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ABSTRACT

In shotgun sequencing, statistical reconstruction of a
consensus from alignment requires a model of meas-
urement error. Churchill and Waterman proposed one
such model and an expectation—-maximization (EM)
algorithm to estimate sequencing error rates for
each assembly matrix. Ewing and Green defined
Phred quality scores for base-calling from sequen-
cing traces by training a model on a large amount
of data. However, sample preparations and sequen-
cing machines may work under different conditions
in practice and therefore quality scores need to be
adjusted. Moreover, the information given by quality
scores is incomplete in the sense that they do not
describe error patterns. We observe that each nucleo-
tide base has its specific error pattern that varies
acrossthe range of quality values. We develop models
of measurement error for shotgun sequencing by
combining the two perspectives above. We propose
a logistic model taking quality scores as covariates.
The model is trained by a procedure combining an EM
algorithm and model selection techniques. The train-
ing results in calibration of quality values and leads to
a more accurate construction of consensus. Besides
Phredscores obtained from ABl sequencers, we apply
the same technique to calibrate quality values that
come along with Beckman sequencers.

INTRODUCTION

Shotgun sequencing is the standard methodology for genome
sequencing (1). Starting with a whole genome, or a large
genomic region, short random fragments are generated and
sequenced. Enough fragments are sequenced so that almost all
positions in the genome or region are covered multiple times
just by chance. The standard sequencing procedure is exem-
plified by the commonly used Phred/Phrap suite of software
(2,3). First, each fragment is base-called from its chromato-
gram, i.e. a vector times series of four fluorescence intensities,
and a sequence of A, C, G and T, is inferred. The commercial
producers of sequencing devices include Applied Biosystems,
Inc., Beckman Coulter, Inc., etc. Typically each base is
accompanied by a quality value that is meant to convey

some idea of how likely the base-calling is correct. Second,
the base-called sequences are assembled into a contig using
an ad hoc alignment algorithm that compares both strands and
overlap between fragments. Quality values are taken into
account during the alignment to eliminate low quality
reads. Third, a consensus sequence is constructed from this
alignment by comparing different reads for each position.

The accuracy of the consensus sequence depends on the
coverage (i.e. how many independent observations we have
for each nucleotide base pair in the genome) and the perfor-
mance of the base-calling algorithm. The quality values of
base-calling play a crucial role in the construction of consen-
sus. If they are misleading or interpreted incorrectly, the con-
sensus sequence will be less reliable. The Phred quality scores
for base-calling are defined from sequencing traces in such a
way that they have a probabilistic interpretation. This is
achieved by training a model on a large amount of data. How-
ever, in practice, sample preparations and sequencing
machines may work under different conditions and therefore
quality scores need to be adjusted. Moreover, the information
given by quality scores is incomplete in the sense that they do
not describe error patterns. We observe that each nucleotide
base has its specific error pattern that varies across the range
of quality values.

Churchill and Waterman (4) proposed another model to
define a consensus. It is based on an assembly without assum-
ing the availability of quality values. The parameters in the
model include composition probabilities and sequencing error
rates and are estimated by an expectation—-maximization (EM)
algorithm based on the alignment. The consensus is defined
by the probability of the target sequence conditional on
observations. This offers an evaluation of reliability.

In this article, we combine quality scores of base-calling and
the idea in Churchill and Waterman’s model (4), to improve
sequencing accuracy. Specifically, we start with assembled
contigs and quality scores to build up complete probabilistic
error models. One option is to represent the error pattern of
each nucleotide by a multinomial model. Since the true
sequence is unknown, we develop an EM algorithm to deal
with missing data. In a more sophisticated logistic model, we
take quality scores as covariates. To parsimoniously represent
the non-linear effect of quality scores, we adopt simple piece-
wise linear functions in the regression model. The model
is trained by a procedure combining an EM algorithm, the
Bayesian information criterion (BIC) criterion and backward
deletion. The training results in calibration of quality values
and leads to a more accurate consensus construction.
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MATERIALS AND METHODS
Sequencing data

The first source of data in this article comes from the
Campylobacter jejuni whole-genome shotgun sequencing pro-
ject (5). The raw data, generated on ABI 373 and 377 auto-
mated sequencers were downloaded from the Sanger Center
(ftp.sanger.ac.uk/pub/pathogens/cj). The total length of the
genome sequence is 1641481 bp. There are 33824 reads
and the average coverage is 10-folds. The sequence assembly
was obtained by Phrap (see http://www.phrap.org). We tested
our methods on the first 100 kb of the reference sequence and
the corresponding reads. The coverage of the C.jejuni sequen-
cing project is unusually high, so we randomly removed some
reads to decrease the average coverage from 10- to 6-fold.
Since the reference sequence was obtained on reads of 10-fold,
we will assume that it is close to the true sequence later when
we calculate single base discrepancy (SBD).

To test our methods on data obtained using another sequen-
cing technology, we analyzed data from an Arabidopsis
thaliana re-sequencing project carried out at USC (http://
walnut.usc.edu/2010) using Beckman Coulter CEQ automated
sequencers. These data were obtained as part of a polymorph-
ism survey and thus contain different haplotypes. Since we are
interested only in sequencing error, in this paper, we selected
~500 kb of raw data from non-polymorphic regions.

Setup

Throughout the article, we represent random variables by
capital letters and their values by small letters. First, reads
are aligned into an assembly matrix. We introduce two alpha-
bets: A={A, C,G, T, —} and B={A, C, G, T, —, N, ¢},
where — denotes an internal gap, N denotes any ambiguous
determination of a base and the null symbol ¢ is for non-
aligned positions beyond the ends of a fragment. Each frag-
ment is either in direct or in reverse complemented orientation.
To deal with the issue of orientation, we introduce a comple-
mentary operation ~ on the alphabet B as follows: A =T,
T=A G=C,C=G, ¢ =¢and = = —. An illustrative
example of assembly matrices is shown in Figure 1.

We denote the target sequence by S = 5,5, --- S,, where §;
takes any value from the alphabet .A. Random fragments gen-
erated from the template are aligned by an assembler. This
results in an assembly matrix {X;;},x,. The elements of the
fragment assembly matrix, denoted by x;;, take values from the

Chromosome A G C CTAGATTC
directc AGCCCAGA ¢ ¢ ¢
dreet AGCCTAGNT — ¢
reverse NGCCTAGATTG
revese $ G CCTAGAZTC
ditect ¢ ¢ NCTAGATTUC

Figure 1. An illustrative example of the problem. The bases with a ~ sign
represent their complementary bases.

alphabet B. Each row in {X,;} contains the ordered sequence of
bases and possible gaps in a particular fragment. The column
index j=1, ..., nruns from the leftmost base in the assembly
to the rightmost. We represent the orientation of the ith frag-
ment in the assembly by

{ 0 fragment i is in direct orientation,
ri =

1 fragment i is in reverse orientation.

The observations X;; are subject to measurement error. We
denote the true base of fragment i at position j by Y;; € A.
Therefore

S
Y, = {s]
J

We denote the compositional probability by o, = Pr(S; = a),
ac A

if ri = 0,
ifr = 1.

Phred quality scores

After appropriate preprocessing, each sequencing chromato-
gram contains a series of peaks of four colors. The rationale of
base-calling is that each peak represents one base, and the
order of peaks from the four channels is consistent with the
order of nucleotide bases on the underlying DNA fragment. In
addition to base-calling, Phred also assigns each base-call a
quality score g, which takes integer values from 0 to Q (Q is
64 for Phred scores) (2). Quality scores are based on trace
features such as peak spacing, uncalled/called peak ratio and
peak resolution. The model that defines quality scores was so
trained, on a large amount of sequencing traces, that the scores
could be interpreted as probabilities. Mathematically, the
score is defined by
qij = _1010g1()8ija where gj = Pl’(Y,‘j * Xijj ‘X,’j = X,'j), 1
where, € is the error probability of base-calling. We randomly
select one position from an assembly and let ¥ and X be its
true base and called base, respectively. Let £ denote the event
that the base-calling is incorrect, namely, £ = {X # Y}. Then
the correct calling probability given base a is: 1—¢ =
Pr(Y = a|X = a), where a € A. Notice that

Pr(Y=a|X =a)Pr(X =a)

Pr(X=a|Y=aqa)=

Pr(Y =a)
=(1- 8)41)):%);:25.

If the assumption of unbiased base-calling is valid, namely,
PrX = a) = Pr(Y = a), then we have Pr(X = a|
Y=a)=Pr(Y =a|X =ad) =1 — & Consequently, we are
able to interpret the Phred scores as probabilities by

Pl'(X,'j Z)Cl'j | Y,'J' ZX,'j) = PI‘(YU Z)C,'j |X,‘j = x,-j) =1 107(1”‘/10.

Even though Phred scores are valuable information for the
construction of consensus, they are not the complete picture
of measurement error. In general, for a # b € A, we have
Pr(X=b|Y=a)=Pr(X=0b|Y =a,E)Pr(£|Y =a)

=Pr(X=b|Y=a)-e.


http://www.phrap.org
http://

We denote sequencing error rates, conditional on event &,
by w(b|a)=Pr(X=>b|Y=a, £) for a # b, and arrange them in
the following table:

w A C G T -

A wClA)  wGlA)  wTA) w=|A)
c WA |C) w(G | C) w(T| C) w(-|C)
G wAlG)  wC|6) wr|G)  wi|G)
T wAlD  wC|D  wG|D w(-|T)
- wAln wCl) WGl T

where {w(b|a)} satisfy

Z w(bla)=1and w(b|a)

beA, b#a

=0 forb#a.

The sequencing error rates relate to the conditional probabil-
ities as follows.

ew(b|a) if a+b,

Pr(X:b|Y:a):{ o

1—¢

Since Phred scores provide only partial information about
sequencing error rates, we need to estimate the rest. For the
sake of simplicity, we skip the issue of fragment orientation
when we describe the sequencing error models.

Conditional sequencing error model

Our perspective is to incorporate Phred quality scores into the
Churchill-Waterman model (4). We first adopt the parameter-
ization in Equation 2 to model sequencing error, and refer to it
as the conditional sequencing error model. The parameters 0 in
this model include the composition probability {o,} and the
conditional sequencing error rates {w(b|a)}. The likelihood
of the assembly and underlying sequence is given by

[HHP"(XU = xij | SjQG)] ~HPr(SJ 0
J=1

j=1i=1

= [ﬁﬁ [(l — aij){l(S/:xi/)} . (W(Xij | Sj) 'Eij){l(sji'rif)}}‘|

Since {S;} are missing, we estimate the parameters by the EM
algorithm. The following form of log-likelihood is easy for
imputing the sufficient statistics.

Z{ > [iD xj = b.S; = a) -log|w <b|a>ez;f]]

acA \acA/{a} Li=1 j=
[ZZI x;j=b,S; = a) log( Sij)l
i=1j
- Zl(s,- = a)log(xa} 3
j=1
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Logistic model

From a regression perspective, we take Phred scores as a
covariate. We denote

u(b \ a,q,-j) = Pr(X,-j =b|S;=a; q,-j),

We assume that base-calling error rates follow a logistic form:

log (“(baq)) =Bupo + > Bapii(@). b e A/fa},
=

a,be A. 4

wala.q)

where each covariate /4,(g) is a function of quality score ¢ and
takes the form

hi(q) =(q — o), = {

0, if ¢ < oy,

q — o5, otherwise.

Notice that each function has a knot o;, where 0 < o, <
05, ... <o < Q. Thus each regressor is a piecewise linear
function of the quality score, which allows us to approximate
any potential non-linear effect. Equivalently, base-calling
rates can be represented as:

eXP{Ba,b,o + ZIL:I By (61)}
l"l(b | a’ q) = L >
I+ ereA/{a} exp{Ba,c,O + ZI:I Ba,c,lhl(Q)}
be AJ{al,
1
Wala,q)= - :
1+ ZCEA/{A} exp{Ba,c,O + Zl:l Ba,(',lh/(q)}

Similar to Equation 3, this parameterization leads to the
following form of log-likelihood function for the assembly
and the underlying sequence, up to a term only relating to
parameters.

S| 3 55t
acA \ LbeA/{a} =1 j=

< e{Ba.h.0+Z/:l ﬁmmhl(‘lii)} ) ]
X log T
1+ EUGA/{a} C{B”'("O+ZI:] ﬁa.h.lhl(qif)}

[221 xXj = a,S; = a; q;j)

i=1j

a; qiy)

1
X log < i )1
L+ > e a/ta) e Pt 0 Pussa)}
+ Zl logoca}

where 0 represents all the unknown parameters.

Parameter estimation and EM training algorithm

In both the conditional sequencing error model and the logistic
model, the underlying sequence {s;} is unknown. Its recon-
struction relies on the estimates of parameters in the models.
On the other hand, algorithms of estimating parameters are



5186 Nucleic Acids Research, 2004, Vol. 32, No. 17

well established when {s;} are known. Thus we use the EM
algorithm to train the model iteratively. In the E-step, we
impute the sufficient statistic from observations at the current
parameter value and in the M-step, we update the maximum
likelihood estimate using the current imputed values of
missing data. In the case of the conditional sequencing
error model, the parameters are estimated by counting frequen-
cies. In the case of the logistic model, the likelihood can be
decomposed into five independent logistic regression models
(6). Consequently, we run re-weighted least squares to
estimate the parameters (7). The mathematical and technical
details are rather lengthy and tedious, and will be published in
our technical report (8).

Consensus and quality values

According to the logistic model, the distribution of nucleotides
at each position is given by:

Pr(S;=a|{X;=x;}:{q;})

_ O[O =) iy lagy) +ri-w(%ldas)]
Popea 0 LT [(1 = ri) - w(xg bogy) + i (% b,g5)]

As shown in the formula, the issue of orientation can generally
be dealt with by the orientation indicators {r;} and the
complementary operator ~. In our convention, we observe
Xx;; directly when a fragment is in reverse orientation. After
we plug in the estimated value of 6, we define the consensus
at one position and its quality score by maximizing the above
probability.

Parsimonious representation and model selection

Although we can include piecewise linear functions at all
possible knots in the logistic regression model (Equation 4),
we seek a parsimonious model for several purposes. First, we
would like to avoid potential overfitting, especially when the
size of assembly is not large. Second, a parsimonious model
may give us insights into quality scores.

The selection of knots is nothing but a model selection
problem. To compare different models, we need an evaluation
criterion. Based on quality scores, each fitted model defines
a set of error rates, which in turn can be used to construct
a consensus. If the truth is known, we can calculate SBD for a
model (9). SBD is thus one criterion for model comparison.

A practical solution to model selection ought to be
self-evident from data. One such criterion is BIC (10). It is
defined as

BIC = —log-likelihood of assembly
1
+ 5 (# parameter)log(# observation).

That is, BIC penalizes log-likelihood by model complexity
in terms of the number of parameters. For a logistic
model with L knots, we have 20(L + 1) parameters. We cal-
culate the BIC score for each model and choose the one that
minimizes the quantity. The idea is to trade off goodness of
fit and model complexity. Computationally, it is intensive to
evaluate every model. We adopt the backward deletion
strategy used in regression analysis to search for the optimal
model (7).

RESULTS
Bias of quality scores

If we do not otherwise specify the data source, the results
reported hereafter are based on the C.jejuni sequencing data
explained earlier. In the conditional sequencing error model,
quality scores are interpreted as error probabilities of base-
calling. The model that defines the Phred scores is determined
from a training data set (2,3). When the model is applied to
sequencing traces obtained under different working condi-
tions, scores may deviate from probabilities to some extent.
We examine this issue on sequencing reads from one BAC.
After alignment, we count incorrect base-calls for each value
of quality scores—Phred scores take integer values from 0
to 64. The observed score for the predicted quality score ¢ is
calculated from the assembly by:

Err

Gobs(q) = —10-logy, (ﬁéorr)’

where Err, and Corr,, are, respectively, the number of incorrect
and correct base-calls at quality score ¢. In Figure 2, we plot
the observed scores against predicted Phred scores. When
scores are >55, essentially no error is observed. When scores
are <20, the prediction is fairly consistent. When scores are
between 20 and 55, Phred scores overestimate probabilities.
Thus calibration is desired for the purpose of improving accur-
acy of base-calling.

Next we apply the logistic model to the data. Let

& = Pr(S; # x| Xy = x5, 513 0),

where 0 represents all the parameters. Under the assumption
of unbiased base-calling, we have:

;=1 — Pr(X;=x;]8 = x,¢550) = 1 — (x| xy, g7)-

Then we can assign a new quality score to each base-call x;;:

q; = —10-log,, €

The bias of this adjusted quality score can be examined by:

Err,

dobs(q') = —10-log,g (Wq&)rrqr)’

where Err, and Corr, are respectively the number of incorrect
and correct base-calls at the adjusted quality score ¢'. We plot
the observed against the corrected quality score in Figure 3.
Compared with Figure 2, we see that the corrected quality
score is more consistent with the observed quality score.
After adjustment, no error occurs above score value 42.

The CEQ software that comes along with Beckman sequen-
cers offers quality values similar to Phred scores (11). How-
ever, their scores are trained from a smaller data set when
compared with Phred. As in Figure 2, we plot the observed
scores against the predicted CEQ scores in Figure 4. The over-
estimate pattern is seen across almost the entire region. Then
we apply the adjustment procedure to correct for the obvious
bias. The training data set is ~500 kb. In Figure 5 we plot the
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Figure 2. Observed sequencing error rates versus predicted error rates by Phred quality score.
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Figure 3. Observed sequencing error rates versus corrected error rates by a logistic model.
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Figure 5. Observed sequencing error rates versus predicted error rates by a logistic model.



observed against the corrected quality scores. This calibration
can benefit our haplotype construction project at USC.

Score-dependent error patterns

In the conditional sequencing error model, we assume that
the error patterns, or the conditional error rates, are constant
regardless of quality scores. To check the assumption, we
compare frequencies of each type of sequencing errors at
each quality value ranging from O to 64. That is, given an
assembly, we calculate the empirical conditional error rates as
follows:

Z"q] 1 (xif = b’sj =da,qij= C[)
ZCEA/{a} Zi,j 1 (Xg,‘ =c,5=a,q;= 6])

Wobs (P |a:q) =

When the true base is A, we plot these conditional error rates
against quality scores in Figure 6. It indicates that error pat-
terns do depend on quality scores. After we fit a logistic model
to the assembly, the conditional error probabilities as a func-
tion of quality scores are shown in Figure 7. When quality
scores are >55, no sequencing error is observed. Thus condi-
tional error patterns make sense only for scores <55. Many
sequencing projects use the O, rule as a rough measure of the
effective length of a DNA read (12). Scores <20 indicate low
quality regions. As we can see, error patterns change signifi-
cantly at scores ~20-24. Since we do not have many bases
with high scores, the inference in the high quality range is less

, a,be A.
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reliable than that in the low quality range. When quality scores
are <20, C and G are similar to each other; when the scores
are >24, a totally different error pattern is observed. This
by-product of the parsimonious model offers another perspec-
tive of the Qg rule.

Comparison of different methods

We have introduced a conditional sequencing model and a
logistic model. In the literature, two different methods exist
to estimate sequencing error rates. On the one hand, the
method proposed by Churchill and Waterman (4) relies
only on assembly but not on quality scores, and we refer to it
as the simple probability model. On the other hand, we can use
Phred scores and simply assign equal error chances among
bases. Hereafter, we refer to it as the simple quality score
method. In Table 1, we compare the performance of these
methods using the C.jejuni data set. The majority rule defines
the consensus by choosing the most frequent nucleotide at
each position. Compared with the majority rule, the simple
probability model reduces errors by one-quarter, not resorting
to any other information other than the assembly itself. The
simple quality score method cuts errors by more than half.
The gain is from the training data set that defines Phred
scores. The conditional sequencing error model reduces errors
further. The best result, 346 SBDs, is achieved by the logistic
model with five knots. BIC selects a logistic model with three
knots that has 348 SBDs. The likelihood scores for these

091

c/A
G/a
T/A

0.8

06

0.5F

03F

Observed Error Pattern

02f

0 1 1

1 i 1

0 10 20

30 40 50 60

Quality Score

Figure 6. Observed score-wise conditional error rates. The true base is A.
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Figure 7. Conditional error rates predicted from a logistic model. The true base is A.

Table 1. Comparison of different methods

Method SBD Log-likelihood of assembly
Majority rule 810

Simple probability 591 —339704

Simple quality score 367 —292781

Conditional sequencing error 358 —281411

Logistic (five knots) 346 —272341

The majority rule is a straightforward counting strategy; the simple probability
model is the method proposed by Churchill and Waterman (2); the simple
quality score method uses Phred scores and assigns equal error chances
among bases; the conditional sequencing model uses Phred scores and estimates
error pattern from data by an EM algorithm; the logistic model predicts sequen-
cing errors by Phred scores.

models are also shown in Table 1. The likelihood of a model
measures its goodness of fit to the data. For the same data set,
we slightly perturb the Phred scores associated with the called
bases, and errors resulting from the simple quality score
method increase substantially from 367 to 517 while the per-
formance of the logistic method remains almost the same.

DISCUSSION
Alignment algorithm

We have observed that different alignment algorithms may
produce slightly different assembly matrices. Our adjustment
of scores is adaptive to alignment in the sense that it

optimizes performance based on each assembly. When a
new alignment procedure is used, adjustment may change
correspondingly.

Phrap (see http://www.phrap.org) examines all individual
sequences at a given position, and generally uses the highest
quality sequence to build the consensus. Phrap also uses the
quality information of individual sequences to estimate
the quality of the consensus sequence. By comparison, our
method can be used with any other assembly algorithms.
The reconstruction of consensus and definition of quality
value are based on a probabilistic model. It can adjust potential
bias of quality scores in base-calling.

Computing complexity

In the logistic model, the inner loop computes the parameters
in logistic regressions by either the Fisher scoring method
or by the Newton—Raphson method. Both methods converge
quadratically. The outer loop is an EM procedure, and in
general an EM algorithm converges at a linear rate. Thus,
the computing complexity hinges on the EM algorithm.
Specifically, let x, L, D; and D, be the coverage, number
of knots, number of Newton iterations and number of EM
iterations, respectively; then the complexity is about
Ol(nx + L3D1)D2], where 7 is the size of the target DNA.
Similarly, the complexity for the conditional sequencing
error model is O(nkD), where D is the number of EM
iterations.
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Repeat patterns

We have checked the errors that are left uncorrected by the
procedure described in this article. Almost all of them are from
regions with repeat patterns. They can be single-, di- or tri-
nucleotide repeats. Situations become even more subtle if two
repeats are next to one another. In one example, an A is in
the middle of four Cs and is missed. In these cases, it is not
appropriate to assume that the sequencing error pattern is inde-
pendent of local contexts. We are considering more sophisti-
cated models to deal with regions with repeats. Li and Speed
(13,14) proposed a parametric deconvolution procedure to
improve accuracy of sequencing for regions with repeats.

Size of training data set

We have applied our method to data sets of different sizes. The
larger the data set, the greater the number of knots selected in
the optimal model. We can achieve satisfactory training with an
assembly of size 30 kb and a coverage of six. The result is not
sensitive to the ‘quality’ of the quality scores. In comparison,
the training of Phred scores requires several hundred million
base-calls, and it has been carried out on the sequencing traces
generated from ABI sequencers. It is difficult to obtain reliable
quality scores for other sequencers by the Phred training
method if only limited base-calling data are available. In
this situation, we can apply the method proposed in this article
to adjust the preliminary quality scores obtained under roughly
the same conditions and obtain probabilistically meaningful
quality scores. Earlier, we reported one such example that
calibrates Beckman CEQ quality scores using 500 kb from
an Arabidopsis re-sequencing project.
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