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Understanding how the current warming trends affect fish populations is crucial for effective conservation and manage-
ment. To help define suitable thermal habitat for juvenile Chinook salmon, the thermal performance of juvenile Chinook
salmon acclimated to either 15 or 19°C was tested across a range of environmentally relevant acute temperature changes
(from 12 to 26°C). Swim tunnel respirometers were used to measure routine oxygen uptake as a measure of routine meta-
bolic rate (RMR) and oxygen uptake when swimming maximally as a measure of maximal metabolic rate (MMR) at each
test temperature. We estimated absolute aerobic scope (AAS = MMR — RMR), the capacity to supply oxygen beyond rou-
tine needs, as well as factorial aerobic scope (FAS = MMR/RMR). All fish swam at a test temperature of 23°C regardless of
acclimation temperature, but some mortality occurred at 25°C during MMR measurements. Overall, RMR and MMR
increased with acute warming, but aerobic capacity was unaffected by test temperatures up to 23°C in both acclimation
groups. The mean AAS for fish acclimated and tested at 15°C (7.06 + 1.76 mg O, kg™' h™") was similar to that measured
for fish acclimated and tested at 19°C (8.80 + 1.42 mg O, kg~' h™"). Over the entire acute test temperature range, while
MMR and AAS were similar for the two acclimation groups, RMR was significantly lower and FAS consequently higher at
the lower test temperatures for the fish acclimated at 19°C. Thus, this stock of juvenile Chinook salmon shows an impres-
sive aerobic capacity when acutely warmed to temperatures close to their upper thermal tolerance limit, regardless of the
acclimation temperature. These results are compared with those for other salmonids, and the implications of our findings
for informing management actions are discussed.
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Introduction

Temperature is well known to affect the behaviour and physi-
ology of fishes both directly and indirectly, influencing the
geographical distribution of a species as well as specific
physiological processes, such as metabolic rate and growth
(Fry, 1971; Schmidt-Nielsen, 1999; Moyle and Cech, 2002).
As such, understanding how changes in environmental tem-
perature influence early life-history stages in fishes is funda-
mental in predicting subsequent size- and condition-dependent
processes, such as survival, dispersal and migration (Sogard,
1997; Hurst and Conover, 1998; Edeline et al., 2006;
Brodersen et al., 2008). Ultimately, the daily activities of fishes
require the metabolic consumption of oxygen, which is a
temperature-mediated process (Clarke and Johnston, 1999;
Gillooly et al., 2001). Therefore, it is important to assess dir-
ectly the need and capacity to deliver oxygen to active tissues
in fishes; information that can then be used as ecologically
relevant measures of fish performance.

Metabolic rate of fishes is dependent on temperature and
can be assessed directly by measuring standard metabolic
rate (SMR). Furthermore, as fish approach their maximal
swimming capacity, they tend to increase their aerobic meta-
bolic rate to a maximal metabolic rate (MMR). The aerobic
capacity to deliver oxygen to tissues above a basic need can
then be calculated from these measures [calculated either by
subtracting SMR from MMR, termed absolute aerobic scope
(AAS = MMR - SMR), or by dividing MMR by SMR,
termed factorial aerobic scope (FAS = MMR/SMR)].
Absolute aerobic scope defines the maximal aerobic capacity
available at a given temperature to perform the activities
essential for survival that extend beyond routine mainten-
ance of life to include ecologically relevant and important
functions (i.e. swimming, foraging, growth, etc.; Portner and
Knust, 2007; Portner and Farrell, 2008; Clark et al., 2013).
However, it does not predict when or how these activities
are used (Farrell, 2016). The oxygen- and capacity-limited
thermal tolerance (OCLTT) hypothesis (Portner, 2001;
Portner and Knust, 2007; Portner and Farrell, 2008)
addresses this by stating that the extremes of the thermal tol-
erance of an animal will be determined by the aerobic metab-
olism of active tissues (once an animal is no longer able to
supply oxygen to active tissues above a maintenance level,
the animal will no longer be able to tolerate temperatures
above or below this limit). The OCLTT hypothesis has
emerged as a conceptual model to assess thermal perform-
ance of aquatic animals and to determine the fundamental
thermal range for a particular species (Portner, 2001;
Portner and Knust, 2007; Portner and Farrell, 2008), but not
without some debate (e.g. Clark ez al., 2013; Farrell, 2013;
Portner and Giomi, 2013; Norin et al., 2014).

As with many measures of physiological performance,
metabolic rates and aerobic scope values are not static and
can be modified by biological variables, such as ontogeny
(Oikawa et al., 1991; Clarke and Johnston, 1999), or
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environmental variables, such as time of year (Beamish,
1964; Karas, 1990) or thermal history (e.g. Johnston and
Dunn, 1987). Consequently, thermal tolerance limits and the
optimal temperature range for peak thermal performance
can shift with thermal acclimation, e.g. the optimal tempera-
ture range is shifted to warmer temperatures with warm
acclimation (see Fry, 1971; Stillman, 2003; Schulte et al.,
2011; Huey et al., 2012; Portner, 2012; Claireaux and
Chabot, 2016). Physiological plasticity is important for the
persistence of individuals, hence the population, because it
allows for continued physiological performance in the face
of changing environmental conditions regardless of whether
these changes may be predictable, such as temperature
changes that accompany seasonal shifts (Johnston and
Dunn, 1987; Portner, 2012), or unpredictable, such as those
observed as a result of climate change (Stillman, 2003;
Seebacher et al., 2015). Likewise, populations may have the
ability to adapt to new environmental conditions over gen-
erations, which can result in local adaptation in the thermal
physiology of a species (Fangue et al., 2006; Angilletta,
2009; Farrell and Franklin, 2016). Variation in aerobic scope
among individuals of a population can mediate population
persistence, as some individuals outcompete others, leading
to variation in measures of fitness (Farrell et al., 2008; Auer
et al., 2015). Thus, it is important to characterize aerobic
scope both for individuals with different acclimation histor-
ies and among populations, because the degree of plasticity
exhibited by populations or individuals can vary.

As fish populations decline (e.g. Moyle and Leidy, 1992;
Moyle et al., 2011; Quifiones and Moyle, 2014) and manage-
ment becomes more crucial for population persistence, knowl-
edge of thermal limits, optimal thermal ranges, and a
mechanistic understanding of how key physiological processes,
such as metabolic rate, change in response to environmental
variables become more important (Beitinger et al., 2000;
Portner, 2001; Niklitschek and Secor, 2005; Horodysky et al.,
2015; Martin et al., 2015; Jeffries et al., 2016; Komoroske
et al., 2016). Therefore, our objective was to estimate the aer-
obic scope of juvenile Chinook salmon (Oncorbynchus tsha-
wytscha) acclimated to two different rearing temperatures
(15 or 19°C) and tested over a range of acute temperature
changes (12-26°C). We hypothesized that aerobic scope would
be maximized over an ecologically relevant thermal range, and
that this thermal range would differ between acclimation
groups. In the Central Valley of California, Chinook salmon
populations are the focus of many important conservation and
management programmes (National Marine Fisheries Service,
2009), and state water management programmes are geared
towards optimizing conditions for salmonid spawning and mi-
gration. In addition, both the acclimation temperatures and the
range of test temperatures evaluated can be experienced by
juvenile salmon during early development (Sacramento River
Temperature Task Group, 2014) and throughout their migra-
tion (Interagency Ecological Program Environmental Monitor-
ing Program, 2015). Therefore, it is important to understand
how Chinook salmon respond to environmental variables,
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such as temperature, and how physiological performance can
be affected by thermal history. Understanding the variation
associated with thermal performance both within and among
populations can help further our understanding of how this
species is affected by critically important environmental vari-
ables, such as temperature.

Materials and methods

All fish care and protocols were reviewed and approved by
the University of California Davis (UC Davis) Institutional
Animal Care and Use Committee (protocol no. 18196).
Juvenile autumn-run Chinook salmon (7 = 300) were trans-
ported from the California Department of Fish and Wildlife’s
Mokelumne River Hatchery (Clements, CA, USA) to the UC
Davis Center for Aquatic Biology and Aquaculture in early
May 2015. Fish were transported in fresh well water in an
aerated transport tank that maintained oxygen levels >80%
of air saturation. Prior to rearing in acclimation tempera-
tures, fish were held at UC Davis in outdoor flow-through
(31 min~"), tanks 1.5 m in diameter supplied with water (13°C)
from a fresh, non-chlorinated well, and fish were fed daily to
satiation with pelleted trout diet (mix of 2 mm Skretting com-
mercial trout feed and 1.2 mm Rangen sturgeon feed).

Thirty individual fish were randomly transferred to one of
nine replicate indoor flow-through tanks 1.5 m in diameter
(n =4 and n = 5 replicate tanks for 15 and 19°C acclimation
groups, respectively). After transfer, fish were given a 7 day
initial recovery period, and water temperatures were then
increased at a rate of 1°C day™! to either 15 or 19°C. They
were held at these acclimation temperatures for a minimum
of 3 weeks prior to experiments. Water temperatures were
controlled by mixing ambient (18°C) and chilled water (9°C)
for the 15°C tanks, and by using 800 W titanium heaters
(model TH-0800; Finnex, USA) and temperature controllers
(model 72; YSI, OH, USA) for the 19°C tanks. Mean water
temperatures (+SEM) for each acclimation group were
14.8 + 0.06 (n = 4 replicate tanks) and 19.3 + 0.09°C (n =5
replicate tanks). Once acclimation temperatures were
reached, each tank of fish was fed at a rate of 2.0% body
mass per fish day™', and absolute feed amounts were
adjusted every 10-14 days to account for fish growth. There
were no differences in body mass between the two acclima-
tion groups; fish mass was 19.8 + 0.02 g, and fish total
length was 12.0 + 0.01 cm.

Experimental design

Measurements of oxygen uptake were taken over a range of
acute temperature changes in 1°C increments from 12 to 26°C.
Fish tested at each temperature increment were randomly
selected from replicate tanks. Each individual was tested for
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RMR and MMR once at one temperature, and four fish from
each acclimation group were tested at each test temperature.
Each test temperature was evaluated using at least one fish
from each replicate acclimation temperature tank.

Swim tunnel respirometry

Fish were tested in one of three 5 litre automated swim tun-
nel respirometers (Loligo, Denmark), two of which were con-
trolled using a single computer system (two-tunnel system)
and one of which was controlled using a separate system
(single-tunnel system). Therefore, during any run, two
tunnels were set at the same test temperature and the other
tunnel at a different temperature. Acclimation and test tem-
peratures were randomized between the two systems. Water
in each swim tunnel was pumped (model 18B; Danner) from
a designated sump unique to each system into an aerated
water bath surrounding the swim tunnel and was returned to
the sump after circulation through the system. Sump water
was continuously refreshed with fresh water from a desig-
nated non-chlorinated well and was supplied with air stones
for additional aeration. The temperature in the respirometers
was controlled by circulating water through a chiller (model
DSHP-7; Aqua Logic Delta Star) and pumping it back to the
sump using a high-volume water pump (model SHE1.7;
Sweetwater, USA). In addition, each sump contained two
800 W titanium heaters (model TH-0800; Finnex, USA) con-
nected to variable temperature controllers (model 72; YSI).
These two methods were used simultaneously to achieve
water temperature control within the swim tunnels with a
precision of +0.5°C. Swim tunnels and associated pumps
were bleached and cleaned weekly to reduce potential bacter-
ial growth in the system.

Oxygen saturation of the water inside the swim tunnels
was measured using mini fibre-optic oxygen probes (one per
tunnel), which were continuously monitored and recorded
by AutoResp software (version 2.2.2). The oxygen probes
were connected to the AutoResp software via a Witrox-4
oxygen meter (Loligo, Denmark) for the two-tunnel system
and via a Witrox-1 oxygen meter for the single tunnel.
Oxygen probes were calibrated weekly using a two-point,
temperature-paired calibration technique. Water velocity in
the swim tunnels was generated using a DAQ-M data acqui-
sition device and a VFD controller (models 4x and 12x;
SEW Eurodrive). The velocity (precision of <1 cm s™!) for
each tunnel was controlled remotely through the use of the
AutoResp program. To minimize disturbance and experi-
menter influence on the fish, the swim tunnels were sur-
rounded by black shade material, while infrared cameras
(QSC1352W; Q-See, China), mounted directly overhead
each tunnel, were connected to a television monitor and a
DVR recorder to monitor individual fish behaviour.

Metabolic measurements for both routine and maximal
oxygen uptake were made using intermittent respirometry
(Cech, 1990; reviewed by Clark er al., 2013). A flush pump
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(model 2; Danner) for each swim tunnel circulated aerated
water through the swim chamber, and was turned off auto-
matically through AutoResp software and a DAQ automated
respirometry system to seal the tunnel and measure the
decline in oxygen concentration in the tunnel water attribut-
able to fish respiration over a minimal period of 2 min.
Oxygen levels were never allowed to fall below 80% of air
saturation, and oxygen levels were restored within the swim
tunnel after approximately 2-5 min once the flush pump
resumed circulating water from the water bath.

Percentage saturation was converted to oxygen concentra-
tion ([O,], in milligrams of oxygen per litre) using the fol-
lowing formula:

[02] = %0,8at/100 x a(O,) x BP,

where %Q;Sat is the percentage oxygen saturation of the
water read by the oxygen probes; a(O5) is the solubility coef-
ficient of oxygen in water at the water temperature (in milli-
grams of oxygen per litre per millimetre of mercury); and BP
is barometric pressure in mmHg.

Metabolic rate (MR in in milligrams of oxygen per kilo-
gram per minute) for resting and swimming fish was calcu-
lated using the following formula:

MR = { [(O2(A) -~ 02(B) x V] x M~} x T,

where O,(A) is the oxygen concentration in the tunnel at the
beginning of the closed respirometry (in milligrams of oxy-
gen per litre); O,(B) is the oxygen concentration in the tunnel
at the end of the seal (in milligrams of oxygen per litre); V is
the volume of water in the tunnel (in litres); M is the mass of
the fish (in kilograms); and T is the duration of the closed
respirometry (in minutes).

Values of Qg, the ratio of rates over a 10°C temperature
range, were calculated for test temperatures using the follow-
ing formula:

Q0 = (MRy/MR,)127T0),

where MR, is the mean metabolic rate measured at T»; MR,
is the mean metabolic rate measured at Ty; and T, > T;.

Routine metabolic rate

Fish were first fasted for 24 h in individual 0.5m x 1.0 m
rectangular, flow-through holding tanks with aerated accli-
mation water from the same source as the acclimation tanks,
before being transferred into a swim tunnel between 15.00
and 17.00 h. A 1 h acclimation period at their acclimation
water temperature was followed by adjustment to the test
temperature (between 12 and 26°C) at an incremental rate of
1°C each 30 min (2°C h™!). Automatic measurements of rou-
tine oxygen uptake began 30 min after the test temperature
was reached and continued overnight using AutoResp
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software. Measurement periods were 2400 s in duration.
Flush period durations were adjusted according to tempera-
ture to ensure adequate oxygen saturation in the chambers,
with a longer flush for warmer temperatures. A small pump
(mini DC 30A) mixed the water (<5 cm s~!) within the swim
chamber to allow for continued oxygen exchange without
eliciting fish movements. Measurements were discarded
whenever the fish was visibly active on the video recording,
which was rare. The mean of the lowest three values
obtained at least 30 min after test temperatures were reached
was used as the estimate of RMR. Given that the fish were
visibly inactive and were given many hours to recover after
minimal handling stress, we anticipated that RMR was not
substantially higher than SMR. Indeed, Chabot et al. (2016)
provided considerable data on a range of fish species to sug-
gest that the RMR of inactive fish is likely to be <10% high-
er than SMR. As a result, AAS was estimated from
MMR — RMR, while FAS was estimated from MMR/RMR.

Maximal metabolic rate

Measurements of RMR were completed between 08.00 and
09.00 h, and a modified critical swimming velocity (Ucc)
protocol was started to swim the fish until exhaustion and
measure MMR. Water velocity in the swimming chamber
was gradually increased from 0 to 30 cm s™! over a period
of ~2 min and remained at 30 cm s~ for 20 min. After this
period, water velocity was increased in increments of ~10%
of the previous test velocity (i.e. 3 cm s™! if the previous
step ranged between 30 and 39 cm s™!, 4 cm s™' if between
40 and 49 cm s7!, etc.) and held for 20 min or until the fish
was exhausted and unable to swim. Active metabolism was
measured towards the end of each velocity increment by
sealing off the swim tunnel and recording the decrease in
oxygen saturation without allowing the water air satur-
ation to drop below 80%. When metabolic rate was high,
multiple measurements were possible for a single velocity
step. The highest metabolic rate measured during active
swimming activity was taken as MMR. Between measure-
ments, fresh water was flushed into the tunnel until oxygen
saturation was >95%. When a fish stopped swimming and
became impinged upon the back screen, water velocity was
decreased to ~15 cm s™! for 1 min, and the test velocity
was gradually restored over a 2 min period. A fish was con-
sidered exhausted if it did not resume swimming after an
impingement or if a second impingement occurred during
the same velocity step. At this point, the time and velocity
of failure were noted, the tunnel was flushed, and the water
velocity was decreased to RMR conditions (<5 cm s™!) to
allow the fish to recover.

A few fish were resistant to prolonged swimming and so
a burst swimming protocol was used to elicit MMR. These
fish were first given a 20 min rest period with water velocity
<5 cm s before being swum at 30 cm s™! for 10 min.
Afterwards, water velocity was rapidly (~10 s) increased
above the prolonged swimming velocities (~60cm s™'),
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which required the fish to burst swim to maintain station
for a maximal duration of 30s. The water velocity was
decreased to 30 cm s~ for 2 min, and this protocol was
repeated for at least 5§ min, and up to 10 min (i.e. two to six
burst swims) until the fish became exhausted. Norin and
Clark (2016) suggest that the peak MR of an exhausted fish
is a reliable estimate of MMR. Again, exhausted fish were
allowed to recover in RMR conditions for at least 1 h.

Following the recovery period, water temperature was
returned to the acclimation temperature at 2°C h™"' before
fish were removed from the swim tunnel and placed for 24 h
in a recovery tank. Following the 24 h recovery, the mass (in
grams), fork length (in centimetres) and total length (in centi-
metres) were measured and recorded. Fish were then trans-
ferred to a designated long-term recovery tank. The absolute
highest MMR value, regardless of the method of elicitation,
was taken as the maximal rate. The few fish that required a

A
)
-
£ 6
E
T
2
o)
o 4
E
©
=
@
£
]2 2
& :
15-Acc: R"2=060, S.E. =0.80,df =53
19-Acc: R*2=072, SE =068, df = 52
12 16 20 24
C
20 - P
=~ =
=
£
- 15
= .
2
) .
o
£ 10 .
é{ ] . _— _— ! s
@ =t 5 —3 : . L
g 51 - B "
3 . .
]
<
15-Acc: R*2=-0.02. SE. =253, df =54
0 19-Acc: R*2= 002, SE = 223 df» 53
12 16 20 24

Swimming Temperatures (°C)

Research article

burst swimming protocol to elicit MMR are included in the
analysis and are highlighted in Fig. 1 to discriminate the data
from those obtained using a modified U protocol.

Data were analysed using R Studio version 2.15.2 software
(R Core Team, 2012) and the car (Fox and Weisberg, 2011),
plyr (Wickham, 2011) and multcomp packages (Hothorn
et al., 2008), while data were visualized using ggplot2
(Wickham, 2009). Metabolic responses (RMR, MMR, AAS
and FAS) were each analysed independently as a function of
acclimation temperature and swimming temperature using a
generalized linear model and subsequent F-value significance
tests, and model fit was evaluated graphically. The effect of tun-
nel system on all metabolic rate values was found to be non-
significant and not included in the final analysis. Relationships
between test temperature and metabolic responses (RMR,
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Figure 1: Thermal performance of hatchery juvenile Chinook salmon acclimated to 15 and 19°C, showing values of resting (routine) metabolic
rates (RMRs; A), maximal metabolic rates (MMRs; B), absolute aerobic scope (AAS; C) and factorial aerobic scope (FAS; D). Each point represents
one individual fish, and the continuous line represents the best-fitting line for the data; equations for best-fit curves are given in the text. The
shaded area surrounding each line represents the standard error of the curve. ‘15-Acc’ and ‘19-Acc’ represent values for 15 and 19°C
acclimation groups, respectively. Square boxes around individual data points represent individuals that were bursted to elicit MMR values
(square boxes are indicated on RMR values to highlight which individuals required a bursting protocol). There was a significant effect of
acclimation temperature on RMR values (P = 0.012), but no significant effect of acclimation temperature on MMR, AAS or FAS values (P > 0.05
for all comparisons). No data from fish that exhibited mortality were used to create the graphs.
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MMR, AAS and FAS) were analysed for each acclimation
group independently by modelling metabolic response as a
function of test temperature. Two relationships between
metabolic response and temperature were evaluated: linear
and quadratic. The model with the highest adjusted R*
value and lowest residual squared error was chosen as
being the best-fitting model. Significance was considered at
a <0.05.

Results

Mortality

With the exception of one fish that died at 18°C, fish mortal-
ity during testing was limited to measurements at test tem-
peratures of 25 and 26°C (Table 1). No post-test mortality
occurred for fish that successfully survived RMR and MMR
measurements. When fish were tested at 25°C, one out of
four of the fish acclimated at 15°C died, but none of the fish
acclimated at 19°C died at this temperature. When fish were
tested at 26°C, mortality was higher; three out of four fish
acclimated at 15°C (the other fish lost equilibrium but was
revived) and three out of four fish acclimated at 19°C died
during RMR measurements. None of the data from fish
experiencing mortality were included in the subsequent ana-
lysis. The data obtained from the surviving fish at tempera-
tures at which mortality occurred (25 and 26°C) are shown
graphically for illustrative purposes only.

Metabolic measurements

Comparisons of data at 12 and 23°C and the corresponding
Q19 values are made for means calculated from fish tested at
each temperature and not derived from fitted regression
lines.

Routine metabolic rate

Routine metabolic rate increased with test temperatures from
12 to 25°C for both acclimation groups of juvenile Chinook
salmon (Fig. 1A). Routine metabolic rate was significantly
affected by both acclimation temperature (d.f. = 1, F = 6.67,

= 0.012) and test temperature (d.f. = 14, F = 15.7,
P < 0.001), but there was no significant interaction between
the two (d.f. = 13, F = 0.47, P = 0.94). The RMR was low-
ered by warm acclimation, and this response was independ-
ent of test temperature, although more pronounced at lower
test temperatures. However, mean RMR for fish acclimated
and tested at 15°C (2.58 + 0.22 mg O, kg™' min~") was
similar to that measured for fish acclimated and tested at 19°C
(3.47 + 0.07 mg O, kg™ min™1).

The response of RMR of fish acclimated at 15°C to test
temperature (Fig. 1A) was fitted (P < 0.0001) with the fol-
lowing relationship: RMR (mg O, kg™' min™') = 2.643 —
0.046x + 0.019x%. For fish acclimated at 15°C, mean RMR
was 2.52 + 0.47 mg O, kg™! min~"! when tested at 12°C and
increased to 5.12 + 0.37 mg O, kg™ min~! when tested at

Table 1: Summary of all experiments performed

Acclimation
temperature
(°Q

Swimming
temperature
(°Q)

Nlortallty Bursted

Mortality refers to the number of fish (n) that died at any point in the experi-
ment, and no values from experiments that resulted in mortality or loss of equi-
librium (LOE) were used to calculate metabolic rates. The number of fish that
required a bursting protocol (Bursted) to obtain maximal metabolic rates is also
shown.

23°C, which is a Q19 of 1.91 over an 11°C temperature
range. The response of RMR of fish acclimated at 19°C to
test temperature (Fig. 1A) was fitted (P < 0.0001) with the
following relationship;: RMR (mg O, kg™' min™")
1.81 — 0.071x + 0.012x2. For fish acclimated at 19°C, mean
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RMR was 1.90 + 0.55 mg O, kg min~" when tested at
12°C and increased to 4.76 + 0.36 mg O, kg™' min™" when
tested at 23°C, which is a Q9 of 2.30 over an 11°C tem-
perature range.

Maximal metabolic rate

The MMR of juvenile Chinook salmon increased linearly as
test temperatures increased from 12 to 25°C for both accli-
mation groups (Fig. 1B), although this increase did not reach
statistical significance (d.f. = 14, F = 1.68, P = 0.08).
Likewise, MMR was unaffected by acclimation temperature
(d.f. =1, F=3.01, P = 0.09), and there was no significant
interaction (d.f. = 13, F = 1.58, P = 0.11) between the two.
Thus, the effect of test temperature on MMR was similar for
both acclimation groups. The mean MMR for fish acclimated
and tested at 15°C was 9.64 + 1.75 mg O, kg™' min™" vs.
12.23 + 1.43 mg O, kg™ min™" for fish acclimated and tested
at 19°C.

The response of MMR of fish acclimated at 15°C to test
temperature (Fig. 1B) was fitted (P = 0.01) with the follow-
ing relationship: MMR (mg O, kg™' min™') = 9.01 +
0.239x. For fish acclimated at 15°C, the mean MMR was
8.31 + 0.73 mg O, kg™' min™" when tested at 12°C and
increased to 10.69 + 0.78 mg O, kg™! min~! when tested at
23°C, which is a Q9 of 1.26 over an 11°C temperature
range. The response of MMR of fish acclimated at 19°C to
test temperature (Fig. 1B) was fitted (P < 0.001) with the fol-
lowing relationship: MMR (mg O, kg™ min™") = 7.77 +
0.284x. For fish acclimated at 19°C, the mean of MMR was
9.25 + 0.56 mg O, kg™! min~! when tested at 12°C and
increased to 11.93 + 1.97 mg O, kg™' min~' when tested at
23°C, which is a Qg of 1.26 over an 11°C temperature
range. Thus, the rate of increase in MMR with test tempera-
ture and the absolute values for MMR were similar to those
obtained for fish acclimated to 15°C.

Absolute aerobic scope

The AAS estimated for juvenile Chinook salmon acclimated
to 15 and 19°C did not change significantly with an increase
in either test temperature from 12 to 25°C (Fig. 1C; d.f. =
14, F=0.27, P = 0.99) or acclimation temperature (d.f. = 1,
F=1.07, P = 0.30), and there was no interaction (d.f. = 13,
F =1.69, P = 0.08). Thus, AAS was independent of the test
and acclimation temperatures used in this study. Mean AAS
for fish acclimated and tested at 15°C was 7.06 + 1.76 mg
0, kg™ min™! vs. 8.80 + 1.42 mg O, kg™' min™"' for fish
acclimated and tested at 19°C.

No clear peak in AAS was observed with test tempera-
tures up to 23°C because the response of AAS of fish accli-
mated at 15°C to test temperature (Fig. 1C) was fitted with
the following non-significant (P = 0.99) relationship: AAS
(mg O, kg™ min™") = 7.11 + 0.002x. For fish acclimated at
15°C, the mean AAS was 5.79 = 0.99 mg O, kg™' min™"
when tested at 12°C and decreased to 5.57 + 0.57 mg
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0, kg™ min™" when tested at 23°C, which is a Q1o of 0.97
over an 11°C temperature range. As with the fish acclimated
at 15°C, no clear peak in AAS for fish acclimated to 19°C
was observed because the response of AAS to test tempera-
ture (Fig. 1C) was fitted with the following non-significant
(P = 0.72) relationship: AAS (mg O, kg™' min™") = 6.46 + 0.026x.
For fish acclimated at 19°C, the mean AAS was 7.35 + 0.76 mg
0, kg™" min~! when tested at 12°C and decreased to
7.18 + 1.30 mg O, kg™! min~! when tested at 23°C, which
is a Qo of 0.98. Thus, the absolute values for AAS and the
independence of test temperature were similar to those obtained
for fish acclimated to 15°C.

Factorial aerobic scope

The factorial aerobic scope of both acclimation groups
decreased as test temperatures increased (Fig. 1D). Test tem-
perature significantly affected FAS (d.f. = 14, F = 4.02,
P < 0.0001), but FAS was not significantly affected by accli-
mation temperature (d.f. = 1, F = 1.32, P = 0.25), and there
was no significant interaction (d.f. = 13, F = 1.44, P = 0.16).
Although FAS decreased with test temperatures independent
of acclimation temperature, the rate of decrease in FAS was
similar for the two groups, except at temperatures lower
than roughly 15°C (Fig. 1D). This is reflected in higher FAS
values for fish acclimated at 19°C at cooler test temperatures.
Mean FAS, however, for fish acclimated and tested at 15°C
was the same (3.8 + 0.75) as that measured for fish accli-
mated and tested at 19°C (3.6 + 0.41).

The response of FAS of fish acclimated at 15°C to test
temperature (Fig. 1D) was fitted (P < 0.001) with the follow-
ing relationship: FAS = 3.87 — 0.034 — 0.006x>. For fish
acclimated at 15°C, the mean FAS was 3.8 + 1.0 when tested
at 12°C and decreased to 2.1 + 0.1 when tested at 23°C.
The response of FAS of fish acclimated at 19°C to test tem-
perature (Fig. 1D) was fitted (P < 0.0001) with the following
relationship: FAS = 5.84 — 0.532 + 0.021x?. For fish accli-
mated at 19°C, FAS was 5.85 + 1.3 when tested at 12°C and
decreased to 2.5 + 0.2 when tested at 23°C. The relatively
high FAS values observed for fish acclimated at 19°C and
tested below 15°C were driven by their very low RMR
values. However, the differences in the loss of FAS between
acclimation groups disappeared as temperatures increased,
and suggests that the two acclimation groups were affected
in a similar manner by changes in test temperature above
15°C.

Discussion

The results from this experiment were intended to represent a
range of responses to environmentally relevant acclimation
temperatures (15 and 19°C). Likewise, the acute temperature
changes (from 12 to 26°C) encompass the cooler temperatures
experienced by juvenile Chinook salmon in upper tributary
rearing grounds (10-14°C; Sacramento River Temperature
Task Group, 2014) and warmer temperatures potentially
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experienced in the Sacramento-San Joaquin Delta (~25°C;
Interagency Ecological Program Environmental Monitoring
Program, 2015) as they migrate. While providing valuable new
information about the thermal performance of Chinook sal-
mon, caution is always needed when applying data from
hatchery fish tested in the laboratory to their wild counterparts,
although some evidence suggests that these physiological cap-
abilities can be similar for fish tested in the field and the labora-
tory (Lee et al., 2003a). Nevertheless, the capability of juvenile
Chinook salmon from both acclimation groups to perform
with acute warming up to 23°C was unexpected.

Indeed, juvenile Chinook salmon performed in a similar
manner in swimming tests and had similar estimated aer-
obic capacities at both acclimation temperatures (15 and
19°C), as well as over a range of test temperatures up to
23°C. Fish maintained AAS by matching the increase in
RMR up to 23°C with an equivalent increase in MMR.
Therefore, we conclude that AAS in this population of
juvenile Chinook salmon shows a large degree of thermal
independence at test temperatures extending above 20°C.
Thus, experiments examining acclimation temperatures
>19°C are certainly warranted for this stock of Chinook
salmon. Thermal insensitivity of AAS has been documented
previously in another Californian Oncorbynchus species;
hatchery Oncorbynchus mykiss aerobic scope was main-
tained between 16 and 25°C (Verhille et al., 2016), and
wild-caught O. mykiss tested on the Lower Tuolumne River
was similar (Verhille et al., 2015). Again, O. mykiss mortal-
ity was evident post-exercise only at 25°C. Thus, the possi-
bility that the Oncorbynchus genus located in the Central
Valley of California may generally lack a clear intermediate
peak of thermal performance needs to be explored, because it
contrasts with intermediate thermal optima and peak per-
formance in aerobic scope for more northerly sockeye salmon
(Oncorbynchus nerka; Eliason et al., 2011; 2013). Although
a peak or plateau in AAS is predicted by the OCLTT hypoth-
esis (Portner and Knust, 2007; Portner and Farrell, 2008),
this peak is so skewed to high temperatures that it is difficult
to measure, which is what Fry showed for some of the many
fish species that he studied (see Farrell, 2009).

Given the unexpected results of thermal insensitivity in
aerobic scope, it is important to examine the quality of the
data. The methods used in the present study provided an esti-
mate of true AAS by using RMR instead of SMR (see
Chabot et al., 2016). However, if the true AAS was underes-
timated, it was likely to be by no more than 10-15%
because we visually eliminated fish activity during the over-
night recovery and measurement periods. Also, we have no
reason to suspect that this error varied in a systematic fash-
ion across test temperatures. The MMR was almost always
estimated based on the performance in an incremental swim-
ming test, as prescribed by Fry (1971). Those tests that used
burst swimming to exhaustion to estimate MMR were lim-
ited in number and yielded data that could not be distin-
guished from the results for incremental swimming (these
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data are identified in the figures). Therefore, our observa-
tions lend limited support to the suggestion of Norin and
Clark (2016) that MMR can be measured using both
approaches. A comparison of literature values for absolute
values of AAS among juvenile salmonids is made in Table 2.
Even though such comparisons are potentially confounded
by the difference in fish body mass among the various stud-
ies, it is clear that the aerobic scope values obtained for
juvenile Chinook salmon are similar and even slightly higher
than some populations, especially juvenile O. mykiss (i.e.
Verhile et al., 2015). Thus, qualitatively the AAS data do not
seem suspect.

Despite this impressive aerobic capacity of juvenile
Chinook salmon, some fish above 23°C were willing to exer-
cise to a state from which they could not recover, a phenom-
enon first noted by Black (1957) when salmonids are
exhaustively swum at an excessive temperature. Thus, like
barramundi (Norin ef al., 2014), pink salmon (Oncorbynchus
gorbuscha; Clark et al., 2011) and common killifish (Fundulus
heteroclitus; Healy and Schulte, 2012), juvenile Chinook sal-
mon maintained maximal oxygen extraction from the water at
temperatures that are very close to their limits of thermal toler-
ance. Why salmonids show post-exhaustion mortality follow-
ing strenuous muscle activity at high temperature (Black,
1957; Parker and Black, 1959; Eliason et al., 2013) is unclear.
However, this mortality has been associated with an increase
in anaerobic effort (as measured by lactate accumulation in the
plasma; Wilkie et al., 1997; Jain and Farrell, 2003), an
increased ability or willingness to accumulate an oxygen debt
(Lee et al., 2003b), or cardiorespiratory collapse attributable
to limitations in scope for heart rate (Eliason et al., 2013).
Literature on critical thermal maximum (CTyy,y) and upper
incipient lethal temperature (Table 3) show that juvenile
Chinook salmon experience mortality when exposed to or
held at temperatures above 24°C. Given that CTy., data for
these fish range from 26.5 to 28.6°C (Mufoz et al., 2014;
Fangue, N., Baird, S., and Cocherell, D., unpublished),
exercise-induced mortality occurred below the CTmax, as
might be expected. Moreover, the present population has the
highest reported CTpx (28.6°C), which could indicate a local
thermal adaptation for this autumn-run population of
Chinook in California. Indeed, they are currently the most
abundant of the population segments located in the Central
Valley of California (National Marine Fisheries Service, 2009),
which is the southern-most portion of their native distribution.
Fish in the Oncorbynchus genus have shown the ability to
adapt thermally to local conditions, even when the tempera-
tures encountered are well above those in their native range
(i.e. O. mykiss in Western Australia; Molony ez al., 2004; Chen
et al., 2015), and local thermal adaptation in Chinook popula-
tions is possibly similar.

The lack of difference in performance between acclimation
groups was perhaps unsurprising, and may indicate the abil-
ity to maintain homeostasis through physiological plasticity.
Physiological plasticity in the form of thermal acclimation is
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Table 2: Comparison of laboratory-derived absolute aerobic scope across juvenile Oncorhynchus spp.

Abbreviations: AAS, absolute aerobic scope; BC, Bridge Creek; CVFR, Central Valley, CA autumn-run; LBR, Little Blitzen River; LTR, Lower Tuolumne River;
12M, 12 Mile; RC, Rock Creek; SR, Seymour River; TL, total length; Unk., unknown: fish were tested immediately after capture from the wild. *Values are expressed as

—0.882

milligrams of O, per kilogram per minute.

Table 3: Thermal tolerance of juvenile Chinook salmon

[Wild (W),
Hatchery (H)]

Acclimation Temperature

Thermal
measurement

Value (OC)

Values represent means + SEM. Abbreviations: BCBQR, British Columbia, Big Qualicum River; CTyay, critical thermal maximum; CVFR, Central Valley, CA autumn-run;
LT50, median lethal temperature; n.a., not available; UILT, upper incipient lethal temperature; WA, Dungeness, Washington.

well documented for Chinook salmon. In terms of acute ther-
mal responses, Chinook salmon increased heat-shock protein
90 expression in heart, muscle, brain and gill tissues after a 5
h exposure to 21.6°C, indicating an acute compensatory
mechanism (Palmisano et al., 2000). Furthermore, this ther-
mal tolerance of juvenile Chinook salmon is reflected to some
degree in their growth performance. Juvenile autumn-run

Chinook reared at fluctuating temperatures of 13-16, 17-20
or 21-24°C still survived and grew at temperatures up to
24°C, albeit at significantly reduced rates at 24°C (Marine
and Cech, 2004). The new finding that AAS and FAS for fish
acclimated at 19°C tested at their acclimation temperature
were similar to those values obtained for fish acclimated at
15°C tested at their acclimation temperature suggests that the
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optimal acclimation temperature range for this stock of juven-
ile Chinook salmon might lie between or even outside of these
two temperatures. The life-history strategy of Chinook sal-
mon exposes juveniles to both cooler riverine temperatures,
associated with rearing grounds located in the upper reaches
of the watershed, and warmer water temperatures in the bays
and estuaries through which they must swim as they migrate
to the ocean. Owing to the wide range of natural tempera-
tures experienced by juvenile Chinook salmon, both 15 and
19°C could be important temperatures for this species to
maintain physiological performance, leading to the observed
lack of difference in performance between these acclimation
groups. Although we note the tendency of AAS and MMR to
be lower for fish acclimated at 19 than at 15°C across the test
temperature range, further testing at acclimation temperatures
<15°C and >19°C may be needed to define the optimal accli-
mation temperature for AAS.

Quantifying physiological performance in response to envir-
onmental variables is crucial for implementing effective conser-
vation and management actions and for elucidating the
mechanistic links between the environment and larger-scale
processes, such as changes in population levels (reviewed by
Horodysky et al., 2015). Furthermore, these investigations can
help to guide future research efforts and inform management
targets. For example, the inter-individual variation observed in
MR measurements and AAS values in the present study and in
previous work (Millidine et al., 2009; Norin and Malte, 2012;
Metcalfe et al., 2016) warrants further investigation. This vari-
ation could be due to relaxed selective pressure associated with
hatchery populations, which would allow for the survival of
individuals with potentially low fitness (reviewed by
Reisenbichler and Rubin, 1999) and low physiological perform-
ance capabilities. A comparison of thermal performance with
wild populations would be necessary to determine whether the
observed variation is attributable to hatchery practices.
Conversely, the observed variation could be an adaptive trait of
this population of Chinook salmon and could indicate adaptive
potential. Variation in physiological performance among sal-
mon populations allows for increased probability of population
persistence in the face of environmental variability (i.e. the port-
folio effect; Hilborn ez al., 2003; Moore et al., 2010; Schindler
et al., 2010). This same concept may apply to within-
population variation as well. If environmental conditions shift
or change rapidly, variation in individual physiological capacity
indicates that some proportion of the population could survive
and reproduce in the new environment. Thus, the variation
observed in the present study may indicate that autumn-run
Chinook salmon have the ability to persist as climate change
occurs and that management actions may be effective even as
temperatures continue to rise. Likewise, inter-individual vari-
ation within a population allows for specific management tar-
gets to be set; a specific subset of the population could be
targeted for conservation and management if deemed appropri-
ate. Therefore, quantifying not only physiological performance
but also the variation in that performance is crucial for future
effective management of salmonids.
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Importantly, autumn-run Chinook salmon reside within
the Sacramento-San Joaquin watershed, a heavily modified
system with altered and managed flow regimes. For example,
the altered temperature regime in the Sacramento River is
the result of water diversions, impoundments, habitat modifi-
cation and structured water releases focused towards the
conservation of winter-run Chinook salmon, spring-run
Chinook salmon, California Central Valley steelhead and the
Southern Distinct Population Segment of green sturgeon
(Acipenser medirostris; National Marine Fisheries Service,
2009; Sacramento River Temperature Task Group, 2014). It
is possible, however, that the current artificially imposed
thermograph may be differentially beneficial to species of
conservation concern, and it has been hypothesized that
these species may have conflicting water temperature require-
ments. In order to set regulatory criteria that will adequately
improve thermal habitat for a larger suite of native fishes, a
thorough understanding of thermal physiology and aerobic
capacity is necessary for the specific populations of the
fishes in question. Studies of aerobic capacity can be used
in concert with studies of other temperature-mediated
impacts on populations to develop and evaluate regula-
tory criteria designed to protect native fishes. Notably,
recent work completed by Verhille ez al. (2015, 2016) has
challenged the use of a single thermal regulatory criterion
for a species across its entire range of habitats and popu-
lations, and argued for local thermal adaptation in aer-
obic capacity for a population of O. mykiss. Given the
immense effort that is exerted to manage the thermal
hydrograph in many heavily altered systems, it is crucial
that data on physiological capability are integrated more
effectively into the regulatory criteria driving management
actions, and we argue that more consideration should be
given to potential local adaption and variation between
populations.

In conclusion, it is important that aerobic scope data are
coupled with critically important temperature-mediated func-
tions, such as heart rate, growth or swimming performance
data, to gain a full understanding of how temperature affects
and limits the habitat of juvenile salmonids. Future studies
should include assessments of aerobic scope from different
populations of Chinook salmon to test for local adaptation
in time and/or space and to determine whether the inter-
individual variation observed in the present study is con-
served in wild populations of fish or attributable to the
hatchery origin of the fish tested here. Hopefully, our results
can be used to manage the early life-history stages of
Chinook salmon better and to further our knowledge of how
changing environmental conditions will affect native fish
populations.
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