
and side-chain entropy. Although several theoretical limita-
tions of this approach have been described previously (47,48),
an orientation-dependent hydrogen-bonding potential was
reported to contributing significantly to the correct prediction
of hot spots in protein interfaces by providing a superior
description of polar interactions compared to a purely
Coulombic description of electrostatics (49,50). The physical
basis for such a potential has been demonstrated by its striking
correspondence, at least for protein side chains, with quantum
mechanical calculations of hydrogen bonded dimers (51).

The present study describes the development of a physical
model for protein–RNA interfaces. The model is based on
physical potentials to describe van der Waals interactions,
solvation, and on a distance and orientation-dependent
hydrogen-bonding potential developed from the statistical
analysis of hydrogen bonds observed in high-resolution
structures of protein–nucleic acid complexes. We observe
that hydrogen bonds involving nucleic acids are more orien-
tationally constrained compared to proteins. The predictive
power of the atomic model is demonstrated through its ability
to recover the native amino acids at protein–RNA interfaces.
A scoring function based on the new hydrogen-bonding
potential very successfully discriminates native protein–
RNA structures from a large set of decoys.

METHODS

Construction of protein–nucleic acid structure database

Protein–DNA and protein–RNA structures were downloaded
from the Protein Data Bank (PDB) (52). Only X-ray crystal
structures with a resolution of 2.5 s or better and a crystal-
lographic R-factor of 0.25 or better were included in the sta-
tistical analysis. The database contains 42 protein–RNA and
125 protein–DNA complexes as of March 2004. However, the
protein–RNA complexes include the 50S ribosome structure
comprising 2 RNA and 28 individual polypeptide chains (53);
therefore, the dataset effectively contains nearly 70 indepen-
dent protein–RNA structures. For crystals with multiple com-
plexes in a unit cell, only one representative structure was
included. The database was checked with BLAST and
MACAW to remove redundant protein structures (more
than 30% sequence homology), but homologous proteins
were retained when bound to DNA or RNA sequences that
were significantly different.

Analysis of hydrogen-bonding geometry

Hydrogen atoms are generally not included in the coordinates
derived from the crystal diffraction data. Thus, polar hydrogen

atoms were added when the position of the hydrogen itself is
clearly defined by the chemistry of the donor atom. For pro-
teins, hydrogens were added to all backbone amide protons
and to the tryptophan indole, histidine imidazole, asparagine
and glutamine amides, and arginine guanidinium groups. For
nucleic acids, imino and amino hydrogens were added. The
bond length between proton and donor was set to 1.01 s for
NH bonds (as established by CHARMM27) (54). Angles were
defined using the same method as used by HBPLUS (55), with
the exception of the protein backbone amide protons, where
the angles of C–N–H and Ca–N–H were set to be equal (the
difference is only 4� in HBPLUS). It is difficult to define the
orientations of Asn, Gln and His side chains in X-ray crystal
structures at resolutions approximately >1 s. Therefore, incor-
rect placement (flip over) is possible in the X-ray structures;
this feature was not corrected here as it would require assump-
tions about hydrogen-bonding energies. The protonation state
of histidine was assumed to be the most common Ne2 proto-
nation state (55). No attempt was made to add rotatable polar
hydrogens to the OH groups of Ser, Thr and Tyr, to the amino
group of Lys and to the RNA 20-OH. These hydrogens are not
observed explicitly in the models derived from
X-ray diffraction studies and cannot be located in an unbiased
way in the absence of neutron diffraction data. Because of
these omissions, the distributions of hydrogen-bonding inter-
actions among different amino acids and nucleobases differ
somewhat from previous studies (5,7,8).

One of the goals of our study was to generate a self-
consistent model for the description of proteins, nucleic acids
and their complexes for design purposes. Therefore, the para-
meters chosen to describe hydrogen bonds in nucleic acids
(Figure 1) were equivalent to those used to describe hydrogen
bonds in proteins (49). Four geometrical parameters were used
to describe hydrogen-bond geometry (Figure 1): (i) the dis-
tance dHA between the hydrogen and acceptor atoms; (ii) the
angle Q at the hydrogen atom; (iii) the angle y at the acceptor
atom; and (iv) the dihedral angle X corresponding to the rota-
tion around the acceptor–acceptor base bond. For the dihedral

Figure 1. Schematic representation of the geometric parameters used to
describe hydrogen-bond geometry. dHA represents the distance between
the hydrogen and acceptor atoms; Q, the angle at the hydrogen atom
describes the linearity of hydrogen bond; C, the angle at the acceptor atom;
(X represents the dihedral angle given by rotation around the acceptor–acceptor
base bond; for sp2 hybridized acceptors, it is a measure of the planarity of the
hydrogen bond. A, acceptor; D, donor; H, hydrogen; AB, acceptor base; and
R1, R2, reference atoms bound to the acceptor base.
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angle around phosphate oxygen (e.g. O1P) and phosphorous,
the reference atom (R) was chosen as the second phosphate
oxygen (e.g. O2P); therefore, the plane defined by O1P–P–
O2P defines ‘planarity’ for phosphate oxygen acceptors. A
pre-defined cut-off range (1.4–2.6 s) was set for distance
between hydrogen and acceptor atoms, while an upper limit
of 4 s was chosen for the donor-to-acceptor heavy-atom dis-
tance; no pre-condition was applied for the three angular para-
meters describing hydrogen-bond formation. In the analysis
of geometric preferences, bin sizes of 0.1 s and 10� were
assigned to describe distance (dHA) and angular distributions
(Q, C, X), respectively. After counting the number of
observed hydrogen-bonding contacts in each bin, raw counts
were corrected for the different volume elements encompassed
by the bins to ensure that the number of observations in each
bin is representative of the density of points and is not affected
by the different bin size (42). Angular corrections of sin Q and
sin C were applied to achieve this correction, but no correction
was applied to the X angle because the volume elements
considered for the dihedral angle are of equal size. A distance
correction (d2

HA) was also applied.

Construction of a potential of mean force for
hydrogen-bonding interactions

The orientational hydrogen-bonding potential comprises a
distance-dependent energy term [E(dHA)] and three angular-
dependent energy components: E(Q) (the angle at the hydro-
gen atom), E(C) (the angle at the acceptor atom) and E(X) (the
dihedral angle of the hydrogen bond). The hydrogen-bonding
potential was generated using reverse Boltzmann statistics by
converting observed frequency distributions into a potential of
mean force. In doing so, we implicitly assume that the total
energy of a system can be partitioned as the sum of independ-
ent contributions (40,49):

E pð Þ = �kTln fpdb pð Þ=frandom pð Þ
� �

, 1

where fpdb(p) is the frequency at which a geometric parameter
p is observed in a certain bin in the dataset and frandom(p) is a
reference frequency value assuming an unbiased distribution
in all bins. The hydrogen-bond energy (EHB) was then derived
from the linear combination of the four distance and orienta-
tional terms under the assumption that they are independent
of each other:

EHB = E dHAð Þ + E Qð Þ + E Cð Þ + E Xð Þ: 2

Energy evaluation for native amino acid recovery
test at protein–RNA interfaces

All energy calculations were carried out using the protein–
nucleic acid interaction module of ROSETTA developed by
Jim Havranek, Chuck Duarte and David Baker. The total free
energy of protein–RNA interactions was modeled as the linear
combination of physical and knowledge-based potentials
describing (i) van der Waals interactions [attractive part of a
Lennard–Jones potential (ELJattr) and a distance-dependent
repulsive term (ELJrep)]; (ii) the orientation-dependent
hydrogen-bond potential (EHB); (iii) the implicit solvation-
free energy (Gsol) (27); (iv) the amino acid backbone-
dependent rotamer probability [Erot(aa, f, y)] (56); (v) the

amino acid type (aa)-dependent backbone f, y probabilities
[EQ/C(aa)]; and (vi) the amino acid type-dependent reference
energies (Eref

aa ).

DG = WattrELJattr + WrepELJrep + WHBEHB + WsolGsol

+ WQ=CEQ=C aað Þ + WrotErot aa,f,Cð Þ +
X20

aa¼1

naaEref
aa : 3

Two types of orientation-dependent hydrogen-bonding poten-
tials were used: one is based on the previous study for hydro-
gen bonds between amino acids (49) and the other is directly
derived from the current result for hydrogen bonds between
amino acids and nucleic acids. All parameters for the hydro-
gen-bonding potential between amino acids and nucleic acids
are listed in Supplementary Material. When the hydrogen-
bonding potential was supplemented with a Coulombic
model of charge–charge interactions, a linear distance-
dependent dielectric constant was used and partial charges
were taken from the CHARMM19 parameter set for proteins
(38) and from CHARMM27 for RNA (47,54).

The weights W of the different components of the model
were obtained by requiring the energy function to optimally
reproduce the native amino acids at the protein–RNA inter-
faces. We used a training set of 25 protein–RNA complexes.
Amino acid-dependent reference energies that approximate
the free energy of the unfolded reference state were also
obtained in the same fitting procedure. The remaining 17 com-
plexes were set aside as a testing set. The list of protein–RNA
complexes used in the training and testing sets can be found in
Supplementary Material. During the fitting procedure, each of
the components of the energy function for all protein rotamers
at each interfacial position was computed assuming a constant
environment for all other amino acids in their native confor-
mation. The weights were then optimized using a conjugate
gradient method to maximize the probability of the native
amino acid type at each position. The rotamer library was
from Dunbrack (56). Additional rotamers were included
with small deviations (10–20�) of the c1 and c2 angles for
buried residues. All RNA atoms were fixed except for 20-OH,
whose position was searched using a rotamer approach (58) to
optimize the local hydrogen-bonding network. The protein–
RNA interface was defined according to the distance cut-off
values between the C10 of nucleic acids and Cb of amino acids.
Depending on the size of the amino acid side chain, the dis-
tance cut-off value varies from 10 to 15 s.

Decoy sets

A set of 2000 decoys for each of the five representatives
protein–RNA complexes were generated using the protein–
ligand docking module of ROSETTA developed by Jens
Meiler. Rigid-body perturbations of the relative position and
orientation of the two partners were carried out in the protein–
RNA complexes (59). RNA was treated as a rigid molecule
during docking and the protein backbone was fixed as well.
However, interfacial amino acid side chains were repacked
and minimized using a backbone-dependent rotamer packing
algorithm after rigid-body docking (60). Decoys were scored
and compared to the native structure based on the hydrogen-
bonding scoring function derived directly from the statistical
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analysis of protein–nucleic acid hydrogen-bond geometries
(Equation 1) without any weight. For infrequent distance
and angular values, the score was set to 0 and no penalties
were applied. A Z-score was defined as follows:

Zref =
hEi � Eref

sE

, 4

where

hEi = 1

N

XN

i¼1

Ei 5

is the average energy of N decoys and

s2
E =

1

N

XN

i¼1

Ei � hEið Þ2
6

is the standard deviation of decoy energies. Eref is the energy of
the native structure experimentally determined by the X-ray
diffraction.

RESULTS

We describe the development and validation of a distance and
orientation-dependent hydrogen-bonding potential derived
from the statistical analysis of protein–nucleic acid complexes.
We then incorporate the potential into a general physical
model of protein–nucleic acid interfaces.

Database construction

The PDB currently (Spring 2004) includes 	167 high-
resolution (<2.5 s) protein–nucleic acid (DNA, RNA) crystal
structures. Considering the complexity of the ribosomal struc-
ture (28 proteins and 2 RNAs), the total number of indepen-
dent structures included in the database is close to 200. The
database contains 3445 distinct hydrogen bonds involving
protein and DNA or RNA. The phosphate oxygens provide
the largest number of hydrogen-bond acceptors (53%),
while the amino groups of amino acid side chains (1167)
and the backbone NH’s (672) are the most common donors.
This number certainly under-represents the total number of
hydrogen-bonding interactions between amino acid side
chains and nucleic acids, since sp3 hydrogen-bond donors (Ser,
Thr and Tyr OH’s and especially Lys NH3) were excluded
from the analysis because their hydrogens cannot be
positioned explicitly without assumptions about hydrogen-
bonding energies.

The current structural database is too small to analyze each
possible pair of hydrogen-bond donor and acceptor types at the
interface of protein and nucleic acid while generating statis-
tically significant results. Therefore, different types of donor
and acceptors were grouped together according to the struc-
tural and chemical similarity. Subtle differences between
related hydrogen-bonding groups (e.g. all base nitrogens
were classified as a single atom type) are inevitably lost,
but smooth distributions could be generated for most acceptor/
donor pairs, suggesting that the statistical sample is large
enough to yield reliable results. In choosing how to partition
hydrogen bonds, we followed criteria similar to those used in
analogous studies of proteins to ensure consistency in the
description of hydrogen-bonding interactions (49). Thus,

five types of hydrogen-bond donors and acceptors were
defined for nucleic acids and five for proteins based on whether
the atom belongs to the protein and nucleic acid backbone or
side chain and on the hybridization state of the acceptor
(Table 1). Separate statistics were collected for protein
side-chain acceptors of sp2 and sp3 hybridization to take
into account different electronic distributions around the
acceptor atoms. Phosphate and ribose oxygens were separated
as well because of their different hybridization states. This
classification partitions all hydrogen bonds between proteins
and nucleic acids into 11 different classes (Table 2).

Hydrogen bonds at protein–nucleic acid interfaces

In the following, we briefly analyze the distance and angular
distributions for hydrogen-bond donor and acceptor pairs
observed in protein–nucleic acid complexes according to
the four geometrical parameters shown in Figure 1.

Hydrogen-bond distance dHA—the maxima in the distance
distributions between hydrogens and hydrogen-bond acceptors
are generally centered between 1.8 and 2.0 s, with small
differences between different classes of hydrogen bonds.
However, the breadth of the distribution differs when different
donor–acceptor pairs are examined. Interactions between
phosphate oxygens and both protein backbone and

Table 1. Partition of nucleic acid and protein hydrogen-bond donors and

acceptors

Nucleic acids (DNA, RNA) Protein

Donor na_NH A N6, G N1 N2,
C N4, T
and U N3

aa_sc_NH His Ne2, Trp Ne1,
Asn Nd2, Gln Ne2,
Arg Ne, Nh1, Nh2

aa_bb_NH Backbone
amide N

Acceptor na_base_O G O6, C O2,
T and U O2
and O4

aa_sc_sp2 Asp Od1 Od2,
Glu Oe1 Oe2,
His Nd1, Asn
Od1, Gln Oe1

na_base_N A N1 N3 N7,
G N3 N7,
C N3

aa_sc_sp3 Ser Og , Thr Og1,
Tyr Oh

na_P O1P, O2P aa_bb_O Backbone carbonyl O
na_O O5*, O4*,

O3*, O2*

Table 2. Partition of hydrogen bonds between nucleic acid and proteins among

different types of hydrogen-bond donors and acceptors

RNA/DNA Protein Number
(3445)

Donor na_NH Acceptor aa_sc_sp2 284
aa_sc_sp3 51
aa_bb_O 174

Acceptor na_P Donor aa_sc_NH 1167
aa_bb_NH 672

na_O aa_sc_NH 238
aa_bb_NH 80

na_base_O aa_sc_NH 352
aa_bb_NH 94

na_base_N aa_sc_NH 289
aa_bb_NH 44
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side-chain NH’s are the most common polar contacts at
protein–nucleic acid interfaces (7–10). For both sets of contacts,
we observe well-defined maxima in the distributions, as would
be expected for interactions with strong hydrogen-bonding (as
opposed to purely electrostatic) character (Figure 2a). The
distance distribution for protein backbone NH interactions
with phosphate oxygens (data not shown) is centered over a
narrower range compared to side-chain NH/NH2 (Figure 2a),
probably reflecting the structural constraints imposed by the
protein secondary structure. Although hydrogen bonds to base
N are not numerous, the relatively sharp distance distribution
observed suggests that these interactions are energetically very
favorable and geometrically highly constrained (Figure 2b).
Interactions between base NH’s and protein backbone
carbonyl O are also not numerous, but have a relatively sharp
distance distribution (data not shown), suggesting that the steric
and structural constraints imposed by the protein backbone

and the RNA bases result in relatively few energetically favor-
able interaction geometries.

The hydrogen-bond angle Q measures the linearity of the
hydrogen bond: if a hydrogen bond was perfectly linear, its
value would be 180�. As expected, hydrogen bonds between
nucleic acids and proteins are almost always very close to
linear: the distributions generally have maxima in the Q
angle range between 160� and 180�. Interactions between
the RNA backbone phosphate oxygens and the protein back-
bone NH display particularly strong linearity (data not shown),
while the side-chain NH’s have broader distributions with a
maximum slightly removed from the linear value (Figure 2a).
Interactions between base nitrogens and protein backbone NH
have nearly perfect linear distributions (data not shown), but
broader spreads are observed for contacts between base nitro-
gens and protein side-chain NH’s (Figure 2b). The distribu-
tions for hydrogen bonds between base oxygens and protein

Figure 2. Distance (dHA), linear angle (Q) and angular (C) distributions for selected hydrogen bonds at protein–RNA/DNA interfaces: (a) phosphate oxygens to
protein side-chain NH/NH2; (b) base N to protein side-chain NH/NH2; and (c) base O to protein side-chain NH/NH2.
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backbone and side-chain NH’s have the maxima skewed to
values slightly smaller than linear; the distribution is particu-
larly broad for interactions involving the protein side chains
(Figure 2c).

The angle C represents the acceptor hydrogen-bond angle.
Interactions between phosphate oxygens and protein donors
are ideally centered at 120� with a broad distribution espe-
cially for interactions involving protein side chains (Figure 2a).
Hydrogen bonds between nucleic acid base N and the protein
side-chain NH’s (Figure 2b) have C distributions resembling
those observed for interactions involving protein side chains
(49). In contrast, hydrogen bonds to base O have much
broader distributions skewed to values much closer to linear,
particularly for hydrogen bonds involving protein side-chain
NH’s, where almost a flat distribution is observed between
120� and 180� (Figure 2c). Nearly linear acceptor angles are
often observed between protein side-chain NH’s and base O
when base O is involved in base-pairing interactions; e.g. in
contacts between Arg and GC pairs, or between Asp and AU
pairs (11).

The dihedral angle X measures the planarity of the hydrogen
bond. A value of 0� (or –180�) occurs when the hydrogen is
located in the plane defined by the acceptor, acceptor base and
reference atom (Figure 1). Protein backbone and side-chain
amide groups make strongly planar interactions with base
nitrogen acceptors. This preference is more significantly
marked for protein side chains (Figure 3a) because of a larger
statistical sample, but it is also clear for the protein backbone
(data not shown). This observation places strong constraints on
the direction of the hydrogen bonds between amino acids and
the RNA/DNA bases (see Discussion). The planar preference
for base carbonyl oxygens is not as marked as for the ring
nitrogens, but still clearly observable. Although interactions
between nucleic acid base NH and protein backbone carbonyl
oxygens are devoid of any statistical preference (data not
shown), weak but clear preferences for a planar arrangement
are observed for interactions between nucleic acid NH and
NH2 donors and sp2-hybridized acceptors on the side chains of
proteins (Figure 3b). Hydrogen bonds involving phosphate
oxygens tend to be planar when paired with amino acid

Figure 3. Dihedral angular distributions (X) for hydrogen bonds at the interface of proteins and RNA/DNA: (a) base N to protein side-chain NH/NH2 donors; (b) base
NH/NH2 to protein side-chain sp2 hybridized acceptors; (c) phosphate O to protein backbone NH; and (d) phosphate O to protein side-chain NH/NH2.
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backbone NH, but less clearly so when paired with side-chain
donors (Figure 3c and d).

Construction of a knowledge-based hydrogen-bonding
potential

The potential of mean force describing hydrogen-bonding
interactions at protein–nucleic acid interfaces was derived
by reversing Boltzmann distribution by taking the negative
logarithm of the probability distributions for each hydrogen-
bond acceptor–donor pair. The total hydrogen-bonding
potential is composed of the linear combination of the
distance-dependent energy term [E(dHA)] and the three angle-
dependent energy components [E(Q), E(C), E(X)] (see
Methods). Figure 4 shows the result of this analysis for hydro-
gen bonds between base N and protein side-chain NH groups.
Clear minima appear in the energy profiles reflecting the
strong distance and directional preferences as observed in
the database of high-resolution crystal structures. In other
words, the strong distance and orientation dependence of
the hydrogen-bonding reflect significant energetic restrictions
on the relative positions of the donor and acceptor atoms at
protein–nucleic acid interfaces.

Prediction of the native protein sequence identity at
protein–RNA interfaces

Two tests were carried out to demonstrate the importance of
the distance and orientation-dependent effects in hydrogen
bonds at the protein–RNA interface and validate the ability
of the model to capture these effects. The first test probes the
ability of the model to recover the native protein sequence at a
protein–RNA interface. This test is based on the assumption
that the substitution of the sequences of protein at protein–
RNA interface with non-native amino acids generally results
in an increase in free energy compared with the naturally
occurring sequence. In order to assess the importance of the
hydrogen-bonding potential, we repeated the same test first by
eliminating the orientational components of the hydrogen
bond and then by replacing hydrogen-bonding potential
with electrostatic Coulomb potential using a linear distance-
dependent dielectric constant.

The complete energy function used to score protein–RNA
complexes includes van der Waals interactions, solvation,
amino acid rotamer and backbone conformational preferences
in addition to the statistical-based hydrogen-bonding potential.
In weighting for the different components of the total free

Figure 4. Hydrogen bonding-potential of mean force for interactions between base N and protein side-chain NH/NH2 donors. (a) Distance dHA; (b) angleQ; (c) angle
C; and (d) angle X. The knowledge-based potentials were calculated from the negative logarithm of the observed frequency distributions (see Methods).

Nucleic Acids Research, 2004, Vol. 32, No. 17 5153



energy, we used 25 protein–RNA complexes (4500 amino acid
positions) and set aside the remaining 17 independent
structures (850 amino acid positions) to execute the amino
acid recovery test. The weights for the energy terms in
each of the experiments were re-optimized (see Methods)
for each test (complete hydrogen-bonding function; no orien-
tation-dependent components; no hydrogen-bonding potential

instead using a Coulomb potential). Cysteine residues were not
included in the substitution profile because potential disulfide
bonds remain to be modeled.

The results of the test are shown in Figures 5 and 6, where
we report how often the native amino acids were found to be
energetically most favorable. The overall recovery rate is
44%: this result compares well with what is observed on

a

b
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single domain proteins (52% for buried positions and 26% for
all positions) and protein–DNA interfaces (43%) by
similar tests (49,74). This lower recovery rate compared
with the protein core is expected because the identities of
the native amino acids at protein–RNA interfaces like pro-
tein–protein interfaces are not only determined by energetic
considerations, but also by functional and solubility con-
straints. The complete hydrogen-bonding potential identifies
the native amino acids most often as the energetically most
favorable replacement for most charged (A, D, K and R), polar
(N, Q, S and T) and polar aromatic (H, W and Y) amino
acids (Figure 5). The exceptions are Lys, Gln, Thr and Trp.
However, the overall prediction accuracy for these residue
classes remains worse than that for hydrophobic amino
acids (A, I, L, V, F, M, G and P), which are all predicted
with the highest frequency (Figure 6).

Significantly, worse results are observed in nearly each case
when the orientational component of the hydrogen bond is
removed; the model performs even worse when the hydrogen-
bonding term is substituted with a purely electrostatic
description of polar interactions (Figure 5). Replacing
hydrogen-bonding interactions with a purely Coulombic
term gives the worst recovery rate in all cases except
Glu and Thr. Combining both the hydrogen-bonding and
electrostatic potentials, only slightly improves the overall
performance of the total energy function in recovering the
native sequence (data not shown). Based on these results,
the electrostatic potential was not included in the current
model.

Recovery frequencies for individual amino acids are
revealing. Arg has the highest recovery frequency (over
79%) among all 19 amino acids and is also preferred to
the native amino acid for Lys, Gln, Thr and Trp. This is
consistent with the high occurrence of Arg (over 15%) at
protein–nucleic acid interfaces (7,9). Lys was not recovered
most frequently when hydrogen-bonding potential was
included, but was found most often when the angular
terms of the hydrogen bonds were switched off. This is
probably due to the limited conformational sampling of
the rotamer approach, which makes it difficult for long
polar amino acids to find optimal hydrogen-bonding geo-
metries. Lys was also not initially included in the hydrogen-
bonding geometrical analysis because its polar hydrogen
atoms cannot be placed without assumptions about hydrogen-
bonding energies. Currently, it uses hydrogen-bonding
potential based on the analysis of other protein side-chain
donors. Thr is most often recovered when a purely electro-
static potential is used but not when the hydrogen-bonding
potential is used instead. For polar aromatic amino acid, Trp
is less favorable compared with Tyr, which has the second
highest frequency of recovery (66%). The high recovery rate
for Tyr is presumably due to the hydrogen-bonding pro-
perties of its OH groups as well as its ability to form stacking
interactions. Although stacking interactions are not expli-
citly modeled, steric constraints included in the Lennard–
Jones term are likely to recapture at least some aspects of
the base–amino acid stacking interactions observed in many
protein–RNA complexes. Trp is present in only a very small

c

Figure 5. Native protein sequence recovery at protein–RNA interface derived from a test set of 17 protein–RNA complexes. Different energy functions are used to
test the substitution profile: red bars, complete energy function, as described in the text; light blue bars, energy function with the angular terms of hydrogen-bonding
potential turned off; yellow bars, the hydrogen-bonding potential was substituted with a purely Coulombic interaction model. The bars show how often the native
amino acids are calculated to be energetically most favorable at each interfacial position probed. (a) Charged amino acids; (b) polar amino acids; and (c) polar
aromatic amino acids.
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number of cases (11 positions) in our test set, and it is the
only polar aromatic amino acid not selected correctly with
high frequency of recovery. Its large aromatic ring could
sterically clash if conformational space is not sampled
adequately.

Decoy discrimination in protein–RNA docking

In a second test, we assessed the ability of the new hydrogen-
bonding function to discriminate native from non-native
protein–RNA structures (Figure 7). This test is based on the

Figure 6. Recovery of hydrophobic amino acids at the interface of protein–RNA complexes using the complete energy function including the hydrogen-bonding
potential.
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assumption that native protein–RNA interfaces, like protein–
protein interfaces, are generally energetically optimized when
compared to alternative binding conformations (49,61–63).
We selected five protein–RNA complexes and generated
2000 decoy structures covering a range of root-mean-square
distance (RMSD) values from below 1 s to over 20 s. The five
structures were chosen according to their sizes (<200 amino
acids and RNA between 8 and 29 nt), crystallographic resolu-
tion (1CVJ, 2.60 s; 1EC6, 2.40 s; 1FXL, 1.80 s; 1JID,
1.80 s; and 1URN, 1.90 s) and characteristics of the interface.
Four complexes represent single-strand RNA interacting with
one or two RNA recognition motifs (RRMs); 1JID provides an
example of a protein bound to the major grove of an irregular
helix RNA (Table 3). These are the major interaction modes
between protein and RNA. Starting from the native structures,
small perturbations (translation and rotation) were applied
to obtain both near-native decoys and decoys with larger
RMSD values. Protein backbone conformations in all decoys
were kept fixed as in the native structures, but the protein side-
chain conformations were modeled using standard rotamer
library to allow the extensive rearrangement of the side chains
in the protein–RNA interface during docking. RNA molecules
were kept in the same conformation as in the native structures.

Figure 7 shows the results graphically, while Table 3 shows
the Z-score values measuring the discrimination of the native
structures from all other decoy conformations. We compared
the full hydrogen-bonding potential with the performance of a
Columbic potential with a linear distance-dependent dielectric
constant. In all cases, the hydrogen-bonding potential success-
fully discriminated the native structures, with the lowest
Z-score of 2.70 (success is defined as Z-score > 1). The
hydrogen-bonding potential performs much better than the
Columbic model, especially in the low-RMSD range (up to
3 s) where correct and incorrect structures are most difficult to
discriminate. When the angular terms of the hydrogen-
bonding potential are removed, the Z-score values are only
slightly affected, but three out of five native structures are not
discriminated well from the rest of the decoys. The results of
this test suggest that native protein–RNA complexes maximize
the number of hydrogen-bonding interactions in the interface,
while hydrogen-bonding plays a significant role in the affinity
and specificity of protein–RNA interactions. It also suggests
that explicit treatment of the directionality of the hydrogen
bond is required to fully capture its importance.

We expected the model to perform best when recognition
was primarily of single-stranded nucleotides compared to
more structured RNAs that have more backbone contacts.
Consistent with this, the shape of the score distribution at
low-RMSD values was not as distinct for the complex invol-
ving a structured RNA (1JID) compared to the other four
decoys sets, although the Z-score value remains very high
(9.12). In this structure, the protein binds to the major groove
and tetraloop of a helical RNA, with few direct protein–base
contacts. A complex network of highly ordered water mole-
cules is also present in this protein–RNA interface. The pre-
sence of water molecules is certain to affect the accuracy of the
hydrogen-bonding potential, since they are not modeled in the
scoring functions and are discarded in the docking process.
Despite these difficulties, discriminations between correct and
incorrect structures remain effective and in fact the Z-score is
the best of all tests.

DISCUSSION

The increase in the number of RNA–protein structures in the
last few years has been remarkable. We now know the struc-
tures of most if not all major RNA-binding protein families
and how they bind to RNA (64–66). However, even in the best-
studied case, RRM, the molecular basis of specificity in
protein–RNA recognition remains far from clear (64,67). A
fruitful approach in understanding the molecular determinants
of protein–protein interactions has been the establishment of
computational tools to redesign specificity (68–71). The com-
putational redesign of proteins and protein–protein interfaces
is providing experimental test of our knowledge of the inter-
action principle, as well as design cycles to successively
improve tools for design and prediction based on the experi-
mental results. The aim of the present manuscript is to estab-
lish comparable tools to study protein–RNA recognition.

The starting point for the present work is the statistical
analysis of hydrogen-bond geometries at the interfaces
between proteins and nucleic acids as they are observed in
high-resolution crystal structures. Several recent studies have
analyzed the statistical properties of protein–RNA interfaces
and provided insight into amino acid preferences in the inter-
actions with certain bases and macroscopic characteristics
such as polarity and average size (5–11). However, the quan-
titative analysis of the energetic features responsible for spe-
cificity and affinity in protein–RNA recognition remains to be
executed. None of the existing computational studies has until
now been expanded to develop a testable model of protein–
nucleic acid interfaces with predictive power. We use the
statistical analysis to establish a distance and orientation-
dependent hydrogen-bonding potential which is fully
compatible (indeed inspired by it) with a successful model
to describe hydrogen bonding in protein cores and protein–
protein interfaces (49,68). We demonstrate that this potential
of mean force provides a quantitative tool to analyze protein–
RNA interfaces by conducting two independent tests: (i) it
successfully recovers native amino acids at protein–RNA
interfaces and (ii) it successfully discriminates native struc-
tures of protein–RNA complexes from a very large set of
docking decoys.

The statistical-based hydrogen-bonding potential recovers
native amino acids at the interface 	44% of the time when
included in a complete physical model of protein–RNA inter-
faces that contains Lennard–Jones potentials and solvation.
This result is comparable to similar studies conducted with
single domain proteins and protein–DNA complexes (49,74),
which also used orientation-dependent hydrogen-
bonding potential but based on the geometries of hydrogen
bonds in protein crystal structures. In the study with protein–
DNA complexes, a potential term derived from the present
study to restrict the acceptor angle of aromatic nitrogen was
included as well in the total hydrogen-bond potential. The
success of current model is particularly encouraging when
one considers that this is the first version of a model that
remains to be refined through successive rounds of computa-
tional prediction and experimental validation. We demonstrate
that the successful recovery of polar and aromatic-polar amino
acids is compromised when the hydrogen-bonding angular
terms in the potential are removed (i.e. the hydrogen bond
is assumed to be radially symmetric) and when a Coulombic
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potential is used instead of the hydrogen-bonding potential. As
observed for proteins (49), even if van der Waals and other
components of the model are retained and undoubtedly pro-
vide geometric restriction to the possible intermolecular inter-
actions, they are not sufficient to discriminate the native amino
acid sequence from random mutations. Arg is among the most

frequently observed amino acids in protein–nucleic acid inter-
faces, so the weights and reference energy calculation process
will certainly provide some bias toward this residue. Further-
more, distance cut-off used to define the protein–RNA inter-
face is generous. It is possible that certain amino acids
(e.g. Asp and Glu; Figure 5) on the protein surface are defined
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as interface residues even if they do not directly interact with
RNA: they may be replaced with Arg providing more favor-
able electrostatic contacts. Using direct contacts (VDW and
hydrogen bond) to define protein–RNA interfacial residues
and weighting the amino acid frequency from the database
of protein–nucleic acid interactions will probably reduce the
preference for more dominant residues.

The current hydrogen-bonding potential also discriminates
native protein–RNA structures from large sets of decoys pre-
pared by small-perturbation method and greatly outperforms a
purely Coulombic model, especially in the most challenging
low-RMSD range. The hydrogen-bonding potential has much
better discrimination power in this close-to-native case com-
pared with Coulombic potential. However, in the high-RMSD
range (up to 15 s), the distance-dependent Coulombic poten-
tial has a better score-RMSD linear relationship compared
with hydrogen-bonding potential. Perhaps, the two scores
could be successfully combined during the de novo modeling
of protein–RNA interfaces. The electrostatic potential can
guide the two partners during the initial searches leading to

rough models that can be refined using the more accurate
hydrogen-bonding potential.

We compared the performance of hydrogen-bonding
potentials based on the current protein–RNA/DNA database
with a previously published hydrogen-bonding model based
on protein structures. The comparison was carried out by
mapping atom types to each other based on similar chemistry.
The recovery tests yielded comparable overall results,
although the recoveries of individual amino acids differ some-
what between the two tests. We notice, however, that the
current hydrogen-bonding potential for proteins employed
in Rosetta treats aromatic nitrogens based on the results of
the protein–nucleic acid database illustrated here. Further-
more, Rosetta uses a rotamer library to search the amino
acid side-chain conformations, and this approximation most
probably introduces errors that are greater than the difference
between the two hydrogen-bonding potentials. Finally,
protein–nucleic acid interfaces have a significant number of
protein–protein hydrogen bonds, in addition to protein–nucleic
acid hydrogen bonds. These three effects mitigate the

Figure 7. Scatter plots obtained by scoring five sets of protein–RNA decoys using either hydrogen-bonding potential (a, c, e, g and i) or a Coulombic potential with
distance-dependent dielectric constant (b, d, f, h and j). A total of 2000 decoys are created for each of the five test structures using the small perturbation method. The
scores of the native structures are highlighted using red circles: (a and b) 1CVJ; (c and d) 1EC6; (e and f) 1FXL; (g and h) 1JID; and (i and j) 1URN.

Nucleic Acids Research, 2004, Vol. 32, No. 17 5159



differences observed between the two hydrogen-bonding
potentials.

Hydrogen bonds involving the nucleic acid bases are
undoubtedly an important source of specificity in protein–
RNA/DNA recognition (7,9). However, they are much
fewer than the contacts with the backbone phosphates; in
RNA, e.g. 60–70% of all interactions involves the backbone
(9). What features of the hydrogen bond between proteins and
nucleic acids are the most significant determinants of its
importance in recognition?

(i) Hydrogen bonds between the protein side chain and back-
bone atoms and RNA/DNA bases are constrained over
narrow distance and (especially) angular values. The
sharp distance and orientational preferences observed
in the present study reveal very narrow minima in the
potential of mean force subtending these interactions.
They are energetically constrained within surprisingly
narrow (compared to protein–protein interactions) geo-
metrical parameters.

(ii) Hydrogen bonds involving the nucleic acid bases have
very strong preference for planarity. The planarity of
hydrogen bonds involving the nucleic acid bases is parti-
cularly stunning (Figure 3). By way of comparison, con-
tacts between protein side chains only display mild planar
preference for sp2-hybridized acceptors. Backbone con-
tacts in proteins deviate significantly from planarity with
maxima in the distribution near �120� for a-helices,
�100� for irregular structures, while a bimodal distribu-
tion centered around �130� and a broad peak near 0� for
b-sheet structures (49). The very strong preference for
planarity of the hydrogen bond in nucleobases may reflect
the electron distributions of the planar ring systems as
well as the steric constraints in interaction with bases.
Whatever its origin, this observation places very signifi-
cant constraints on the type of intermolecular hydrogen
bonds between proteins and nucleic acids that are ener-
getically favorable. This observation may also have im-
plications for drug design. Many existing drugs contain
heteroaromatic rings, including nucleosides, which are
likely to share hydrogen-bonding characteristics with
the nucleic acid bases.

(iii) Interactions of phosphate oxygens with proteins have
strong hydrogen-bonding character. We observed clear

maxima in the distance distributions for hydrogen bonds
between proteins and the phosphate oxygens, correspond-
ing to typical hydrogen bonds. Purely electrostatic inter-
actions would generate distributions that increase
monotonically with distance and would not be strongly
directional (9,49). The distance and angle distributions for
phosphate oxygen acceptors (Figure 2a) are only slightly
broader compared with other hydrogen-bonding distribu-
tions described here, suggesting that the contributions
from charge–charge interactions are marginal. Further-
more, some residues (e.g. Arg) can form one strong
and one weak hydrogen bonds with the two phosphate
oxygens, affecting the geometry of the hydrogen bond.
Phosphate oxygen acceptors provide the majority of in-
termolecular hydrogen-bonding interactions between
proteins and nucleic acids. Very often, these interactions
involve basic side chains such as Arg or Lys (5,7).
Although their contribution to affinity has long been
recognized as very important, their contribution to
specificity (indirect recognition) has been more difficult
to dissect. The observation of clear distance and orienta-
tional constraints indicates that only certain structural
arrangements are conducive to favorable interactions
between nucleic acid phosphates and proteins. This is
probably a major reason why a purely Coulombic model
performs less satisfactorily compared to the orientation-
dependent hydrogen-bonding model derived from
existing protein–nucleic acid structures.

It is clear from this discussion that the formation of hydro-
gen bonds at protein–nucleic acid interfaces places very strong
orientational constraints on the relative placement of
hydrogen-bonding atom pairs. These preferences define the
kind of interactions that are energetically favorable between
nucleic acid and proteins. Interactions involving the bases are
especially directional and tightly constrained geometrically.
Direct recognition of RNA and DNA functional groups, even
by the protein backbone (as is very commonly observed in
RNA–protein interactions) (9), is a highly effective way to
achieve specific recognition because of these strong geometric
constraints. Interactions involving phosphate oxygens are also
most favorable within relatively narrow distance ranges and
are remarkably directional. By controlling the spatial location
of phosphate groups and therefore dictating which interactions
between the phosphates and protein side chains are energeti-
cally favorable or even feasible, nucleic acid structure con-
tributes to the indirect recognition of a nucleic acid sequence.

The present work and the concomitant prediction of
protein–DNA interactions introduce a validated computational
tool for the redesign of specificity in nucleic acid-binding
proteins. Such proteins would provide valuable new probes
for biological interactions and, potentially, new therapeutic
agents. Combinatorial methods such as phage display are
effective for at least some classes of nucleic acid-binding
proteins (1,2,72,73), however, it would be highly advanta-
geous to be able to alter the specificity of existing nucleic
acid-binding proteins in a predictive way using design
algorithms that have become increasingly powerful in the
design of proteins and protein–protein interface (22–26,49).
The physical model presented here is capable of energetically
quantifying the molecular interactions between proteins and

Table 3. Z-scores for the five protein–RNA complex decoy sets

PDB code RNA-binding mode Z-score
Coulomb HB

1CVJ Single-strand (SS)
RNA interacts with
two protein RRM motifs

1.19 5.11

1EC6 Protein loop interacts
with SS RNA

1.09 6.53

1FXL SS RNA interacts with
two RRMs

1.55 2.70

1JID Protein interact with RNA
major groove and tetraloop

1.36 9.12

1URN SS RNA interacts with RRM 1.35 8.39

The following potential functions are used: (i) Coulomb electrostatics with a
linear distance-dependent dielectric constant (Coulomb) and (ii) hydrogen-
bonding potential (HB) based on the present study.
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nucleic acids based on a full atom representation that com-
prises both physical and statistical components. We are cur-
rently working at improving the model by allowing for RNA
flexibility, by improving the description of electrostatic and by
including cation–p interactions, guided by the results of amino
acid substitutions. We are also experimentally testing the pre-
dictive power of the model by redesigning specificities at
model protein–RNA interfaces.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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