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ABSTRACT The presentation and delivery of antigens are crucial for inducing immu-
nity and, desirably, lifelong protection. Recombinant viral vectors—proven safe and
successful in veterinary vaccine applications—are ideal shuttles to deliver foreign
proteins to induce an immune response with protective antibody levels by mimick-
ing natural infection. Some examples of viral vectors are adenoviruses, measles virus,
or poxviruses. The required attributes to qualify as a vaccine vector are as follows:
stable insertion of coding sequences into the genome, induction of a protective im-
mune response, a proven safety record, and the potential for large-scale production.
The need to develop new vaccines for infectious diseases, increase vaccine accessi-
bility, reduce health costs, and simplify overloaded immunization schedules has
driven the idea to combine antigens from the same or various pathogens. To pro-
tect effectively, some vaccines require multiple antigens of one pathogen or differ-
ent pathogen serotypes/serogroups in combination (multivalent or polyvalent vac-
cines). Future multivalent vaccine candidates are likely to be required for complex
diseases like malaria and HIV. Other novel strategies propose an antigen combina-
tion of different pathogens to protect against several diseases at once (multidisease
or multipathogen vaccines).

KEYWORDS multidisease vaccine, multipathogen vaccine, multivalent vaccine,
polyvalent vaccine, viral vector vaccine

In the last 20 years, many new human diseases have emerged, and worryingly,
diseases previously presumed to be under control, such as diphtheria, plague, and

polio, have resurged (1, 2). Vaccines are recognized to be one of the most cost-effective
interventions for the prevention of infectious diseases. Effective and safe vaccines
capable of undergoing mass production provide the prospect of eradication of certain
diseases. In most cases, a large proportion of vaccination scheme costs arises from
maintaining cold chains, storage, and transport as well as the salaries of medical and
paramedical staff rather than the costs of the vaccines themselves. Despite this, some
recently introduced advanced vaccines are markedly more costly. The expenditure on
vaccination programs can be minimized by the well-established practice of combining
individual vaccines (e.g., diphtheria/tetanus/pertussis or mumps/measles/rubella), but
each component has to be manufactured separately and the method of combination
can be complex. With the advent of genetically engineered viral vaccines, it has
become feasible to combine multiple protective antigens into a single viral vector, e.g.,
a complex filovirus-vesicular stomatitis virus (VSV) recombinant (3). This is especially
true of larger viral vectors (e.g., herpesviruses, poxviruses, and adenoviruses [AdVs]),
where there are few restrictions imposed by gene packaging limits. It is increasingly
recognized that viral vectors may be deployed to protect against a broad range of
infectious diseases, for example, protozoal (e.g., malaria [4]) and mycobacterial (e.g.,
tuberculosis [5, 6]) infections. This allows the prospect of multipathogen vaccines, in

Accepted manuscript posted online 17
August 2016

Citation Lauer KB, Borrow R, Blanchard TJ.
2017. Multivalent and multipathogen viral
vector vaccines. Clin Vaccine Immunol
24:e00298-16. https://doi.org/10.1128/
CVI.00298-16.

Editor Christopher J. Papasian, UMKC School of
Medicine

Copyright © 2017 American Society for
Microbiology. All Rights Reserved.

Address correspondence to Katharina B. Lauer,
katharina.lauer@postgrad.manchester.ac.uk.

MINIREVIEW

crossm

January 2017 Volume 24 Issue 1 e00298-16 cvi.asm.org 1Clinical and Vaccine Immunology

http://orcid.org/0000-0002-4347-7525
https://doi.org/10.1128/CVI.00298-16
https://doi.org/10.1128/CVI.00298-16
https://doi.org/10.1128/ASMCopyrightv1
mailto:katharina.lauer@postgrad.manchester.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1128/CVI.00298-16&domain=pdf&date_stamp=2016-8-17
http://cvi.asm.org


which a single vaccine agent can be envisaged to simultaneously protect against
several common global pathogens, employing well-established and safe vectors in a
cost-effective and unified program. Further, the underlying principles of genetic engi-
neering and vaccine design may be applied to the prevention of infections, where the
problem of protection of the host from multiple serotypes or genotypes has to be
addressed. It is also important to recognize that eliciting protective cytotoxic T lym-
phocyte responses to epitopes within conserved viral proteins is another means to the
same end (7).

Viral vector vaccines have been applied extensively in veterinary medicine (although
these will not be discussed in detail in this minireview). An outstanding example of this
is Raboral V-RG (Merial), the first oral live vaccinia virus (VacV) vector vaccine expressing
the glycoprotein (GP) of Evelyn-Rokitnicki-Abelseth rabies virus. Before its introduction,
rabies control in wildlife relied mostly on depopulation and the vaccination of individ-
ual animals. Raboral V-RG allowed oral vaccination on a large scale using vaccine-
containing baits. Several countries have used Raboral V-RG safely without any adverse
effects and have achieved complete rabies control (8, 9). The hurdles that have to be
taken for introducing viral vector vaccine candidates into humans are appreciably
higher than those for animals. Thus, the development of human viral vaccines and their
licensing remain behind those achieved with animal vaccines. The pressure to find
vaccines for diseases causing widespread epidemics, such as the recent Ebola outbreak,
has accelerated efforts to fast track viral vaccine candidates in humans. Promising
examples like the Ebola vaccine based on a recombinant adenovirus and modified
vaccinia Ankara (MVA) may mark the advent of the first of a new generation of viral
vaccines used in humans (10–13).

The development of new combined vaccines requires reflection on the terminology
that is currently used to describe this new class of chimeric vaccines. A review of
relevant literature reveals a problematic ambiguity in definition. The term “multivalent/
polyvalent vaccine” is ambiguously used to describe either a vaccine candidate with the
ability to protect against several diseases or a vaccine candidate that can protect
against several strains of a single pathogen. In general parlance, “multivalent/polyva-
lent” refers to an agent that is effective against different types of the same organism.
In accordance with this terminology, an infection consisting of multiple pathogens is
generally described as a multipathogen disease or simply multidisease. To avoid
confusion, the following nomenclature is proposed to distinguish the different types of
combined vaccines.

DEFINITIONS
Multivalent/polyvalent vector vaccine. Combined antigens from different strains

(serotypes/serogroups) of one pathogen in a single vector to immunize against one
disease.

Multidisease/multipathogen vector vaccine. Key protective antigens from two or
more pathogens in a single vector to immunize against several diseases.

Figure 1 shows a schematic overview of a multivalent/polyvalent and a multipatho-
gen/multidisease viral vector.

In this minireview, we will detail existing multipathogen and multivalent vaccines
derived from viral vectors. We will draw a distinction between simple multipathogen
vaccines where the vector itself forms a part of the protective agent (for example,
recombinant vaccinia viruses with the theoretical but currently irrelevant potential to
induce immunity to smallpox) and those where the vector backbone is a vehicle to
deliver protection to two or more additional pathogens.

Another possibility to generate multipathogen or multivalent vaccines is based on
vectors where protective antigens have been replaced by antigens derived from
heterologous viruses. While these vaccines are likely to yield protection to the heter-
ologous virus, the protection yielded against the vector agent is likely to be impaired.
These vaccine candidates will not be discussed further in this minireview. We will also
compare and contrast the larger viral vectors that are likely to serve as backbones for
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future broad-spectrum multipathogen and multivalent vaccines and address the tech-
nological hurdles remaining before such human vaccines become widely distributed.
Table 1 provides an overview of the current multivalent and multipathogen viral vector
vaccines that are under investigation.

MULTIVALENT AND MULTIPATHOGEN VACCINES FOR HUMAN APPLICATIONS

A wide variety of viruses have been investigated as single-pathogen vector vaccines;
remarkably fewer have been used for multivalent and multipathogen applications.
Viruses have to meet several requirements to be considered suitable multipathogen or
multivalent vectors. The viral vector has to be capable of taking up large fragments of
immunogenic genes, together with regulatory elements (e.g., promoter, polymerase,
terminator, etc.), or immunomodulators like cytokines, to enhance humoral and cellular
immune responses (14–16). These need to be expressed efficiently and stably, some-
times from different loci within the genome and preferably without the persistence
of the recombinant virus in the host or its integration into the host genome. Other
factors that have to be considered when choosing a vector platform are the lack of
toxicity in the host, affordable large-scale production, or issues with preexisting
vector immunity that may lead to a reduced immune response to the vector (15, 16).
Table 2 compares the viral vectors discussed in this article with respect to their
individual vector characteristics and suitability as multivalent/multipathogen viral vec-
tor candidates.

Measles virus. Among viral vector platforms, measles virus (MV) is a promising
candidate. Measles virus, an exclusively human pathogen, is an enveloped virus in the
family of Paramyxoviridae with a single-stranded, negative-sense RNA genome. Several
MV strains (e.g., the Moraten, Schwarz, or Edmonston measles virus vaccine strain) have
been safely used as vaccines for many years; they exhibit strong immunogenic prop-
erties leading to lifelong protection. MV replication occurs strictly in the cytoplasm of
infected cells, which contributes to a consistent safety profile because no viral DNA is
integrated into the host’s genome (17). The ability to achieve the stable insertion of
more than 5,000 nucleotides into the MV genome (unlike other RNA viruses), together
with the efficient expression of transgenes and low production costs, makes MV a

FIG 1 Schematic overview of multipathogen/multidisease and multivalent/polyvalent viral vector
vaccines.
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valuable potential vaccine delivery system (18, 19). In many multipathogen vaccine
candidates based on measles virus vectors, the virus itself is used as an immunogen.

One example is a MV vector (Moraten Berna measles vaccine strain sequence)
human papillomavirus (HPV) vaccine candidate (rMVb2-HPV-L1), generated by Cantar-
ella and colleagues (20), which proved to induce strong humoral immune responses
against MV and HPV in transgenic interferon alpha receptor-deficient (IFNAR�/�) CD46
mice. Reverse genetics technology enabled the rescue of MV (an RNA virus) from
cloned plasmid DNA, containing MV antigenomes, in cell culture using the human
helper cell line 293-3-46. The structural L1 protein sequence from HPV16, found to be
immunogenic in previous studies, was inserted between the M and P sequence of the
MV, forming virus-like particles after expression (20–22). The stability of the transgene
expression, an important factor for a successful vaccine candidate, was tested over 10
passages in MRC-5 cells (human fetal lung fibroblasts) and showed no reduction.
Furthermore, recombinant rMVb2-HPV-L1 did not exhibit a reduced growth kinetic
compared to that of the “empty” MV. The immunogenic activity of rMVb2-HPV-L1 was
evaluated in a murine immunization study with MV-susceptible mice (IFNAR�/� CD46;
devoid of the interferon type I receptor plus expression of human CD46). Mice were
injected intraperitoneally with rMVb2-HPV-L1 or the parental MV at day 0 and 4 weeks
later with 105 PFU. All of the mice that were immunized with rMVb2-HPV-L1 mounted
L1-specific humoral immune responses, which is comparable to the humoral immune
response elicited in mice after three intramuscular injections with the standard HPV
vaccine (Cervarix; GlaxoSmithKline Biologicals). Cervarix is a licensed virus-like particle
vaccine against disease associated with HPV16 and HPV18, where virus-like particles are
obtained with a baculovirus expression system (23). The serum of immunized mice was
also examined for anti-measles virus antibodies. No difference in the immune response
to MV was observed with the recombinant virus compared to that of the parental MV.
As MV has the capacity for larger inserts (5 to 6 kb), this vector may be exploited for
expressing immunogens of other HPV types (e.g., HPV18). Additionally, the authors
suggest the insertion of the E6 or E7 proteins, which may allow the vaccine candidate
to be used for immunotherapy (20).

In another approach by Brandler et al. (26), a recombinant measles vaccine express-
ing chikungunya virus-like particles was generated using a helper cell line rescue
approach (24). Chikungunya virus (CHIKV) is an alphavirus with a positive RNA genome
and is transmitted by mosquitoes especially in Southeast Asia, Africa, and the Indian
subcontinent. In recent years, there has been a tendency for the virus to spread to more
temperate regions. The measles virus Schwarz strain was used for the insertion (be-
tween the phosphoprotein and matrix gene of MV) of the C, E3, E2, 6K, and E1 structural
protein sequences of CHIKV La Reunion strain 06-49, which accounts for most epidem-
ics worldwide (25). Transgenic CD46-IFNAR mice, susceptible to measles infection, were
injected intraperitoneally with two consecutive doses (ranging from 103 to 105 50%
tissue culture infective dose [TCID50]) 1 month apart. The control group received empty
MV Schwarz strain. All mice vaccinated with MV-CHIKV showed the generation of
specific antibodies for the MV vector and CHIKV as well as specific cellular immune
responses (interferon gamma [IFN-�] enzyme-linked immunosorbent spot [ELISPOT]

TABLE 2 Comparison of the viral vectors discussed in this minireview based on specific vector characteristics

Vector
Virus
group

No integration
into the host
genome

Replication in
the cytoplasm

Insertion
capacitya

Induction of
cellular and
humoral immunity

Preexisting vector
immunity has
proven problematic

Adenovirus dsDNA � � �� � �
Coxsackievirus group B ssRNA � � � � �
Measles virus ssRNA � � �� � �
Modified vaccinia Ankara dsDNA � � ��� � �
Parainfluenza virus 3 ssRNA � � �� � �
Varicella-zoster virus dsDNA � � ��� � �

a���, up to 10 to 30 kb; ��, up to 4 to 8 kb.
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assay on splenocytes), which were boosted after the second immunization. Further-
more, a plaque reduction neutralization test showed that CHIKV-neutralizing antibodies
were induced. A challenge study, 1 month after the last injection, with 100 PFU of
CHIKV 06-49 (equal to 33 times the 50% lethal concentration [LD50] by intraperitoneal
injection) was performed. All of the mice that were immunized with 104 or 105 TCID50

of MV-CHIKV were completely protected from CHIKV even when there was preexisting
immunity to MV. Of the mice that were immunized with 103 TCID50 of MV-CHIKV, 83%
survived the lethal challenge, and all of the control mice injected with the MV Schwarz
strain developed disease and died. In addition, antibodies elicited by the MV-CHIKV
vaccine candidate showed neutralizing activity against other clinical isolates (La Re-
union 2006, India 2011, Congo 2011, and Thailand 2009) in plaque reduction neutral-
ization tests. Furthermore, passively transferred immune serum from MV-CHIKV-
vaccinated mice protected five out of six mice against a lethal challenge with CHIKV
(100 PFU of CHIKV 06-49) (26). The MV-CHIKV vaccine candidate was further evaluated
in a randomized, double-blind, placebo-controlled phase 1, dose-escalating study
including an active comparator (Priorix; GlaxoSmithKline Pharma GmbH, Vienna, Aus-
tria; live virus vaccine against measles, mumps, and rubella). The measles strain in the
Priorix vaccine is homologous to the MV used to design the MV-CHIKV vaccine
candidate. Healthy adults received a low dose (1.5 � 104 TCID50 per 0.05 ml), medium
dose (7.5 � 104 TCID50 per 0.25 ml), or high dose (3.0 � 105 TCID50 per 1 ml) of
MV-CHIKV suspended in HEPES buffer with ammonium sulfate, Priorix, or placebo
(sterile saline) on day 0 and 28 (the placebo was administered on day 90) or on day 0
and 90 (the placebo was administered on day 28). The geometric mean titers of
neutralizing antibodies in the blood of participants were lower in the low dose and
Priorix vaccine groups than in the medium and high dose groups. Nevertheless, all
groups showed 100% seroconversion after booster immunization. Further, the impact
of preexisting anti-measles immunity on the MV-CHIKV vaccine candidate was investi-
gated and was found to have no impact on the performance of the vaccine candidate.
The authors conclude that a phase 2 clinical trial is warranted to evaluate this promising
vaccine candidate further (27).

Adenovirus. Adenoviruses (AdVs) have been widely studied as vectors for gene
therapy and vaccines targeting various diseases, such as malaria or hepatitis C. Several
characteristics make them attractive as vaccine vectors, including manufacturability
and the ability to elicit broad immune responses. Adenoviruses are double-stranded
DNA (dsDNA) viruses that replicate in the nuclei of vertebrates. They are easily manip-
ulated into taking up foreign DNA (up to 8 kb) and can be cultivated in several cell
types (dividing and nondividing cells as well as dendritic cells) to produce high virus
titers and high levels of protein expression (19, 28). Expression levels can even be
enhanced by using heterologous promoters. Another advantage of AdV is their ability
to induce strong T-cell responses, including cytotoxic T cells. However, preexisting
vector immunity—as is present in a large proportion of individuals—inhibits efficient
expression of transgenes and inactivates the viral vector. Potential alternatives are
nonhuman AdV vectors or engineered vectors. Adenoviral vectors are available as
replication deficient and competent for mammalian cells (29–31).

The generation of multivalent Ebola virus (EBOV) vaccines employing an AdV
platform was pioneered by Wang and colleagues (32). They created a bivalent complex
adenovirus-based vaccine (cAdVax) vector, utilizing complex adenovirus technology
and carrying the GP of Ebola virus Sudan (Boniface strain, SEBOV) and Zaire (Zaire-95
strain, ZEBOV). The cAdVax vectors are replication-defective adenovirus vector plat-
forms with deleted E1, E3, and E4 genes, enabling the vector to accommodate large
amounts of foreign DNA (33–35). BALB/c and C57BL/6 mice were immunized intraperi-
toneally with 1 � 108 PFU of the bivalent vaccine candidate at 0, 16, and 24 weeks. The
cAdVaxES/Z vaccine candidate was able to induce SEBOV and EBOV Ebola-specific
antibodies to both strain responses as well as cell-mediated immune responses. To
investigate if the cAdVaxES/Z vaccine candidate protects mice from a lethal challenge
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with a mouse-adapted Ebola virus strain (ZEBOV-derived), BALB/c and C57BL/6 mice
were immunized by subcutaneous injection with 1 � 108 PFU of the bivalent vaccine
candidate on day 0 and 35 followed by a challenge with 1,000 PFU of mouse-adapted
Ebola virus (intraperitoneally). All vaccinated animals were 100% protected (32).

On the basis of this work, Swenson and colleagues developed a multistrain filovirus
vaccine utilizing complex adenovirus technology and an adenovirus vector (cAdVax)
(36). Filoviridae, primarily Ebola virus and Marburg virus, cause severe disease in
humans and nonhuman primates. The high divergence between these species and the
lack of cross-protection make vaccine development a difficult task (37). This pan-
filovirus vaccine approach comprised antigens of Zaire Ebola virus (ZEBOV), Sudan
Ebola virus (SEBOV), and the Ci67, Ravn, and Musoke strains of the Marburg virus
(MARV). Four different cAdVax vectors were designed, the EBO2 vector containing two
copies of the nucleoprotein (NP) of ZEBOV, the EBO7 vector expressing glycoproteins
(GPs) of EBOV and SEBOV, the M8 vector expressing the Ci67 and Ravn GPs, and the
M11 vector expressing the Musoke GP and NP genes. All four vectors were portioned
equally (1 � 1010 PFU) into one combination vaccine, which was then injected
intramuscularly into cynomolgus macaques on day 0 and with a booster vaccination
after 63 days. The vaccinated animals were challenged with 1,000 times the lethal dose
of MARV followed by EBOV or vice versa. All vaccinated primates were 100% protected
against ZEBOV and SEBOV as well as the three Marburg virus species (Ci67, Ravn, and
Musoke) (36).

Concordant with the above studies, Pratt and colleagues reported a multivalent
Ebola virus vaccine candidate (EBO7) based on the cAdVax system, which expressed
glycoproteins of SEBOV (Boniface strain) and ZEBOV (Kikwit strain) (38). Furthermore,
the M8-recombinant-containing (36) Marburg virus Ci67 and Ravn GP, which was
designed in the above study, was included. Immunization of cynomolgus macaques
with an equal mixture of M8 and EBO7 (1 � 1010 PFU administered intramuscularly on
day 0 and boosted on day 65 or 120) led to similar levels of antibodies against ZEBOV
and SEBOV. The simultaneous administration of both vaccine candidates (M8 and EBO7)
did not interfere with the levels of antibodies generated against ZEBOV or SEBOV. To
test whether the bivalent vaccine candidate protects the vaccinated animals from Ebola
virus disease, the macaques were challenged (intramuscularly) with 500 PFU of ZEBOV,
800 PFU of SEBOV, or 800 PFU SEBOV followed by 1,100 PFU ZEBOV. All vaccinated
macaques survived the lethal challenge without developing signs of disease. The
authors further investigated whether the EBO7 vaccine candidate confers protection
against aerosol challenge with 900 to 1,000 PFU of aerosolized SEBOV and 100 to 500
PFU of aerosolized SEBOV after vaccination with 1 � 1010 PFU of EBO7 (day 0 and 71).
The vaccine protected the vaccinated macaques after aerosol challenge with either
virus in an otherwise lethal dose, even with preexisting vector immunity to the
adenoviral vector (38). There is no data on the M8 recombinant, which was adminis-
tered simultaneously with the EBO7. It would be interesting to investigate whether
coadministration protects macaques from a challenge with the respective Marburg
virus species. Based on the results reported by Swenson and colleagues (36), M8-
vaccinated macaques survived a challenge with 1,000 times the lethal dose of MARV;
it seems likely that the authors are suggesting that similar protection against MARV
may be achieved, but this needs to be investigated in the future. The administration of
multiple viral vectors simultaneously has to be evaluated carefully. Viral vectors harbor
the potential risk of unintended recombination events (e.g., with other viral vector
vaccines or naturally occurring viruses) in the host, which may lead to hybrid species
with unknown characteristics. The use of replication-defective vectors reduces this risk
but may not eliminate it completely.

Varicella-zoster virus. Varicella-zoster virus (VZV) is endemic worldwide, with
infection rates as high as 90% before adolescence. The first vaccines against VZV were
developed as early as 1984. Currently used vaccines (ATC codes J07BK01 and J07BK02;
http://www.whocc.no/atc_ddd_index/?code � J07BK&showdescription�no) consisting
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of live attenuated VZV have been monitored for years and have demonstrated a high
safety profile with only minor side effects in healthy people (39, 40). Besides this, the
host range of VZV is restricted to humans, obstructing uncontrolled environmental
spread. The safety and the opportunity to insert and maintain large DNA inserts,
combined with the ability to induce strong cellular and humoral immunity, sparked
interest in using it as a recombinant vaccine candidate for generating multivalent/
multipathogen vaccines (40, 41).

Matsuura and colleagues reported a successful application of VZV as a vaccine
vector by introducing the two major surface proteins of the mumps virus (MuV)
(hemagglutinin-neuraminidase [HN] and fusion protein) into the VZV vOka strain using
a bacterial artificial chromosome (BAC) system (42). The integral membrane protein HN
is responsible for receptor binding on host cells and MuV neuraminidase and hemag-
glutinin activity, whereas the F protein’s main activity lies in viral penetration and
hemolysis. The recombinant vOka-HN-F exhibited reduced growth kinetics with atypical
cytopathogenic effects and syncytium formation leading to cell detachment in MRC-5
cells (human fetal lung fibroblast cells). These effects were overcome by introducing a
S195Y mutation (serine-to-tyrosine substitution) to prevent membrane fusion (vOka-
HN-F-S195Y). Guinea pigs were immunized four times (subcutaneously) with 2 � 106 to
5 � 106 MRC-5 cells infected with either vaccine candidate in 2-week intervals. Both
vaccine candidates induced neutralizing antibodies against the VZV vector, and the
animals immunized with VZV vOka-HN-F mounted slightly higher titers. Further, neu-
tralizing antibodies against MuV were induced (higher in the group vaccinated with
vOka-HN-F-S195Y). Only slight differences in the immune responses of both recombi-
nant constructs were observed (42). These data suggest that VZV is a strong candidate
for future multivalent or multipathogen vaccine development. It may be advised to use
this viral vector cautiously, as it is replication competent in the human host.

Human parainfluenza virus 3. Human parainfluenza virus 3 (PIV3) is a member of
a group of four parainfluenza viruses in the family Paramyxoviridae.

Parainfluenza viruses are nonsegmented negative-strand RNA viruses with a ge-
nome size of roughly 15,000 nucleotides, which can be easily manipulated or attenu-
ated by reverse genetics (see also MV). The viral replication takes place in the cytoplasm
of the host with no need for integration into the genome. Recombination events are
rare in PIV, which contributes to the stability of inserted transgenes (43, 44).

As PIV3 is the second leading cause of hospitalization for viral respiratory tract
disease, the development of a PIV3 vaccine is encouraged, particularly in combination
with an already established vaccine to facilitate implementation into routine vaccine
schedules.

The parenterally administered standard MV vaccine harbors the risk of being
neutralized during the first months of life by serum antibodies passively transferred
from mother to baby. A new MV vaccine candidate bypassing this would be a valuable
asset in infant vaccination schedules. Therefore, a combined vaccination strategy,
including PIV and MV, has been suggested. The viral backbone was generated from
wild-type PIV3 through recovery from plasmid-borne cDNA using recombinant DNA
technology (45). Further, attenuated versions of wild-type PIV3 have been developed
(e.g., PIV3cp45) and have shown promising results as vaccine candidates (46–48). In this
study, the hemagglutinin (HA) protein of the MV (Edmonston strain) was inserted into
PIV3 or attenuated PIV3 between the N and P genes, P and M genes, or HN and L genes.
These vaccine candidates induced antibodies against MV and PIV3 in golden Syrian
hamsters, especially when inserted into the N-P or P-M junction. No significant differ-
ence in neutralizing antibodies was observed when using attenuated PIV3 compared to
that when using wild-type virus. A challenge experiment with wild-type PIV3 that took
place 28 days after intranasal immunization with 106 PFU of a vaccine candidate
conferred significant protection to viral replication in the respiratory tract. Previous
studies in monkeys suggest that PIV3 is able to replicate efficiently even in the presence
of passively acquired PIV3 antibodies, leading to the conclusion that even with preex-
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isting maternally MV antibodies the intranasally administered MV-PIV3-HA vaccine may
be protective.

The authors report that their recombinant PIV3-MV vaccine candidate elicits, on
average, five times more serum antibodies than the licensed live attenuated measles
virus vaccine that is administered by intramuscular injection. It is also suggested to
employ antigenic serotypes of PIV3 (e.g., PIV1 or PIV2) for prime boost vaccinations to
reduce the risk of vector immunity and efficient transgene expression (49).

Coxsackievirus group B. Coxsackieviruses are positive-sense single-stranded RNA
(ssRNA) viruses. Six serotypes of group B coxsackievirus (CVB1 to CVB6) have been
described, of which CVB3 has been particularly identified as a potential vaccine vector.
All CVBs incorporate four capsid proteins and seven nonstructural proteins and include
two proteases. Although the small genome has a somewhat limited capacity to stably
integrate foreign genetic material, CVBs are interesting viral vector candidates because
strong immune responses (cellular and humoral) are generated following an infection
(50). Coxsackieviruses are known to cause gastrointestinal distress, myocarditis, or
dilated cardiomyopathy in humans. Together with CVB, only human adenovirus type 2
(AdV2) has been regularly linked to heart disease (51–54). To date, no vaccines against
either virus are commercially available to protect from human heart disease. Hofling
and colleagues (55) investigated a chimeric CVB3 vaccine candidate expressing the
antigenic L1 loop of AdV2 hexon protein (the L1 loop of AdV2 has produced promising
results in a rabbit model before [56]) from a locus between the capsid protein P-1D and
the protease P-2A in the CVB3 genome. The inserted sequence was expressed over 10
passages in HeLa cells; however, a virus species corresponding to the parental strain
was detected in passages 8 and 10, indicating that the recombinant virus is unstable.
Reduced virus titers in comparison to the parental CVB3 strain were observed, sug-
gesting that the insertion leads to an attenuation of the viral vector. To investigate the
potential of the CVB3-Ad2L1 vaccine candidate to generate a humoral immune re-
sponse, murine immunogenicity studies were performed. BALB/c mice were injected
(intraperitoneally) with 5 � 105 TCID50 of CVB3-Ad2L1 once, twice, or three times in
2-week intervals. The results showed that the CVB3-Ad2L1 vaccine candidate was able
to induce anti-CVB3 and anti-Ad2 hexon L1 loop-neutralizing and -binding antibodies
(titers increased with the number of booster injections). Interestingly, preexisting
anti-CVB antibodies boosted the immune response further and led to even higher
levels of anti-Ad2 antibodies in mice after receiving three injections of the multipatho-
gen vaccine candidate. An evaluation of the CVB-Ad2L1 immune response over time to
determine the duration of protection will be necessary. It will also be of interest to
determine whether cross-protection against other CVB serotypes can be achieved with
this candidate vaccine (55). Although this recombinant virus induced both neutralizing
and binding antibodies against the insert and vector in a mouse model, it is question-
able if its use would be feasible in human applications due to the issues encountered
with the insert instability. Moreover, even though the mouse studies showed no virus
inhibition by preexisting anti-CVB3 antibodies, it needs to be evaluated if this proves
true for other coxsackievirus serotypes.

Poxvirus—modified vaccinia Ankara. The family Poxviridae is divided into two
subfamilies, Chordopoxvirinae and Entomopoxvirinae. Within the subfamily of Chordo-
poxvirinae, the genus Orthopoxvirus, which includes variola virus, the causative agent
for smallpox, is interesting for human vaccine research. The most widely used candidate
for new vaccine design is the vaccinia virus (VacV). This virus exhibits unique features
that qualify it for use as an effective expression system and ideal recombinant vector.
The large genome size of VacV (�190 kbp) allows the insertion of large amounts of
foreign DNA (�25 to 30 kb) by homologous recombination, direct cloning, or bacterial
artificial chromosome technology. This characteristic enables the design of vaccines
against multiple pathogens within a single expression system. Vaccinia virus can also be
applied via different routes (injection, oral) and induce long-lasting immunity. Many, so
far unsuccessful, efforts to develop vaccines for complex diseases, such as tuberculosis
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or malaria, that require a presentation of more than one antigen can potentially be
overcome with a poxviral antigen presentation platform. The life cycle of VacV is fully
accomplished in the cellular cytoplasm and does not require the integration of viral
genetic material into the genome of the host. These attributes and the absence of a
latent stage in the viral infection cycle are further advantages for vaccine design. The
extensive investigation of VacV as a promising candidate for vaccine design has led to
a number of modified VacV strains with higher safety profiles, more efficient expression
systems, and higher immunogenicity in the host. Among other poxviruses (e.g., fowl-
pox, canarypox, or New York vaccinia virus), a most promising candidate for vaccine
design is the attenuated vaccinia strain modified vaccinia Ankara (MVA). Relative to its
parental strain (chorioallantoic vaccinia Ankara), MVA has lost 15% (�30,000 bp) of its
genetic information at six major deletion sites during the attenuation process (57–60).
These deletion sites have been shown to function as insertion sites for foreign genes
into the MVA genome. Foreign genes can also be inserted upstream from endogenous
poxviral promoters (in situ).

Fear of the next influenza pandemic has driven efforts toward the development of
novel vaccines. As highly pathogenic avian influenza type H5N1 and heterologous
influenza strains seem to be on the rise, Prabakaran and colleagues (61) developed a
universal H5N1 vaccine candidate with broad coverage for pandemic preparedness.
The HA genes of the A/Vietnam/1203/04, A/Indonesia/CDC669/06, and A/Anhui/01/05
(H5N1) strains were selected based on the neutralizing epitopes in HA covering most
variants in the H5N1 clades. All three were inserted into deletion site 3 of MVAtor
(Emergent BioSolutions, Gaithersburg, MD, USA), each under the control of a separate
promoter (PsynI, PsynII, H5), resulting in the trivalent MVAtor-tri-HA. As a control,
rMVAtor carrying only the A/Vietnam/1203/04 gene was constructed. Mice (BALB/c)
immunized intramuscularly with a two-step protocol (day 0 and day 28) of 100 �l of 8 �

107 TCID50 of MVAtor-tri-HA exhibited significant hemagglutination inhibition titers for
the homologous viruses and the heterologous H5N1 clades, whereas the monovalent
candidate induced only poor hemagglutination inhibition titers. A challenge experi-
ment (ten 50% minimal lethal doses [MLD50] intranasally) with a homologous clade 1
(RG-A/Vietnam/1203/04) and heterologous clade 7 (RG-A/chicken/Shanxi/2/06) H5N1
virus showed that the MVtor-tri-HA vaccine candidate conferred complete protection
from weight loss and death in the immunized mice. In contrast, a previous experiment
had shown that the monovalent counterpart conferred only 66% protection against the
homologous H5N1 strain. Cross-clade immunity against 20 heterologous H5N1 clades
was confirmed after a serological surveillance study in guinea pigs that were vaccinated
with the trivalent vaccine candidate. The authors concluded that the robust and
broadly neutralizing activity of their MVAtor-tri-HA vaccine candidate may also protect
from yet unknown H5N1 strains. The poxviral vector seems to be an excellent delivery
vehicle, as it has been proven safe and efficient in many monovalent recombinant
vaccine candidates (61).

PROSPECTS, ADVANTAGES, AND CHALLENGES OF MULTIVALENT AND
MULTIPATHOGEN VIRAL VECTOR VACCINES

With the number of vaccines growing and prevention (rather than treatment) being
the most effective means of controlling virus infection, combination vaccines are
becoming more important. Protection against several diseases with fewer injections
while maintaining the efficacy and safety of single-component vaccines helps not only
to reduce costs for health services and patients but also to simplify vaccine schedules
(62). Despite all progress, some infectious diseases still claim millions of lives every year.
For many of them, including malaria, leishmania, HIV, or tuberculosis, vaccine devel-
opment has produced only suboptimal protection thus far. Viral vectors can potentially
overcome this with their unique way of antigen presentation and capacity to express
various transgenes at once. In countries with ineffective health services, combined
vaccines would be easier to administer than their individual counterparts. Immuniza-
tion coverage could be achieved more easily, with fewer visits to medical centers,
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resulting in lower mortality, lower treatment costs, and lower levels of residual mor-
bidity postinfection. Among new vaccine products, polyvalent and multipathogen viral
vector vaccines hold great promise. Advantages of these recombinant vaccines include
their ability to deliver multiple immunogens into the cells of the vaccinee, where they
guarantee efficient expression. Conveniently, many of the viral vector shuttles present
proteins to the immune system in the same way as that which occurs in a natural
infection cycle and therefore ensure a potent induction of cellular and humoral
immune responses (63). This route of antigen presentation holds the promise of
long-lasting protection without numerous booster vaccinations. Many of the currently
used vectors, such as modified vaccinia Ankara and measles virus vaccine, have been
in use for years. They have accumulated significant safety and efficacy data through
clinical and laboratory research through their use in prior vaccination applications.
Progress in genetic engineering, recombinant DNA technology, and improved expres-
sion systems (promoter, terminator, enhancer, etc.) have advanced the field of recom-
binant vaccine design.

In using multipathogen or multivalent vaccines, special attention must be paid to
the interaction of the various components with each other; potential interactions
include antagonistic or synergistic effects or antigenic competition and/or epitope
suppression, resulting in an inappropriate immune response (64). A common percep-
tion about vaccines containing more than one antigen is the overburdening of the
immune system. Studies have shown that the immune system is responsive to more
than 10 million antigens. With vaccines containing only a few specific antigens, an
overload of a functional immune system is clearly extremely unlikely (65). Another
challenge that needs to be addressed is the manufacturing and testing of new
formulations. Each component of the vaccine must be assessed individually and in
combination with standardized tests (stability, sterility, potency, efficacy, etc.) to ensure
the consistency of the product (66). In addition, as more complex vaccines emerge,
regulatory agencies will need to introduce new policies that provide guidelines for
researchers, manufacturers, and practitioners regarding testing, licensing, documenta-
tion, information, and marketing of vaccines.

The enormous potential of viral vector vaccines drives the continuous development
of novel expression vectors. Rhabdovirus- or influenza virus-based platforms are some
of the latest to be suggested with the potential to express various antigens (67–70). The
insertion of various transgenes into a vector is of course likely to lead to an impairment
of virus replication. Revisiting traditional methods of viral gene expression, for example,
by using conditional expression systems, such as Tet-on/Tet-off, may open the door for
a new generation of improved viral vectors (71, 72).

Viral vectors have also been used in applications other than immunization against
infectious disease, for example, as prophylactic or therapeutic cancer vaccines. Most
recently, a study by Qiu and colleagues described a cytomegalovirus vector expressing
modified tumor antigens. The vaccine candidate elicited tumor-specific T-cell re-
sponses, protecting mice from melanoma (73). Another promising study used a live
attenuated poliovirus type 1 to vaccinate against glioblastoma multiforme (74). A valid
concern in the use of viral vectors as vaccines is the possibility of the vaccinee
developing vector immunity, resulting in reduced immunogenicity of the vaccine.
Using a combination of different vectors for prime and booster vaccinations has been
found to overcome this issue. Several examples in the literature describe the latter
strategy, e.g., a recombinant adenovirus followed by an MVA booster regimen or a DNA
prime followed by an adenoviral booster (75–78).

As discussed by Kreijtz and colleagues (79) in their excellent review on poxviral
vectors, once regulatory challenges have been overcome, the implementation of the
first human recombinant vaccine candidate into an existing vaccine schedule will lead
to a major improvement in public health— conceivably sooner rather than later with
the fast tracking of recombinant vaccines against Ebola virus disease (80–82). This
would pave the way for taking multipathogen and multivalent vaccine candidates from
the bench into clinical settings.
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