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Abstract

differences among survival curves.

strategies.

Background: The current tumor-node-metastasis (TNM) staging system is insufficient to predict outcome of
patients with operable Non-Small Cell Lung Cancer (NSCLC) owing to its phenotypic and genomic heterogeneity.
Integrating genomic signatures with clinicopathological factors may provide more detailed evaluation of prognosis.

Methods: All 2164 clinically annotated NSCLC samples (1326 in the training set and 838 in the validation set) with
corresponding microarray data from 17 cohorts were pooled to develop and validate a clinicopathologic-genomic
nomogram based on Cox regression model. Two computational methods were applied to these samples to capture
expression pattern of genomic signatures representing biological statuses. Model performance was measured by the
concordance index (C-index) and calibration plot. Risk group stratification was proposed for the nomogram.

Results: Multivariable analysis of the training set identified independent factors including age, TNM stage, combined
prognostic classifier, non-overlapping signature, and the ratio of neutrophil to plasma cells. The C-index of the nomogram
for predicting survival was statistically superior to that of the TNM stage (training set, 0.686 vs 0627, respectively; P < .001;
validation set, 0.689 vs 0.638, respectively; P < .001). The calibration plots showed that the predicted 1-, 3- and 5-year survival
probabilities agreed well with the actual observations. Stratifying patients into three risk groups detected significant

Conclusions: These findings offer preliminary evidence that genomic data provide independent and complementary
prognostic information and incorporation of this information can refine prognosis in NSCLC. Prospective studies are
required to further explore the value of this composite model for prognostic stratification and tailored therapeutic
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Background

Lung cancer is a major cause of morbidity and mortality
worldwide, with non-small cell lung cancer (NSCLC)
accounting for around 4 in 5 new diagnoses [1]. Treatment
decisions and prognosis for patients with NSCLC are
largely driven by the assessment of the tumor-node-
metastasis (TNM) staging system [2]. Currently, stage IA
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patients do not receive postoperative chemotherapy due to
no survival advantage and its potential therapeutic toxicity
[2, 3]. With respect to stage IB patients, disagreement
prevails regarding which patients might be appropriate
candidates for adjuvant therapy [3-5]. Although radical
resection and adjuvant treatment extended cancer-specific
survival of patients with stage II or IIIA disease, long-term
prognosis continues to be jeopardized by the high risk of
subsequent recurrence and drug toxicity [3, 5, 6]. There-
fore, it remains a largely unmet need to reduce 30-50%
rate of recurrence [7] to improve survival of these patients.
Moreover, the identification of patients at high risk of
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recurrence and death, who are most likely to benefit from
aggressive systemic therapy, is absolutely critical.

Rational application of adjuvant therapy requires ac-
curate prognosis prediction for patients with resectable
NSCLC. Numerous clinicopathological schemes have
been proposed to optimize the staging system by intro-
ducing other prognostic variables, such as age, gender,
and tumor lymphocytic infiltration [8—10]. Nonetheless,
such models may have hit the ceiling and they still lack
genomic information, which can add prognostic value to
clinical models in lung cancer [11]. Recently, several
gene expression signatures have been used to predict
clinical outcomes in human cancer [12—19]. These gen-
omic signatures may reflect specific biological/microen-
vironmental features of this underlying heterogeneous
disease that can determine the tumor phenotype. How-
ever, these signatures often focus on one or several
distinct aspects of tumor heterogeneity and few studies
have attempted to demonstrate the power of combining
all related clinicopathological factors with biological/mi-
croenvironmental features, which may render more
precise information concerning risk assessment [20].

However, a simple, user-friendly and reliable nomogram
incorporating genomic information with the traditional
risk factors, widely validated in different cohorts, is needed
to refine the prognosis of postoperative patients with stage
[-IIIA NSCLC. Here, We aimed the following: (1) to build
a composite clinicopathologic-genomic nomogram by sys-
tematically analyzing factors with potential prognostic
value in a pooled cohort of 1326 postoperative NSCLC pa-
tients; (2) to assess the added value of genomic information
compared with standard TNM staging, clinicopathological
model and genomic model; and (3) to externally validate
this nomogram by another independent pooled cohort.
Finally, we constructed a composite model which can
robustly identify patients at high risk of death and it was
shown to outperform those based on clinicopathological
variables or gene signatures alone.

Methods

Patients and samples

To identify gene expression data arrayed using Affymetrix
Human Genome U133A or U133A plus 2.0 with clinically
annotated data, we systematically searched Gene Expression
Omnibus (GEO), The Cancer Genome Atlas (TCGA),
ArrayExpress, caArray and related literature with the terms
“lung cancer”, “NSCLC”, “lung adenocarcinoma”, “lung
squamous cell carcinoma”, “survival”’, “relapse”, “recur-
rence”, “prognostic” and “prognosis”. For some datasets
whose clinical data were not with their gene expression pro-
files, we either searched the supplements or contacted one
or more of the investigators to get the missing information.
Raw microarray data and corresponding clinical data of
these datasets were retrieved and manually organized when
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available. Only patients diagnosed with stage I-IIIA NSCLC,
and with clinicopathological and survival information
available, were included. We excluded patients who had
follow-up time or survival time less than 1 month. In
addition, patients with any missing or insufficient data on
age, gender or histology were also excluded from subse-
quent processing. All of those studies previously were
approved by their respective institutional review boards.
Our study followed the Reporting Recommendations for
Tumor Marker Prognostic Studies (REMARK) criteria as
listed in their guidelines [21] and guidelines for prognostic
factor studies in NSCLC [11].

Data processing

Where raw CEL files from Affymetrix Human Genome
U133A/Plus2 were available, data were normalized and
annotated using an MAS5 algorithm and corresponding
annotation files from R Bioconductor to obtain summa-
rized values for each probeset, and otherwise we used
pre-processed data as provided by the contributors. For
each sample in all data sets, measurements without a
gene annotation were excluded and multiple probesets
corresponding a single gene were summarized into a
gene symbol by taking the most variable probeset mea-
sured by interquartile range (IQR).

Identification of genomic signatures with potential to
predict prognosis

We queried literature database to identify gene expression
signatures in studies where the prognostic value in human
cancer or lung cancer were reported. The probesets or
genes of those signatures were re-annotated using
SOURCE web tool (http://source-search.princeton.edu/
cgi-bin/source/sourceBatchSearch) to deal with the retired
gene symbols and their differences in tested platforms.

Statistical analysis

Subclass prediction

The preprocessed gene data were classified with gene
expression signatures identified above using the Nearest
Template Prediction (NTP) method as implemented in
the Gene Pattern software (Broad Institute of Harvard
and MIT, Boston, MA) [22]. NTP required only a list of
pre-specified template signature genes and a dataset to
be tested, without requiring corresponding training
dataset, to capture the presence or absence of gene ex-
pression patterns in each sample. Briefly, a template of
representative expression pattern of the signature genes
was defined based on published gene signature from
their respective study. Proximity of the signature genes
expression pattern of the sample to the template was
evaluated by calculating cosine distance. Significance of
the proximity was assessed by a nominal p-value esti-
mated based on a null distribution for the distance
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generated by randomly resampling the same number of
signature genes from the sample genes 1000 times. False
discovery rate (FDR) was used to correct the p-values
for multiple hypothesis testing. The prediction analysis
was performed separately for each dataset. A prediction
of presence or absence of related signature was deter-
mined based on prediction FDR <0.05, and the rest of
the samples with an intermediate expression level of the
correlated genes in the signature were classified as un-
certainty. Concordance among these predictions was
evaluated using unsupervised clustering according to
Cramer’s V coefficient of the paired prediction overlap as
previously described [23]. Cramer’s V statistic values
range from O to 1, values between 0.36 and 0.49 indicat-
ing substantially correlated and values higher than 0.5
strongly correlated.

Enumeration of hematopoietic cells subsets from gene
expression profiles

To quantify the relative abundances of 22 tumor-associated
Leukocyte (TAL) subsets, we employed Cell type Identifica-
tion By Estimating Relative Subsets Of known RNA Tran-
scripts (CIBERSORT) method (500 iterations) and the
LM22 gene signature which allowed for highly sensitive and
specific discrimination of hematopoietic cells and were
well-designed and validated on gene expression profiles
from Affymetrix Human Genome U133A/Plus2 [24]. Sub-
sequently, we aggregated 22 leukocyte subsets into 11 im-
mune populations for clarity. The proportions of immune
cells were predicted in each dataset separately.

Development, comparison, and validation of prognostic
models

The samples were separated into training/validation sets
based on cohorts for identifying and evaluating the
predictors. Overall survival (OS) was calculated from the
date of diagnosis or surgery to the date of death or last
follow-up. Patients who were alive at 5 years were ad-
ministratively censored with OS as 5 years. Continuous
variables were expressed as median (IQR) or median
(range), and group comparison was performed by the t-
test or the Wilcoxon rank sum test. Categorical variables
were expressed as percentages, and group comparison
was performed by Pearson’s x> test or the Fisher’s exact
test. Median follow-up was calculated using the reverse
Kaplan-Meier method [25]. Clinical variables previously
shown of prognostic value (age, gender, histologic sub-
type and TNM stage) and all genomic factors identified
with P values less than 0.05 in the univariate log-rank
test were separately entered into a clinical Cox model
and a genomic Cox model to compare the prognostic ef-
ficacy of clinical and genomic strategies. Clinicopatho-
logical and genomic factors identified above were then
introduced into the multivariable analyses via the
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backward stepwise Cox proportional hazard model, from
which coefficients were used to develop the composite
nomogram. The whole population was divided into three
risk groups (high, intermediate, low) according to the
tertiles of the total scores given by the established nomo-
gram in the training set. The discrimination and calibra-
tion of the nomogram for 1-, 3-, and 5-year were
measured by the concordance index (C-index) and by
calibration plot comparing the expected and observed
survival probabilities respectively. For internal validation,
the bootstrapping technique was used to adjust for over-
fitting and over-optimistic model performance. An
optimism-corrected C-index using 1000 bootstrap sam-
ples created with replacement was reported. The boot-
strap resampling procedure was detailed in Additional
file 1. Finally, for external validation, the total scores of
each patient of the independent validation set were cal-
culated according to the proposed nomogram to verify
its generalization. Three risk groups were determined by
the tertiles defined in the training set, and the respective
Kaplan-Meier survival curves were delineated. All statis-
tical tests performed were two-sided and the P values
less than 0.05 were considered as statistical significance.
Data analyses were implemented using the GenePattern
software (http://genepattern.broadinstitute.org/gp/), the
CIBERSORT tool (http://cibersort.stanford.edu/) and the
R statistical package (http://www.r-project.org/).

Results

Identification of eligible samples and gene signatures
Predefined prognosis analysis was constrained to pa-
tients with early stages operable lung cancer. Of the
3398 patients from 21 previously established cohorts
retrieved by the initial systematic search, 1234 were ex-
cluded because of duplicates, normal lung samples, or
missing clinical information; the remaining 2164 clinic-
ally annotated NSCLC samples pertaining to 17 cohorts
were considered eligible for inclusion in this study
(Fig. 1a). All of the eligible patients were then divided
into training/validation sets in terms of cohorts to
develop and externally validate the composite model.
Ultimately, a total of 1326 samples from ten cohorts
were assigned to a training set to develop the model,
and 838 samples from other seven cohorts to an inde-
pendent validation set. Information about the datasets
entering for our analysis and relevant clinicopathological
characteristics of the patients included in the training
set and validation set were shown in Additional file 2
and Table 1.

In the training set of 1326 patients with stage I-IIIA
NSCLC, the majority were male (801 [60.4%]) and
smoker (907 [68.4%]), with a median age of 64 years
(IQR 57-70). Most patients had stage I disease (879
[66.3%]) and adenocarcinoma (880 [66.4%]) was the
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Fig. 1 Genomic landscape of operable NSCLC based on gene expression profiling. a Flow chart of the study design. b Concordance of signature-
based prediction result in the training set. Left panel: Each column represents the prediction of each individual sample. Red, blue and pale yellow bars
indicate presence, absence and uncertainty prediction of the corresponding signature, respectively. Right panel: Heatmap of Cramer's V coefficient
showing correlation between these published signatures. ¢ Consistency of estimated mRNA fractions of 11 tumor-associated Leukocyte (TAL) subsets,
as calculated by CIBERSORT, within and across clinical subgroups of NSCLC in the training set
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Table 1 Characteristics of patients and tumors included in the

study
Characteristic Training set Validation set P value
(N=1326) (N=838)

Age (years)
Median (IQR) 64 (57,70) 65  (58,71) .003*
<65 697 (52.6) 403 (48.1) 047%*
265 629  (474) 435 (519

Gender
Male 801 (60.4) 511 (61.0) 826**
Female 525 (396) 327 (39.0)

Smoking
Ever smoker 907 (68.4) 578  (69.0) 001**
Never smoker 177 (13.3) 148 (17.7)
Unknown 242 (183) 112 (134)

Histology
Adenocarcinoma 880 (66.4) 420  (50.1) < 001**
Squamous cell carcinoma 299  (22.5) 379  (452)
Large cell carcinoma 54 (4.1) 7 0.8)
Basaloid tumors 31 (2.3) 32 (3.8)
Large cell neuroendocrine 41 (3.1
carcinoma
Carcinoid Tumors 21 (1.6)

Grade
Well differentiated 289 (21.8) 69 (8.2) < .001**
Moderately differentiated 192 (14.5) 68 8.1)
Poorly differentiated 85 (6.4) 33 (3.9
Unknown 760 (57.3) 668  (79.7)

Tumor stage
T1 456 (344) 319 (38.1) < .001**
T2 722 (544) 386 (46.1)
T3 74 (5.6) 39 4.7)
Unknown 74 (5.6) 94 (11.2)

Nodal status
NO 908 (68.5) 583 (69.6) < .001**
N1 239 (180) 135 (16.0)
N2 102 (7.7) 260 (3.0
Unknown 77 (5.8) 94 (11.2)

TNM stage
IA 373 (28.1) 287 (342 < .001**
1B 506 (382) 279 (333)
I 290 (219 220 (263)
IMA 157 (11.8) 52 (6.2

EGFR
Mutant type 54 4.1 127 (15.2) < 001**
Wild type 58 (44) 99 (118
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Table 1 Characteristics of patients and tumors included in the
study (Continued)

Unknown 1214 (91.6) 612 (73.0)
KRAS
Mutant type 15 (1.1) 30 (3.6) < .001**
Wild type 67 (5.1 263 (314)
Unknown 1244 (93.8) 545 (65.0)
ALK fusion
Yes 0 1M (1.3) NA
No 0 215 (257)
Unknown 1326 (100) 612 (73.0)
TP53
Mutant type 116 (87) 54 (64) < .001**
Wild type 62 4.7) 10 (1.2)
Unknown 1148  (86.6) 774 (924)
Median (range) 734 (1,256) 619 (1,252) < .001*
follow-up (months)
Status
Alive 757 (57.1) 564 (67.3) <001
Dead 569  (429) 274 (327)

Data are number (%), unless otherwise indicated. NA not available. * P value
for difference between medians; Wilcoxon rank sum test. ** P value for
difference between categories; Pearson’s x° test

predominant histology. During a median follow-up times
of 73.4 months (range 1-256), there were 569 deaths
within the first 5 years, corresponding to 42.9% of the
enrolled patients. Unlike the patients in the training set,
patients in the validation set were older (median age was
65 years [IQR 58-71]; P =.003) and had a lower propor-
tion of adenocarcinoma (420 [50.1%]) and deaths within
the first 5 years (274 [32.7%]; P <.001). Median follow-
up time for patients in the validation set was 61.9 months
(range 1-252; P <.001).

Gene expression signatures might reflect diverse path-
ways, biological processes or other functions related to
the heterogeneous tumor biology and microenvironment
[26]. As different signatures may be active in different
individual tumors, expression analyses of gene clusters
could prove more revealing than single gene analyses
[27]. Accordingly, all 27 gene expression signatures with
potential prognostic value in lung cancer were identified
from literature review, with the genes being clearly de-
scribed in their respective studies [12—19, 28—42] (Table 2).
Based on its initial purpose, we then classified these gene
signatures into three major functional groups: (1) progno-
sis related signatures: six gene sets for predicting progno-
sis of lung cancer [28-33]; (2) biology/microenvironment
related signatures: 14 gene clusters reflecting tumor
biology or microenvironment state [12-17, 34-41]; (3)
pathway related signatures: seven previously reported gene
expression signatures to probe the status of oncogenic
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Table 2 Genomic Signatures Included in the Study
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Functional class Signature name Year Number of genes mapped Patients with the signature classified — Reference
onto the platforms as (%)°
GPL570 GPL96 Presence  Uncertainty Absence
Prognosis Combined prognostic classifier 2006 91 90 370 (279) 547 (41.3) 409 (30.8) [28]
Prognosis Non-overlapping signature 2008 86 85 393 (296) 532 (40.1) 401 (30.2)  [29]
Prognosis Robust gene signature 2011 58 57 467 (35.2) 358 (27.0) 501 (37.8) [30]
Prognosis Poor survival signature 2006 61 60 330 (249) 577 (435) 419 (31.6) [31]
Prognosis 72-gene classifier 2009 59 47 429 (324) 437 (33.0) 460 (34.7) [32]
Prognosis Recurrence signature 2011 43 43 253 (19.1) 814 (614) 259 (19.5)  [33]
Biology/microenvironment  CIN70 signature 2006 70 66 609 (45.9) 151 (11.4) 566 (42.7) [12]
Biology/microenvironment  Cell cycle signature 2002 729 601 599 (452) 112 (84) 615 (464) [34]
Biology/microenvironment Hypoxia signature 2006 141 117 504 (380) 323 (244) 499 (376) [13]
Biology/microenvironment  Malignancy-risk signature 2011 91 91 547 (413) 644 (486) 135 (10.2) [35]
Biology/microenvironment  Invasiveness gene signature 2007 172 128 315(23.8) 798 (60.2) 213 (16.1)  [36]
Biology/microenvironment  Wound signature 2004 411 348 459 (34.6) 486 (36.7) 381 (28.7) [14]
Biology/microenvironment Metastatic signature 2002 115 112 214 (16.1) 1042 (786) 70 (5.3) [15]
Biology/microenvironment Metabolism proteome signature 2014 194 187 412 (31.1) 586 (44.2) 328 (24.7)  [37]
Biology/microenvironment Hypoxia metagene 2007 142 123 378 (285) 538 (40.6) 410 (30.9) [38]
Biology/microenvironment  CAFs signature 2011 45 34 176 (13.3) 1074 (81.0) 76 (5.7) [39]
Biology/microenvironment HRD signature 2014 217 182 208 (15.7) 590 (44.5) 528 (39.8) [16]
Biology/microenvironment  Lactic acidosis response signature 2008 1770 378 415 (31.3) 463 (34.9) 448 (33.8) [17]
Biology/microenvironment  Angiogenesis signature 2013 477 399 505 (38.1) 573 (43.2) 248 (18.7) [40]
Biology/microenvironment  Angiogenic signature 2005 58 56 215 (16.2) 928 (70.0) 183 (13.8) [41]
Pathway PTEN signature 2007 177 156 459 (34.6) 688 (51.9) 179 (135)  [18]
Pathway TGF-B signature 2008 240 212 161 (12.1) 1042 (786) 123 (9.3) [19]
Pathway Ras signature 2006 252 203 321 (24.2) 869 (65.5) 136 (10.3)  [42]
Pathway Myc signature 2006 194 159 348 (26.2) 712 (53.7) 266 (20.1)  [42]
Pathway E2F3 signature 2006 241 183 149 (11.2)  1129(85.1) 48 (3.6) [42]
Pathway f-catenin signature 2006 76 70 8 (0.6) 1291 (974) 27 (2.0) [42]
Pathway Src signature 2006 63 57 17 (1.3) 1280 (96.5) 29 (2.2) [42]

2Samples were classified as presence, absence or uncertainty by respective published genomic signatures based on prediction result (false discover rate [FDR]

<0.05) of Nearest Template Prediction (NTP)

pathways [18, 19, 42]. Additionally, an association between
cancer survival and abundance of diverse TAL subsets had
been recently proposed by applying a computational
approach known as CIBERSORT, which can use gene ex-
pression data to enumerate and characterize infiltrating
immune cells in bulk tumor [43]. For example, tumor-
associated neutrophil and plasma cell signatures exhibited
opposite prognostic associations in lung cancer. We rea-
soned that these signatures would allow the description of
tumor heterogeneity [43].

Genomic landscape of early stage NSCLC

Among the 27 signatures evaluated, all of them were able
to confidently classify patients (FDR <0.05) into their pre-
dicted presence or absence subclass. Table 2 and Fig. 1b
summarizes the prediction result obtained for each of the

1326 patients. The cell cycle signature [34] was the most
prevalent prediction in the training set (88.6%; 1214 of
1326), whereas the Src signature [42] was identified in only
3.5% (46 of 1326) of tumor samples. Interestingly, 290 of
1326 (21.9%) patients concomitantly harbored 5 or more
presence/absence signatures. We then sought to evaluate
the concordance of these 27 signatures using Cramer’s V
coefficient. Signature unsupervised clustering based on
these coefficients indicated a substantial association among
the three predefined groups of signatures (Fig. 1b) as fol-
lows: (1) signatures reflecting biological and microenviron-
mental characteristics related to cell cycle, chromosomal
instability, proliferation, homologous recombination defect,
wound healing, acidosis, and metabolism, such as cell cycle
signature [34], CIN70 signature [12], malignancy-risk sig-
nature [35], HRD signature [16], wound signature [14],



Wu et al. Journal of Experimental & Clinical Cancer Research (2017) 36:4

lactic acidosis response signature [17], and metabolism
proteome signature [37]; (2) signatures predicting lung
cancer prognosis, such as combined prognostic classifier
[28], non-overlapping signature [29], poor survival signa-
ture [31] and recurrence signature [33]; (3) signatures
indicating patterns of specific pathway deregulation, e.g.,
TGF-p signature [19], RAS signature [42] and E2F3 signa-
ture [42]. The observation that some of them did not have
a strong correlation implied that these signatures could
capture complementary biological features essential in
prognosis prediction.

The CIBERSORT method was applied to samples in
the training set to quantify the relative proportions of
11 TAL subsets. As shown in Fig. 1c, CIBERSORT re-
vealed striking consistency in relative immune cell frac-
tions within and across clinical subgroups of lung
cancer, with plasma cells, monocytes and macrophages,
CD4 T cells, and mast cells being the most common
immune cell subsets with mean fractions of 0.354,
0.249, 0.128 and 0.064 respectively. Patient samples
were divided into 3 groups (low, medium, and high) ac-
cording to the tertiles values of neutrophil-to-plasma
cells fractions inferred in the training set, which were
then applied to the validation set.

Independent prognostic factors for survival in the
training set

We then sought to test which factors were statistically sig-
nificant for lung cancer-related death. The results of the
univariate log-rank test are displayed in Additional file 3.
Younger age (P <.001) and female gender (P =.012) were
associated with favorable prognosis. Compared with the
stage IA group, other groups (stage IB, stage II, and stage
IIIA) were associated with poor prognosis, with a hazard
ratio (HR) of 1.55 (95% CI 1.22-1.97; P<.001), 2.39
(95% CI 1.86-3.07; P<.001), and 4.21 (95% CI 3.22—
5.50; P<.001), respectively. Oddly, there was no sig-
nificant survival difference between adenocarcinoma
and squamous cell carcinoma (P =.312). With respect to
genomic variables, most of them were identified as signifi-
cantly associated with a less-favorable prognosis, whereas
the presence of HRD signature [16] (P <.001), lactic acid-
osis response signature [17] (P <.001), angiogenesis signa-
ture [40] (P <.001) and angiogenic signature [41] (P <.001)
were associated with an improved survival. Of note, in
concordance with the results previously reported [43], we
observed a strong association between inferior survival
and a higher ration of neutrophil to plasma cells (P <.001)
in NSCLC.

To assess the hypothesis that survival prediction
models integrating gene signatures can better identify
patients at high risk of death than those based on clini-
copathological variables or genomic information alone,
we developed a clinicopathological model, a genomic
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model and a composite model based on the training set
using all significant factors in the univariable analysis
(Table 3). Clinicopathological multivariable analyse dem-
onstrated that age (P <.001), gender (P =.010) and TNM
stage (P <.001) were independent risk factors for overall
survival. By contrast, combined prognostic classifier [28]
(P <.001), non-overlapping signature [29] (P =.001) and
the ratio of neutrophil to plasma cells [43] (P=.012)
were identified as independent predictors in the genomic
model. We next sought to test the independent predict-
ive value of the three genomic factors when confronted
with known clinicopathological variables in the training
set. Intriguingly, these genomic factors were significantly
associated with overall survival in most of the subgroups
analyzed, regardless of the age, gender, smoking history,
grade, histology, tumor stage or lymph nodal status
(Fig. 2a). Moreover, in patients categorized by the TNM
stage, these genomic variables were also able to classify
them into good and poor survival outcome especially in
stage IA or stage IB. Furthermore, 2 out of 3 genomic
factors were also prognostically significant within subsets
of patients harboring either wild-type or activating muta-
tion of EGFR, ALK, KRAS, or TP53 in the overall pooled
datasets (see Additional file 4). Importantly, when age,
gender, TNM stage, combined prognostic classifier [28],
non-overlapping signature [29] and the ratio of neutrophil
to plasma cells [43] were entered as covariates in a joint
Cox model, combined prognostic classifier [28] (P <.001),
non-overlapping signature [29] (P =.036) and the ratio of
neutrophil to plasma cells [43] (P =.004) remained statisti-
cally significant in addition to age (P <.001) and TNM
stage (P <.001) in the training set.

Construction, comparison and validation of the

composite nomogram

To develop a composite prognostic model, we built a
nomogram that integrated the significant factors identi-
fied above to predict survival of patients with operable
NSCLC (Fig. 2b). The nomogram demonstrated that the
TNM stage had the largest contribution to prognosis,
followed by the combined prognostic classifier [28] and
non-overlapping signature [29]. Age and the ratio of
neutrophil to plasma cells [43] showed a moderate effect
on survival rate. Each category within these variables
was assigned a point on the top scale based on the coef-
ficients from Cox regression. By summing all of the
assigned points for the five variables and drawing a verti-
cal line between Total Points and survival probability
axis, we were easily able to obtain the estimated prob-
ability of 1-, 3- and 5-year survival. The risk score cutoff
values were selected to group patients in terms of total
points in the training set into roughly equal tertiles, ac-
curately divided patients into low, intermediate, and high
risk (Fig. 2c). Samples were divided into 3 subgroups
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Table 3 Multivariate Cox regression models for overall survival in the training set?
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Variable Clinical multivariate analysis Genomic multivariate analysis Composite multivariate analysis
HR (95% Cl) P value HR (95% Cl) P value HR (95% Cl) P value
Age <0.001 <0.001
<65 Reference Reference
265 141 (1.19-1.66) <0.001 145 (1.23-1.71) <0.001
Gender 0.010
Female Reference
Male 1.25 (1.05-1.49) 0.010
TNMé6th stage <0.001 <0.001
IA Reference Reference
1B 148 (1.17-1.88) 0.001 1.30 (1.02-1.66) 0.031
Il 234 (1.82-3.01) <0.001 204 (1.58-2.63) <0.001
A 4.30 (3.29-5.62) <0.001 3.70 (2.82-4.86) <0.001
Combined prognostic classifier <0.001 <0.001
Absence Reference Reference
Uncertainty 1.38 (1.06-1.79) 0.016 145 (1.12-1.89) 0.006
Presence 1.98 (1.46-2.70) <0.001 2.09 (1.54-2.86) <0.001
Non-overlapping signature 0.001 0.036
Absence Reference Reference
Uncertainty 1.22 (0.94-1.58) 0.142 1.07 (0.82-1.39) 0.633
Presence 1.68 (1.24-2.27) 0.001 1.38 (1.01-1.87) 0.040
Neutrophils/plasma cells 0.012 0.004
Low Reference Reference
Medium 1.27 (1.03-1.57) 0.027 1.30 (1.06-1.61) 0014
High 1.34 (1.09-1.65) 0.005 1.39 (1.13-1.71) 0.002

®Hazard ratio (HR) estimated by Cox proportional hazards regression. All statistical tests were two-sided. C/ confidence interval

according to the tertiles of the total number of points in
the training set: patients at low risk (<7.39 points), inter-
mediate risk (7.39-12.16 points), and high risk (>12.16
points) of death.

To assess the added value of genomic information, we
sought to compare the performance of the proposed
nomogram with standard TNM staging, clinicopathologi-
cal model and genomic model by applying them to the
training set and validation set. Expectedly, the composite
nomogram had the highest C-index compared with single
prognostic variables, clinical model and genomic model in
both the training and validation set (Fig. 2d). This sug-
gested that the joint clinicopathologic-genomic model
could attain superior prognostic performance than either
clinicopathological or genomic information alone.

Prognostic performance of the composite nomogram
was further validated using bootstrap resampling and an
independent validation set of 899 surgically resected
NSCLC. In the training set, the C-index of this joint
model (0.686, 95% CI 0.662—0.710) for predicting OS
was statistically superior to that of TNM staging system
(0.627, 95% CI 0.604—0.650; P <.001). Likewise, the C-

index continued to be statistically higher for the
nomogram (0.689, 95% CI 0.654—0.724) in the valid-
ation set than for the TNM stage (0.638, 95% CI
0.605-0.671; P<.001). The calibration plots showed
that the predicted 1-, 3- and 5-year survival probabilities
of the nomogram agreed well with the actual observations
in both sets (Fig. 2e, f). Applying cutoff value from the
training set can stratify patients in the validation set into
three distinct risk subgroups with statistically significant
difference in overall survival curves (Fig. 3a). Moreover, in
patients categorized by major clinicopathological features,
the survival rates predicted by the nomogram continued
to illustrate significant distinctions between the Kaplan-
Meier curves (Fig. 3b-f).

Discussion

The genetic heterogeneity both between and within tu-
mors poses significant challenges to predicting patient
clinical outcome. Although the TNM staging system in-
dicates the level of the malignant potential and disease
progression and is a strong prognostic factor in NSCLC
[9], but it has some shortcomings. Lung cancer patients
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Subgroup analysis among patients classified with
non—overlapping signature

Subgroup analysis among patients classified with
neutrophils/plasma cells

b
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combined prognostic classifier
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> 65 (n=629) 1.69 (1.45-1.96) <0.0001 ——
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Male (n=801) ~ 1.55(1.34-1.79) <0.0001 ——
Female (n=525) 1.98 (1.66-2.36) <0.0001 ——
Smoking
Yes 0=907) 178 (1.55-2.04) <0.0001 ——
No (n=177) 2.08 (1.48-2.93) <0.0001 —_—
Histology
ADC (n=880)  1.68 (1.47-1.92) <0.0001 ——
SQC (n=299) 1.68 (1.26-2.22) 0.0004 —_—
8lhers (n=147) 2.28 (1.59-3.27) <0.0001 e
rade
WD (n=85) 1.95 (1.10-3.45) 0.0219
MD (n=289) 1.76 (1.36-2.27) <0.0001 —
PD (n=192) 1.70 (1.25-2.31) 0.0008 —_—
H"&‘;a;?)ge 1.83 (149-2.26) <0.0001 —
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TNM stage 2 —_——
IA (=37 1.76 (1.38-2.24) <0.0001
IB (n=506) 1.58 (1.30-1.93) <0.0001 —a—
11 (n=290) 1.54 (1.24-1.92) 0.0001 —
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Fig. 2 Development and validation of the composite clinicopathologic-genomic nomogram. a Subgroup analysis using the three genomic factors
in the training set. Data were expressed using 5-year overall mortality hazard ratio (HR + 95% confidence interval) for each stepwise increase in
the level of predicted signature subclass (that is, absence to uncertainty and uncertainty to presence, or low to medium and medium to high).
Square sizes are proportional to subgroup sizes. b Composite nomogram to predict survival for patients with operable NSCLC. ¢ Kaplan-Meier
survival curves of overall survival among risk stratification groups using the proposed nomogram in the training set. d Performance of models
and individual variables as assessed by concordance index (C-index) in the training set and validation set for predicting postoperative survival for
patients with NSCLC. e, f The calibration curves of the proposed nomogram for predicting overall survival (OS) at 1-, 3-, and 5-year in the training
set (e) and in the validation set (f). Squares and whiskers represent individual data points and associated 95% confidence intervals, respectively
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Fig. 3 Kaplan-Meier survival curves of overall survival for patients in the validation set. a, all patients; b, stage IA; ¢, stage IB; d, adenocarcinoma; e,
squamous cell carcinoma; f, GSE29013

with the same stage of disease can have remarkably dif-
ferent overall outcome following curative resection [8].
Moreover, the staging system strongly depends on the
tumor size, the degree of lymph node involvement, and
the extent of distant metastases, and it neither takes into
account other clinicopathological risk factors, such as
age, gender, or grade, nor does it considers the biological
heterogeneity of NSCLC patients [2]. To address this,
we pooled the largest clinically annotated NSCLC gene
expression profiling datasets to date and separated it
into training/validation sets to develop and validate a
composite clinicopathologic-genomic nomogram for es-
timation of the risk of death in patients with early stage
operable NSCLC. The proposed nomogram outper-
formed the prognostic potential of models based on
clinicopathologic variables or gene signatures alone and
could robustly stratify patients into three different
prognosis groups with significantly different median
survivals.

Each eligible cohort contained samples from a great ma-
jority of the resectable lung cancer patients who were diag-
nosed within a specific geographical region and time period

and did not receive adjuvant therapy (see Additional file 2).
The wide spatial and temporal distribution and relatively
large sample size in this pooled cohorts enhanced its clin-
ical and genomic representativeness and generalizability for
NSCLC patients. However, it would be increasingly difficult
to conduct a similar research project, since adjuvant ther-
apies which would affect patient outcomes were recom-
mended for most of the patients.

Despite evidence that clinicopathological factors (e.g.
age, gender, histology) are prognostic relevant [8—10],
the advent of high-throughput genomic profiling tools
have enabled additional systematic evaluation of lung
cancer genomic heterogeneity to aid prognosis [26, 27].
The comprehensiveness of such data provides an oppor-
tunity to dissect this heterogeneous and elusive disease
entity into more homogeneous subgroups that can
detect genomic phenotypes representing potential candi-
dates for prognostic and predictive biomarkers, in ways
that clinical risk factors cannot [26, 27]. Recent micro-
array studies have used gene expression signatures that
reflect pathway activation, biological status or outcome
prediction to predict clinical prognosis in human cancer
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and lung cancer [12-19, 28-42]. For instance, the
malignancy-risk gene signature associated with both
cancer risk and progression is composed of numerous
cell cycle and DNA replication-related genes [35]. Ag-
gressive tumors resulted in the development of an inva-
siveness gene signature that is correlated significantly
with both overall survival and tumor recurrence [36].
Similarly, primary tumors harbored the metastases-
related gene expression pattern are associated with poor
outcome [15]. Furthermore, homologous recombination
repair deficiency may contribute to cancer initiation and
carcinogenesis [16]. Individuals with the HRD gene sig-
nature have significantly longer survival times compared
with those without [16]. Differences in survival were
found between lung cancer patients with and without
DNA alterations in genes encoding the metabolism
proteome [37]. Additionally, multiple oncogenic pathway
statuses can stratify patients with different outcomes
[42]. As for aspects of the tumor microenvironment, pa-
tients who have lung tumors that exhibit a gene expres-
sion pattern similar to that of serum-induced fibroblasts
have a poor clinical outcome [14]. Hypoxia signature
and lactic acidosis response signature are two strong
prognostic factors for overall survival in multiple cancers
[13, 17, 38]. Moreover, high expression of angiogenesis-
related genes is associated with good prognosis in mul-
tiple cancer types [40, 41]. Finally, the prognostic poten-
tial of a leukocyte gene signature has been recently
revealed by a computational approach known as CIBER-
SORT [43]. These genomic signatures which can help to
refine the molecular classification and prognosis in
human cancer include genes that exhibit coherently
similar expression pattern, closely reflect specific bio-
logical processes, and reciprocally compensate each
other in capturing the same patterning of biological
dysregulation [22, 26, 27].

Indeed, the result of univariate analysis confirmed that
most of the signatures were associated with survival
prognosis, as stated in their respective publications
(see Additional file 3). The observation that some of
the patients concurrently harbored more than one
poor-outcome signatures (Fig. 1b) indicated that their
tumors were genetically unstable and compatible with
an aggressive disease. This may partially explain wide
nonoverlapping among the prognosis-related signa-
tures identified in various lung cancer microarray
studies [28-32]. Another explanation was these signatures
might reflect similar biological behavior. Importantly, un-
supervised clustering analysis of these signatures identified
3 subgroups: one subgroup defining biological and micro-
environmental features, another subgroup predicting lung
cancer prognosis, and a third indicating oncogenic pathway
status (Fig. 1b). Despite the strong association between
some signatures within these subgroups, the predicted
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result varied considerably owing to interpatient heterogen-
eity in the biological status of the samples. Multiple, differ-
ent biological statuses were regularly present in the
individual tumor within predicted outcome-related categor-
ies (Fig. 1b). For example, samples predicted as good out-
come in prognosis-related signatures [28—33] exhibited a
gene expression pattern similar to HRD signature [16] and
angiogenesis signature [40]. It was in high concordance
with previous reports correlating HRD signature [16] and
angiogenesis signature [40] with good outcome in lung can-
cers. In contrast, an increased invasive [36], proliferative
[34, 35], metastatic [15] and hypoxic [13, 38] response was
present in samples predicted as poor outcome in
prognosis-related signatures [28—33]. To sum up, these
genomic signatures reflecting multiple distinct biological
aspects of tumor heterogeneity may dissect the complexity
and interplay between cancer cells and stromal cells,
capture complementary biological states, and thus help to
refine prognosis in early stage NSCLC. Additionally, identi-
fication of prognostically distinct subgroup of patients with
specifically featured candidates using genomic profiling-
based signatures may provide an opportunity for selection
of therapeutic strategies tailored to the individual patterns
of the biological state (e.g. oncogenic pathway activation,
hypoxia, wound, and metabolism) [42].

However, our primary goal was to unravel the prog-
nostic power of these reported genomic signatures
coupled with clinicopathological variables in a large co-
hort of early stage NSCLC. Multivariable analysis in the
training set identified age, TNM stage, combined prog-
nostic classifier, non-overlapping signature, and the ratio
of neutrophil to plasma cells as independent prognostic
factors (Table 3), which were highly consistent with stud-
ies concerning risk factors in lung cancer [8, 9, 28, 29, 43].
The combined prognostic classifier was enriched for genes
reflecting epidermal differentiation, signaling, cell cycle
and growth, transcription, translation and metabolism
[28]; contrastingly, non-overlapping signature contained
genes involved in cell movement, cell death, cell cycle, and
signaling processes [29], supporting that it captures com-
plementary prognostic information in NSCLC. Subse-
quent subgroup analysis confirmed the independent
prognostic value when confronted with known clinico-
pathological variables (Fig. 2a). Accordingly, we cautiously
decided to use the five significant prognostic factors (age,
TNM stage, combined prognostic classifier [28], non-
overlapping signature [29], and the ratio of neutrophil to
plasma cells [43] to build the composite nomogram
(Fig. 2b). For validation of this nomogram to prevent over-
fitting and to verify generalization, the C-index and cali-
bration plots were used. The C-index of the nomogram
demonstrated a superior prognostic value over the sixth
AJCC TNM classification in the training set and the valid-
ation set (Fig. 2c). The calibration plots showed optimal
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agreement between the expected and observed survival
probabilities in both sets (Fig. 2e, f), insuring the reliability
and repeatability of the proposed nomogram. In addition,
three risk groups were defined on the basis of total points
by using tertiles in the training set (Fig. 2d). Using these
tertiles, we stratified patients from diverse geographical
and ethnic origins into three distinct risk subgroups
(Fig. 3). A prognostic model for NSCLC can be considered
clinically useful if it is either 1) more effective than stand-
ard prognostic factors in identifying high risk subgroup of
stage I patients who might benefit from adjuvant chemo-
therapy or 2) identifies low risk stage II patients who may
spare needless drug toxicity [11]. The proposed nomo-
gram can identify those patients that are most likely to be
misclassified by clinical models, especially for patients
with stage IB disease to whom the role of chemotherapy
currently remains controversial (Fig. 3c). Of note, the
nomogram could also be used in the cohort of GSE29013
which was based on analysis of FFPE specimens [30], indi-
cating its clinical application in a broad and practical tis-
sue source (Fig. 3f). Different treatment and follow-up
strategies may be appropriate for each of the three cat-
egories. For example, more intense adjuvant therapy or
new treatment regimen could be given to patients in the
high risk group. Similarly, in the intermediate risk group,
intensive follow-up or standard adjuvant therapy of
these patients was clearly essential. Low risk patients
were likely cured by surgery and might not be candi-
dates for systemic therapy. Thus complications deriving
from potentially unnecessary adjuvant therapy and life-
threatening progression owing to insufficient treatment
could both be avoided.

Different accrual times and technologies differences
may introduce potential confounding effects. Therefore,
Affymetrix Human Genome U133A and Affymetrix
Human Genome U133 Plus2 are included only, because
they have 22,277 probesets in common to measure the
same gene with the same specificity, sensitivity, and dy-
namic range and because the sample size is sufficient to
detect an important difference between the proposed
nomogram and TNM staging system. Furthermore, this
study did not overcome limitations related to patient
comorbidities, treatment heterogeneity, retrospective na-
ture with potential for error or bias, and unbalancement
of clinicopathological features between the training set
and the validation set. Also, we noted that prognosis of
patients with NSCLC was better in the validation set
than in the training set. A reason for this might be that
the two sets had significant geographical and clinico-
pathologic differences in distribution. Especially, the
training set included more stage IIIA patients (11.8% vs.
6.2%; Table 1). Another relevant issue was that some
prognostic factors (e.g., gender [8], histology [8], and
smoking status [44]) were not included in the model
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owing to not reaching statistical significance in the train-
ing set or insufficient data. Still, the forthcoming 8" edi-
tion of the TNM classification of lung cancer [45] may
perform better than either the current 7 edition or the
6™ edition used in our study. Direct comparison of the
different versions of the TNM staging is ideal for accur-
acy comparison. Unfortunately, we don’t have much data
for direct comparison in our study. But, we do find some
references about the accuracy comparison. A slight in-
crease in the value for R? which is an estimate of the
percent variance explained by the Cox proportional haz-
ards regression models, was observed for both the newly
edition when compared to the previous one [45, 46].
However, in a Norwegian cancer registry series con-
tained 1885 patients from 2001 to 2005, the c-index was
0.68 for both the current 7th edition and the previous
edition, indicating no difference in their predictive ac-
curacy [47]. These factors were important for survival
for patients with early stage lung cancer and their in-
corporation may further improve the prognostic stratifi-
cation of patients. Another potential shortcoming was
that the panel of signatures representing biological status
was not exhaustive and a more sensitive, specific and ef-
ficient prediction method to capture the presence of ab-
sence of these signatures was needed. Currently, patients
with advanced NSCLC are generally treated with sys-
temic therapy or a symptom-based palliative approach.
Therapy for these patients should be guided by the mu-
tation status of the tumor whenever possible. Therefore,
this nomogram is not suitable for late stage patients.

Conclusions

The improved performance of this combinatorial scheme
accentuated the importance of integrating all aspects of
the tumor biology and microenvironment into prognostic
stratification. Pending further prospective clinical valid-
ation, these results provide preliminary evidence that the
genomic information could be combined with clinical data
to help refine patient prognosis and should be considered
as an independent and complementary approach to the
current clinicopathologic prognostic model. Ultimately,
further studies on prospective data collection and inclu-
sion of some other factors are required to validate and
optimize this model.
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