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THE RENIN-ANGIOTENSIN SYSTEM AND THE BIOLOGY OF 
SKELETAL MUSCLE: MECHANISMS OF MUSCLE WASTING 

IN CHRONIC DISEASE STATES

PATRICE DELAFONTAINE, MD, and (by invitation) TADASHI YOSHIDA, PHD

ABSTRACT
Sarcopenia and cachexia are muscle-wasting syndromes associated 

with aging and with many chronic diseases such as congestive heart 
failure, diabetes, cancer, chronic obstructive pulmonary disease, and 
renal failure. While mechanisms are complex, these conditions are often 
accompanied by elevated angiotensin II (Ang II). We found that Ang II 
infusion in rodents leads to skeletal muscle wasting via alterations in 
insulin-like growth factor-1 signaling, increased apoptosis, enhanced 
muscle protein breakdown via the ubiquitin-proteasome system, and 
decreased appetite resulting from downregulation of hypothalamic orex-
igenic neuropeptides orexin and neuropeptide Y. Furthermore, Ang II 
inhibits skeletal muscle stem cell proliferation, leading to lowered mus-
cle regenerative capacity. Distinct stem cell Ang II receptor subtypes 
are critical for regulation of muscle regeneration. In ischemic mouse 
congestive heart failure model skeletal muscle wasting and attenuated 
muscle regeneration are Ang II dependent. These data suggest that the 
renin-angiotensin system plays a critical role in mechanisms underlying 
cachexia in chronic disease states.

INTRODUCTION

Cachexia is a severe medical complication of many chronic disease 
conditions and considered to be a significant cause of morbidity and 
mortality affecting more than 5 million people in the United States 
(1). Compared to non-cachectic patients, the median duration of hos-
pital stay for cachectic patients is twice as long (3 days vs. 6 days), 
and the median cost is ~70% higher ($6,000 vs. $10,000) (2). Although 
cachectic patients experience greater loss of function than those admit-
ted with other diagnoses, cachexia is not always well recognized and 
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adequately managed by healthcare professionals (3). Weight loss and 
reduced muscle mass in patients with cachexia are associated with a 
reduction in quality of life and increased mortality. However, cachexia 
is a complex multifactorial syndrome, and current therapies are lim-
ited to the treatment of underlying illness. Thus, the development of 
interventions to block or attenuate this process would have signifi-
cant therapeutic benefits in a wide array of chronic diseases. During 
the past 2 decades, we have been studying the effect of the renin- 
angiotensin system (RAS), a hormone system that regulates blood 
pressure and fluid balance, on cachexia development in chronic disease 
conditions. These finding are discussed in this article.

REGULATION OF MUSCLE MASS BY  
ANGIOTENSIN II AND IGF-1

In an attempt to study the effect of angiotensin II (Ang II) on the cir-
culating insulin-like growth factor-1 (IGF-1) system in vivo, we infused 
rats with Ang II through osmotic minipumps for up to 2 weeks (4). In 
addition to increasing systolic blood pressure, Ang II decreased sys-
temic IGF-1 levels by 56% at 1 week and 41% at 2 weeks. Interestingly, 
we found that these animals lost weight (18% reduction at 1 week and 
sustained up to 2 weeks) and daily food intake (22.7 ± 0.7 g in sham 
vs. 5.0 ± 0.6 g in Ang II). Although the Ang II type 1 receptor (AT1R) 
antagonist losartan and the vasodilator hydralazine had comparable 
effects to blunt the Ang II-induced hypertension, only losartan blocked 
the changes in circulating IGF-1 and body weight, indicating that Ang 
II produces weight loss through a pressor-independent mechanism. To 
determine whether Ang II−induced reduction in body weight was sec-
ondary to reduced food intake, we performed pair-feeding experiments, 
in which sham-operated animals’ food intake was limited to the exact 
amount eaten by the Ang II−infused animals. While pair-fed animals 
lost ~ 18% body weight compared to ad-lib fed controls, Ang II infused 
animals lost significantly more weight (25%), indicating that Ang II-
induced weight loss is attributable to both a reduction in food intake and 
a catabolic effect. In addition to a systemic decrease of IGF-1, we found 
that Ang II infusion caused significant reduction in skeletal muscle IGF-
1, IGF-1 binding protein 3 and IGF-1 binding protein 5 levels. IGF-1 
signaling is the main anabolic pathway in skeletal muscle (5,6). Ang 
II caused an increase of muscle protein breakdown via the ubiquitin- 
proteasome system (UPS). Ang II also activated caspase-3 in skeletal 
muscle, leading to cleavage of actin, an important component of muscle 
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proteolysis, and to increased apoptosis (7). We found that restoration 
of circulating IGF-1 levels by infusion failed to restore muscle mass 
in Ang II−infused animals, suggesting that a reduction in autocrine 
IGF-1 signaling in skeletal muscle is responsible for Ang II−induced 
muscle wasting. To study the skeletal muscle IGF-1 signaling path-
ways involved in Ang II−induced muscle wasting, we utilized myosin 
light chain promoter-driven skeletal muscle IGF-1 (MLC/mIgf-1) mice, 
a transgenic mouse strain in which IGF-1 is overexpressed under the 
control of a skeletal muscle specific promoter (7). In MLC/mIgf-1 mice, 
Ang II−induced muscle weight loss was completely prevented compared 
to pair-fed wild-type controls. In MLC/mIgf-1 mouse muscle, the reduc-
tion in IGF-1 signaling induced by Ang II, as evidenced by reduced lev-
els of phospho-Akt, phospho-mTOR (mechanistic target of rapamycin) 
and phospho-p70S6K (p70 S6 kinase), was restored. Consequently, acti-
vation of UPS, caspase-3−mediated actin cleavage and apoptosis were 
prevented in MLC/mIgf-1 mice (7,8). In summary, Ang II and IGF-1 have 
opposing roles in regulating muscle protein synthesis and degradation. 
Disruption of IGF-1 signaling by Ang II plays a critical role in Ang II−
induced atrophy, and local activation of IGF-1 signaling can prevent Ang  
II−induced muscle wasting.

There have been conflicting reports regarding the actions of Ang 
II on skeletal muscle that potentially lead to wasting. Sanders et al. 
and Russell et al. showed that Ang II acts directly on cultured muscle 
cells and induces proteolysis via the UPS pathway (9,10). On the other 
hand, we have demonstrated that multiple circulating hormones and 
cytokines mediate Ang II’s action on skeletal muscle. Glucocorticoids 
are required for activation of the UPS in acidosis and diabetes, and 
glucocorticoid inhibition significantly restored Ang II−induced loss of 
muscle mass (7). Furthermore, we found that there is an increase of cir-
culating interleukin 6 (IL-6) and serum amyloid A (SAA) after Ang II 
infusion. IL-6 and SAA coordinately act on muscle cells to cause wast-
ing, and blockade of IL-6/SAA prevented Ang II−induced wasting in 
vivo (11) These data indicate that IL-6/SAA act as critical intermedi-
ates of Ang II−induced muscle wasting.

ANG II CAUSES MUSCLE WASTING  
THROUGH GENERATION OF REACTIVE OXYGEN SPECIES

Reactive oxygen species (ROS) play an important role in Ang II−
induced signaling in different cell types, contributing to cardiac myocyte 
and vascular smooth muscle cell hypertrophy, endothelial dysfunction, 
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hypertension, and insulin resistance (12−14). Since nicotinamide ade-
nine dinucleotide phosphate (NAPDH) oxidase and mitochondria are 
major sources of ROS in atrophied skeletal muscles (15,16), we blocked 
NADPH and mitochondria-derived ROS generation after Ang II infu-
sion to study the involvement of ROS signaling in Ang II−induced 
muscle wasting. We infused p47phox-/- mice, in which the NADPH oxi-
dase subunit p47phox gene is deleted, with Ang II and analyzed skele-
tal muscle wasting (17). Superoxide production was increased 2.4-fold 
in the wild-type skeletal muscle after 7 days of Ang II infusion, and 
this increase was prevented in p47phox-/- mice. Furthermore, the Ang 
II−induced decrease in body weight and muscle mass was significantly 
attenuated in p47phox-/- mice. The UPS is an important protein quality-
control mechanism, and the proteasome is responsible for selective 
degradation of oxidized proteins. Ang II infusion caused an increase in 
20S proteasome activity (32% increase compared to pair-fed controls), 
and this effect was completely inhibited in p47phox-/- mice. Although 
Ang II infusion did not alter mitochondrial content in skeletal muscle, 
mitochondrial cytochrome C oxidase activity was decreased by 47% 
after Ang II infusion (18). Ang II also increased mitochondrial-derived 
superoxide, consistent with Ang II−induced mitochondrial dysfunction.  
However, blockade of mitochondrial-derived superoxide by MitoTEMPO 
(Sigma-Aldrich, St. Louis, Missouri, USA), a specific scavenger of mito-
chondrial superoxide, did not prevent Ang II−induced muscle wasting. 
These data show that ROS derived from NADPH oxidase, but not from 
mitochondria, play a critical role downstream of Ang II to cause muscle 
wasting. It is suggested that specific targeting of ROS and NADPH oxi-
dase could be a beneficial, novel therapy to treat Ang II−induced wasting.

ANG II, MUSCLE METABOLISM,  
ENERGY STORES, AND MUSCLE WASTING

Muscle contractions are fueled by adenosine triphosphate (ATP), and 
three sources supply the muscle’s ATP pool: 1) creatine phosphate, 2) 
glycogen, and 3) mitochondrial respiration. This ATP pool needs to be 
quickly replenished for full muscle contraction and sustained exercise. 
We hypothesized that Ang II alters muscle metabolism and energy 
stores, leading to muscle wasting. After 4 days of Ang II infusion, skel-
etal muscle ATP content was reduced by 74% in a food intake-inde-
pendent manner (18). When the cellular energy status is low (high 
adenosine monophosphate [AMP]:ATP ratio), AMP-activated protein 
kinase (AMPK) is activated. AMPK is a metabolic master switch and 
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regulates several intracellular systems including the cellular uptake 
of glucose, the β-oxidation of fatty acids, and the biogenesis of glucose 
transporter 4 and mitochondria. However, in Ang II−infused muscle, 
AMPK activity is suppressed despite the low ATP level. Importantly, 
the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleotide 
(AICAR) reversed Ang II−induced inhibition of AMPK, leading to res-
toration of ATP levels and inhibition of the Ang II−induced muscle 
wasting. These data indicate that Ang II causes muscle wasting in 
part by preventing skeletal muscle homeostatic capacity to maintain 
energy balance. However, precise mechanisms whereby Ang II reduces 
AMPK activity and causes muscle wasting remain to be determined. 
For instance, our data showed that AICAR blocked Ang II−induced 
upregulation of E3 ubiquitin ligases atrogin-1 and MuRF-1, well 
characterized markers of muscle atrophy. On the other hand, it has 
been shown that S6 kinase-1−deficient mice showed skeletal muscle 
atrophy with increased AMP levels and AMPK activity (19). In these 
mice, AMPK inhibition restored muscle cell growth and sensitivity to 
nutrient signals. In another report, AMPK-mediated phosphorylation 
of FoxO activated E3 ubiquitin ligase expression in muscle cell culture 
in vitro (20). Future studies are required to understand the mecha-
nisms whereby AMPK activation by AICAR prevented the increase 
in E3 ubiquitin ligases in Ang II−infused animals. However, it is of 
note that our data showed that AICAR treatment resulted in acti-
vation of Akt and inhibitory phosphorylation of FoxO1, which is the 
upstream signaling pathway that inhibits atrogin-1. One of the most 
important findings from these studies is that Ang II increased expres-
sion of PPC2α, an upstream phosphatase that inactivates AMPK. We 
hypothesized that PP2Cα (Protein phosphatase 2C alpha) is the key 
regulator of AMPK signaling in Ang II−induced muscle wasting. For 
this purpose, we knocked down PP2Cα in skeletal muscle via electro-
poration-mediated small interfering RNA delivery in skeletal mus-
cle in vivo (21). Consistent with our hypothesis, PP2Cα knockdown 
restored AMPK activity and blocked Ang II−induced muscle wasting. 
We also found that Ang II infusion impaired muscle mitochondrial 
biogenesis [reduced PGC-1α (Peroxisome proliferator-activated recep-
tor gamma, coactivator 1 alpha) and TFAM (Mitochondrial transcrip-
tion factor A)] and mitophagy [reduced ULK1 (Unc-51 Like Autophagy 
Activating Kinase 1)], leading to mitochondrial dysfunction. Knock-
down of PP2Cα normalized PGC-1α, TFAM and ULK1 expression 
and ATP levels, suggesting the restoration of mitochondrial function. 
Although the precise mechanism whereby Ang II inhibits AMPK via 
upregulation of PP2Cα remains to be elucidated, these data suggest 
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a therapeutic potential of targeting PP2Cα in chronic wasting condi-
tions with increased Ang II levels.

ANOREXIA CAUSED BY ANG II

Anorexia is frequently associated with wasting, and anorexia and 
loss of body fat is a powerful predictor of mortality in cancer cachexia 
patients (22). As mentioned above, a major part of Ang II−induced 
wasting is attributable to reduced food intake (4). Since food intake is 
regulated by actions of hypothalamic orexigenic/anorexigenic neuro-
peptides and circulating factors secreted from peripheral organs (e.g., 
adipose tissues and gastrointestinal tract), we hypothesized that Ang 
II alters these neuropeptides and/or circulating factors, leading to loss 
of appetite. We found that Ang II infusion rapidly reduced food intake, 
an effect that was measurable within 6 hours. At this time point, hypo-
thalamic neuropeptide Y (Npy) and orexin expression were reduced, 
whereas peripheral leptin, ghrelin, adiponectin, glucagon-like pep-
tide, peptide YY, or cholecystokinin levels were not altered (23). After 
prolonged infusion (4 days), fat mass was significantly reduced due to 
reduced food intake, and this was associated with reduced leptin levels 
and increased Npy and orexin. These changes at 4 days are secondary 
to reduced food intake initiated by Ang II within 6 hours of infusion. 
This rapid anorexigenic effect of Ang II led us to hypothesize that Ang 
II acts directly on hypothalamic neurons to reduce orexigenic neuro-
peptide expression. Indeed, intracerebroventricular infusion of Ang II 
caused reduced food intake and fat mass. Furthermore, Ang II reduced 
Npy and orexin expression through an AT1R-dependent manner in ex 
vivo hypothalamic cultures. AMPK is an important positive regulator 
of Npy expression in the hypothalamus (24), and peripheral Ang II 
infusion suppressed hypothalamic AMPK activity. Furthermore, Ang 
II−mediated reduction in Npy and orexin in hypothalamic ex vivo cul-
ture was restored by AMPK activation with AICAR. Consistent with 
our hypothesis and data, it has been shown that the AT1R is expressed 
in multiple hypothalamic neurons, including the lateral hypothalamic 
area, paraventricular nucleus, retrochiasmatic area and perifornical 
nucleus (25). Although angiotensin-converting enzyme (ACE) inhibi-
tors and angiotensin II receptor blockers (ARBs) are widely used in 
patients with cardiovascular and renovascular disease, their potential 
effects on food intake and lean body mass are very little known. Our 
data have important implications in conditions such as end-stage renal 
disease (ESRD) and congestive heart failure (CHF), in which the RAS 
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is activated and in which the anorexia-cachexia syndrome contributes 
significantly to poorer outcomes.

ANG II REGULATES SATELLITE CELLS AND  
MUSCLE REGENERATION

Skeletal muscle has a remarkable ability to maintain its homeostasis 
in the face of injury or wasting by activating a well-orchestrated regen-
erative response to repair damaged myofibers. This regenerative process 
is mainly mediated by muscle stem (satellite) cells, which are activated 
by muscle damage and differentiate to generate new myofibers and to 
repair damaged myofibers. Thus, we questioned why skeletal muscle 
repair processes did not seem to restore muscle mass in the setting of 
Ang II−induced muscle wasting. In cancer cachexia, it has been sug-
gested that atrophying muscle has less regenerative capacity and possi-
bly a reduction in satellite cell function (26−28). Also, aged satellite cells 
display reduced regenerative capacity and potentially contribute to the 
development of sarcopenia (29,30). Thus, we hypothesized that high Ang 
II levels, similar to cancer cachexia and aging, inhibit satellite cell regen-
erative capacity and muscle regeneration, further worsening the muscle 
wasting. We infused animals with Ang II in the setting of injury-induced 
muscle regeneration (31). In Ang II−infused animals, both number and 
size of regenerating myofibers (myofibers with centralized nuclei) were 
reduced. These reductions were associated with blunted increase in 
expression of myogenic transcription factors Pax7 (paired box transcrip-
tion factor 7), MyoD (Myogenic differentiation antigen), and myogenin 
in isolated satellite cells. Furthermore, there was a reduction in satel-
lite cell number in Ang II−infused animals. Importantly, we found that 
AT1R was expressed in satellite cells, whereas there was no detectable 
expression in mature myofibers, suggesting that Ang II’s effect to reduce 
muscle regeneration is mediated through AT1R signaling in satellite 
cells. Indeed, Ang II inhibited the proliferative capacity of isolated satel-
lite cells in vitro through an AT1R- and Notch-dependent mechanism. 
Although there is conflicting evidence on the potential involvement of 
Ang II on skeletal muscle regeneration (32−36), our study is the first to 
report that Ang II directly acts on satellite cells and inhibits prolifera-
tion, leading to a reduction in muscle regeneration. Our data and clinical 
studies strongly suggest that increased Ang II could be a cause of reduced 
muscle regenerative capacity in pathophysiological conditions with an 
activated RAS, such as CHF, ESRD, and aging, thereby contributing to 
the development of cachexia and sarcopenia. However, an important 
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question remained to be answered: what is the physiological role of RAS 
components in satellite cells? We hypothesized that Ang II and possi-
bly other RAS components play an important role in regulating muscle 
regeneration in physiological conditions, and that an imbalance of the 
RAS in pathophysiological conditions deteriorates muscle regenerative 
capacity. To explore this hypothesis, we analyzed expression of RAS com-
ponents in satellite cells during differentiation and muscle regeneration. 
Interestingly, we found that Ang II type 2 receptor (AT2R) was robustly 
increased during satellite cell differentiation, whereas quiescent and 
proliferating satellite cells did not express AT2R above detectable level 
(31,37). This expression pattern of AT2R clearly contrasted to that of 
AT1R, which is expressed only in quiescent and proliferative satellite 
cells. Since it has been shown that AT1R and AT2R counteract each 
other in different physiological settings (38), we hypothesized that AT2R 
has a distinct role in regulating satellite cell function and AT1R and 
AT2R coordinately regulate satellite cell physiology. In contrast to AT1R, 
AT2R activation by an AT2R-specific agonist (CGP42112) increased the 
size of regenerating myofibers. Whereas AT2R activation did not alter 
the number of regenerating myofibers, it increased the number of nuclei 
in the regenerating myofibers, suggesting that AT2R regulates satellite 
cell fusion and myofiber maturation processes. Consistent with these 
findings, AT2R inhibition using an AT2R-specific antagonist (PD123319) 
or small interfering RNA-mediated knockdown had the opposite effects 
on muscle regeneration. In isolated satellite cells cultured in vitro, AT2R 
knockdown prevented satellite cell fusion and differentiation to mature 
myofibers. We found that ERK1/2 (Extracellular signal-regulated kinase 
1/2) signaling is suppressed downstream of AT2R, and possibly there is a 
negative feedback loop on AT2R expression. Although currently the role 
of RAS components other than AT1R and AT2R in regulating muscle 
function and regeneration is poorly understood, our data suggest that 
the different components of RAS coordinately regulate satellite cell func-
tion in physiological conditions. Thus, alterations in satellite cell RAS 
function in chronic diseases could be an underlying mechanism promot-
ing worsening cachexia.

CLINICAL IMPLICATIONS AND FUTURE PROSPECTS

Substantial progress has been made in recent years in our under-
standing of underlying molecular mechanisms of cachexia in chronic 
diseases and several novel therapies are being tested in clinical trials 
(39). Among these potential targets, myostatin and activin A pathways 
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[mediated via the ActRIIB (activin receptor IIB) receptor] are currently 
the most promising. However, a major challenge underlying the devel-
opment of cachexia treatment is the complex and multifactorial nature 
of the syndrome. Thus, identification and understanding of effective 
target pathways is critical since it is unlikely one therapeutic inter-
vention could be effective in all the cachexia conditions associated with 
different chronic diseases. Indeed, our preliminary data showed that 
the expression of myostatin was not altered after Ang II infusion or in 
CHF (unpublished data), suggesting that ActRIIB blockade might not 
be as effective as in the case of cancer cachexia.

Importantly, it has been suggested that Ang II levels are elevated 
in many clinical situations with muscle wasting, such as CHF, ESRD, 
chronic obstructive pulmonary disease, cancer, and aging (9,40−43), 
and it has been shown that AT1R blockade has beneficial effects on 
aging-associated disease states (34,44−46). There are two main current 
pharmacological approaches to target the effects of Ang II: inhibiting 
the formation of Ang II using an ACE inhibitor (ACEi) and blocking the 
AT1R using an ARB. ACEi therapy has been shown to help maintain 
body weight and muscle mass in CHF or in patients with hypertension 
(47−49). A phase III clinical trial treating cancer cachexia patients with 
the ACEi imidapril has been completed. ACEi effects on muscle weight 
loss in cancer patients varied between different cancer types. Although 
imidapril did not have a statistically significant effect when all the 
patients’ data were combined, it prevented weight loss in patients with 
non−small cell lung cancer and colorectal cancer (50,51). ARBs such 
as losartan could be effective in treating cachexia, but there are no 
planned clinical trials by the manufacturer (51).  Thus, so far blockade 
of Ang II signaling to treat cachexia has not been extensively explored 
in clinical trials. Also, it is important to be cautious when interpreting 
data involving activation or inhibition of one part of the entire RAS 
system. The RAS includes multiple angiotensins and receptors, and it 
is not fully understood how different angiotensin ligands and receptors 
act in orchestration. For instance, inhibition of Ang II production by 
ACEi would result in an increase of its precursor Ang I, whereas block-
ade of Ang II signaling using an AT1R blocker would increase Ang II 
through a compensatory mechanism. Our studies analyzing the RAS in 
muscle regeneration revealed that AT1R and AT2R clearly have oppos-
ing roles in regulating satellite cell function, and possibly other RAS 
components are involved in different pathways leading to muscle wast-
ing in chronic diseases (Figure 1). Future studies are required to fully 
understand the RAS-mediated regulation of skeletal muscle physiol-
ogy, including muscle mass, food intake and muscle regeneration.
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Fig. 1. Angiotensin II (Ang II) − induced muscle wasting: potential mechanisms 
of cachexia in chronic diseases. In chronic disease conditions there is an increase in 
circulating Ang II. Increased Ang II causes a reduction of insulin-like growth fac-
tor 1 (IGF-1) and increased glucocorticoids and interleukin 6 (IL-6)/serum amyloid 
A (SAA), which result in muscle wasting. In skeletal muscle, there is an increase of 
reactive oxygen species (ROS), reduction of adenosine monophosphate-activated pro-
tein kinase (AMPK) and increased ubiquitin proteasome system (UPS), all of which 
result in muscle proteolysis. Ang II also acts on hypothalamic neurons to reduce ap-
petite via alterations of orexigenic/anorexigenic neuropeptide expression. Reduced ap-
petite leads to muscle wasting due to insufficient energy intake to maintain muscle 
mass. Ang II prevents satellite cell proliferation and skeletal muscle regeneration 
via inhibition of Notch signaling. Contrary to Ang II type 1 receptor (AT1R), Ang II 
type 2 receptor (AT2R) signaling potentiates satellite cell differentiation. It is of note 
that potentially other renin-angiotensin system (RAS) components are involved in 
this process. The net effect of Ang II infusion in vivo is reduced muscle regeneration.  
The combination of Ang II-induced muscle wasting, reduced food intake, and lower mus-
cle regeneration leads to the development of cachexia. Abbreviations: Npy, neuropeptide 
Y; CRH, corticotropin-releasing hormone; MyoD, Myogenic differentiation antigen. 
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DISCUSSION
Howley, Boston: Thank you.  Perhaps I can start with the first question.  You mentioned 

that angiotensin increases protein degradation within the cells and show the upregulation 
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of several ubiquitin ligases.  Is it known what the specific substrates might be for those 
ligases that are mediating this degradation? 

Delafontaine, Columbia, MO:  Yes, we haven’t done those studies but the contrac-
tile proteins in skeletal muscle are the substrates for those ligases including myosin for 
instance. Alfred Goldberg, among others, has done that work in Boston. 

Zeidel, Boston: Terrific work and very provocative.  I noticed that in some of the 
studies you showed at the end, relate to sarcopenia in the elderly, and I would ask if you 
want to speculate a bit.  Do people who are older have higher levels of circulating angio-
tensin, in part because of difficulty with auto regulation of blood pressure, and clearly 
there is a limit to how much you can give these inhibitors if they are depending on angio-
tensin to maintain adequate circulating blood volume or blood flow to the brain among 
other things.  I wonder if maybe we should be tolerating higher blood pressures so we 
can give them angiotensin receptor antagonists so they won’t have so much sarcopenia.  
Can you speculate on that? 

Delafontaine, Columbia, MO: That’s a very interesting question.  There are clearly 
some data, well not a lot of published data, but there are some data that angiotensin 
may actually be increased in skeletal muscle in the aging population.  Clearly that raises 
the issue you are talking about – impairment of autoregulation in the elderly and what 
should we be doing about it.  I think it’s ripe for investigation.  We haven’t done much 
work on that, although we are now looking at aging in animal models.  There are some 
data showing a depletion of stem cells in aged muscles, similar to what we found in the 
LAD ligation model. 

Mackowiak, Baltimore:  I was a little surprised in your introduction that you sug-
gested that cytokines have not been shown to be involved in cachexia, at least I think 
that is what you said.  It sort of takes me back to many lectures that Bruce Beutler, and 
I think his father gave about cachexin which looked pretty convincing in terms of its role 
as a causative factor in tumor cachexia.  I wonder if you could elaborate on that and I 
wonder if you have looked to see if there is any synergistic relationship between angio-
tensin and the cytokines? 

Delafontaine, Columbia, MO:  I didn’t mean to suggest that cytokines are not in-
volved.  I think what I mentioned is that the clinical studies using inhibitors of TNF-
alpha for instance have not resulted in better outcomes in patients looking specifically at 
cachexia.  They have been looked at in cancer cachexia so they have been disappointing. 
It is likely that multiple cytokines acting synergistically do have an important role and 
certainly if one looks at the angiotensin model one can inhibit Interleukin-6 for instance 
and get significant inhibition of the wasting effect of angiotensin II. 

Oates, Nashville:  I wonder what you are thinking would be the involvement of the 
lymphocytes and the syndrome.  You mentioned the hypertension that occurs with the 
angiotensin infusion and that’s been shown to be dependent upon T-cells and with inter-
leukin-17 playing a role and I wonder if a similar mechanism might also be functioning 
in the skeletal muscle?
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