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ABSTRACT

We have developed a software package called Osprey
for the calculation of optimal oligonucleotides for
DNA sequencing and the creation of microarrays
based on either PCR-products or directly spotted
oligomers. It incorporates a novel use of position-
specific scoring matrices, for the sensitive and
specific identification of secondary binding sites any-
where in the target sequence. Using accelerated hard-
ware is faster and more efficient than the traditional
pairwise alignments used in most oligo-design soft-
ware. Osprey consists of a module for target site
selection based on user input, novel utilities for deal-
ing with problematic sequences such as repeats, and
a common code base for the identification of optimal
oligonucleotides from the target list. Overall, these
improvements provide a program that, without
major increases in run time, reflects current DNA
thermodynamics models, improves specificity and re-
duces the user’s data preprocessing and parameter-
ization requirements. Using a TimeLogic™ hardware
accelerator,wereportup to50-fold reductionin search
time versus a linear search strategy. Target sites may
be derived from computer analysis of DNA sequence
assemblies in the case of sequencing efforts, or
genome or EST analysis in the case of microarray
development in both prokaryotes and eukaryotes.

INTRODUCTION

Oligonucleotides (oligos) have many applications in mole-
cular biology, and there are many programs that can be used
for their calculation. While it is still fairly common to design
oligo PCR-primers manually using the so-called Wallace
Rule: G/C =4°C, A/T =2°C, summed for melting temperature
(1); more accurate formulae exist that closely model the ther-
modynamics of nucleotide binding. The need to calculate large
numbers of primers for genomic sequencing and the growing
use of microarrays have led to the development of increasingly
sophisticated algorithms to improve the automation of oligo

design. These algorithms have been the subject of several
recent papers (2,3).

Non-target binding can cause sequencing reactions to be unu-
sable, and give false mRNA expression level readings in micro-
arrays. Eliminating this is diversely implemented. Oligodb (4)
filters out low-complexity regions using dustn (http://
www.ncbi.nlm.nih.gov/IEB/ToolBox/) without checking if
the sequences are repeated. PROBEWIZ (5) explicitly disables
filtering, while other system manuals do not document this
aspect of the computation. Most programs use a simple
BLAST (6) search to filter secondary binding based on percent
mismatch, but this method has disadvantages; small sequence
stretches with evenly spaced mismatches may not be found due
to the heuristic nature of BLAST. Even if these methods could
find all matches, the Sarani documentation (http://www.strand-
genomics.com) shows that the duplex melting temperature of
two 20 base targets against the same oligo sequence can differ by
20°C when both targets have only two mismatches. Also, high
GC regions bind with much higher energy than low GC regions
of similar length. The number of pairwise matches is therefore
not necessarily a good measure of melting thermodynamics.
OligoArray (7) compensates for mismatches with iterative
rounds of BLAST searches with decreasing mismatch tolerance.
Sarani compensates with a specialized BLAST-like search
where the extension of hashed high-scoring pairs is based on
the thermodynamic criterion of the alignment.

SantalLucia’s ‘unified’ free energy parameters model (8)
was derived from the unification of previously described near-
est neighbor (NN) methods, and is generally considered the
best model yet of DNA binding thermodynamics for melting
temperature and duplex stability. The NN model assumes that
summing the interaction energy of adjacent nucleic acids on a
strand is the best predictor of the whole duplex’s stability.
SantaLucia’s formula is used by the high-throughput commer-
cial packages Sarani and Array Designer 2 (http://www.
premierbiosoft.com), as well as by the interactive GeneFisher
(9). Other programs are generally based on older formulae
(10,11), most often because they incorporate Primer3 (12)
as a software component. Primer3 is popular because its pre-
dictions have proven very useful in practice. But Santal.ucia
observes that the melting temperature [generally considered
the point at which half the duplexes are annealed (13)] in the
Breslauer model, on which Primer3 is based, has a standard
deviation of 6°C for the unified model’s reference oligo data
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set. This can cause complications if a narrow melting
temperature range is desired for a large data set such as a
microarray: a 10°C window grows to 22°C.

SantaLucia’s HyTher'™ Web server (http://ozone2.chem.
wayne. edu) includes other data such as those for internal mis-
matches (14-18) and dangling end mismatches (19). Dangling
ends, which almost always occur unless the oligo and target have
the same length, can contribute more to double-strand stability
than an A-T neighbor pairing. None of the widely available
primer design applications describe using these extra data.

Osprey was built to calculate sequencing primers for the
Sulfolobus solfataricus P2 genome (20). To save labor and
primer costs, we required software that took all the standard
design parameters into account, and designed a minimal set
of primers directly from assembly data with little human
intervention. Later projects required its adaptation to design
primers for PCR-based microarrays (21) and directly spotted
microarrays (70mer oligos). We describe here oligo selection
in Osprey, focusing on duplex formation efficiency and the
commonalities of the computation among different oligo
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design tasks. We highlight automated techniques that provide
higher quality oligos with less human intervention, and we
introduce the novel use of position-specific scoring matrices
(PSSMs) to encode the free energy model, improving the
specificity and sensitivity of oligo secondary binding searches.

METHODS
Osprey implementation

As illustrated in Figure 1, Osprey has two main stages: (i) a set
of all possible oligos is created based on the user-selected
search mode, target sequence range and oligo size; and (ii)
oligo candidates pass through a series of fitness exclusion tests.
Osprey is designed to parallelize processes wherever feasible
to facilitate large-scale oligo selection. We will describe
each fitness module: melting temperature, dimer formation,
hairpin formation and secondary binding. A configuration
file contains biophysical parameters for these tests, including
temperature and energy cutoff values, DNA and salt
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Figure 1. Workflow diagram of oligo selection in Osprey. Sequences, assembly information and default parameters are read from disk. Many parameters and modes
can be overridden on the command line. Note that the probe selection part of the processing is common to all oligo design modes. Also, the probe selection test cascade
can be run concurrently for many sites.
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concentrations, and sequencing performance expectations.
Command line arguments specify the files containing the
sequence, assembly information and gene locations. Users
should override the provided default values using the com-
mand line or Web interface to match the experimental condi-
tions and availability of PSSM search accelerators discussed
later in this text.

Selection of the oligonucleotide location

Osprey has varying search strategies for four different types of
oligos: (i) primers for DNA sequencing that can be used to link
contigs (linking primers), (ii) primers for DNA sequencing
that can be used for the disambiguation or to double-strand
DNA sequence assemblies (polishing primers), (iii) primers
for PCR, including those used for microarrays and (iv) oligos
for the direct spotting of microarrays (e.g. glass slides with
70mer oligos). All modes require users to provide information
about the biochemical environment via a configuration file in
order to properly use the thermodynamic model.

DNA sequencing primers. Osprey can be controlled using a
contig information file from the Staden sequence assembly
package (22). Data generated using the ‘Show relationships’
option in gap4 is saved to disk as plain text, to which user can
add simple control information. The program calculates
default primers only for those contiguous sequences (contigs)
that are not marked TGNORE on the left-hand side of the line
denoting contig neighbors. In walking mode, NO 5PRIME
on that line location will cause the 5" primer not to be calcu-
lated. Other valid directives are NO 3PRIME, NTH
3PRIME and NTH 5PRIME, where N chooses the sec-
ond, third, etc. best 5’ end extension primer (e.g. if the first one
that Osprey suggested failed in the lab). The sequence file
itself can be in Staden’s ‘Strand coverage’ format or in
plain FastA format (if an assembly engine other than gap4
was used). When in the sequence polishing (disambiguation
and quality control) mode, regions with ambiguities and sin-
gle-strand coverage are broken down into per-strand problem
spot lists. The candidate primers are checked downstream to
upstream with the expectation that early successful candidates
may allow a single sequencing reaction to also resolve other
problem locations slightly downstream with good quality
sequence (Figure 2). Those downstream problems, assumed
to be resolved by the sequencing reaction, are removed from
the problem list. Single-strandedness problems on both strands
are checked. Because the strand of sequencing used for dis-
ambiguation is not usually essential, the remaining ambigu-
ities are resolved last. If a plain sequence file is provided
instead of a Staden assembly file, only ambiguities can be
resolved.
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In the linking mode, assembly information can be marked
NO 3PRIME or NO 3PRIME to exclude the ends of some
contigs. For example, the sp6 or t7 ends of cosmids should not
be included in the list of walking candidates, as the sequence
generated would only contain vector. Walking mode also
requires a minimum assembly overlap length parameter as
an anchor to ensure that the resulting sequence read starts
within the contig on which it was calculated. The candidate
range for primers is determined by the following formulae,
using the variable definitions from Figure 2, plus O = required
assembly overlap bases (walking mode only):

Primer rangeend=7 - U — O — L
Primer range start = range end — R + M

Without the M parameter, the best walking primer may
result in only five bases beyond the already existing sequence!
If no candidate meets the M requirement, the user can relax
parameters such as secondary binding.

Microarrays. PCR-based methods involve aqueous medium
duplex formation of two DNA strands similar to the application
of sequencing primers. The priming of the template genomic
sequence for gene PCR can be optimized for maximum effi-
ciency and specificity, but there is no control over the binding
properties of the PCR-product with cDNAs in the experiment.
Genes with high DNA identity (e.g. paralogs), may bind well to
each other’s PCR-product even though their primed ends are
unique, therefore redundancy filtration of the targets prior to
primer design is suggested. This issue does not exist for spotted
oligo probes because secondary binding of the oligo to the orga-
nism’s whole transcript set is checked. However, both micro-
array types may suffer from binding problems due to secondary
structures in the probe, which may hide the bases that are com-
plementary to the target oligo.

PCR-based arrays

For PCR-based cDNA microarrays (23), Osprey expects a tab-
delimited file with eachrow containing a gene label, and location
of the 5" and 3’ ends of genes in the input sequence. We have
developed a Web interface for generating this file, based on the
genome analysis from the Web-based MAGPIE annotation
interface (24). This information can also be imported from
GenBank records and other data sources compatible with the
popular Readseq sequence reformatting utility embedded in
Osprey. The gene priming sites undergo the same primer selec-
tion process as sequencing primers, but the targetrange formulae
described above are simplified to identify the primers closest to
the 5’ and 3’ ends of the coding sequence. The size of the gene
product can also be given amaximum value (which we will refer
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Figure 2. Range of candidate sequencing primers for elucidation including position 7'1 (e.g. an assembly ambiguity to resolve), with user-specified parameters.
Candidates are checked from 3’ to 5’ within the range to minimize the number of primers required. An early candidate could also resolve T2 in the same reaction.
U = number of unreadable bases, L = primer length, R = expected sequence read length, M = minimum number of bases to elucidate after 7'1.
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to as G) to ensure that the length of the selected PCR amplifica-
tion region is within the viable elongation range of the PCR
(typically 1500 bases). In the case of long genes, the oligo
selection process keeps the 3’ anchor, and chooses 5’ sites within
Gbasesofthat. The 3’ selection bias is based on the tendency of 3’
sequencetobe over-represented incDNAswhenusing 3’ mRNA
Oligo(dT) priming in the probe amplification process for eukar-
yotic microarrays.

Arrays based on directly spotted oligonucleotides

Probe design for directly spotted oligo microarrays involves a
different set of restrictions on the location of the oligo within
the gene. For prokaryotic microarrays, we propose that in
order to maximize detection of reverse transcription of sample
mRNA, the bias for probe selection should be towards the 5’
end of the gene if candidate probe sites are equivalent by all
other design parameters. For prokaryotes, typically a random
hexamer nucleotide mixture is used to prime reverse transcrip-
tion to cDNAs from the mRNA. This may generate a slight
bias towards cDNAs with 5" sequence. We assume that the
random hexamers will prime reverse transcription (i.e. only
create cDNA for mRNA sequence upstream of the priming
site, towards the gene’s 5’ end) at random locations on the
mRNA. Hexamer analysis from S.solfataricus P2 shows no
compositional bias change between 5 and 3’ ends of genes,
lending support to the assumption that the cDNA transcription
starts would be random. An oligo matching the very 3’ end of
the gene will have less cDNA to bind to than if it was more
upstream, but the extent of the transcriptional bias will depend
on many factors such as the PCR conditions and the length of
the gene. Because the amount of this bias is uncertain, Osprey
considers it only after all other, established constraints. For
eukaryotic microarrays, a 3’ hybridization site bias is main-
tained, since a poly(T) is used to prime reverse transcription
starting at the gene’s 3’ mRNA poly(A) tail. Checks for sec-
ondary binding are restricted only to include transcribed
sequences in the genome.

Other thermodynamic caveats exist for spotted oligo micro-
arrays: Forman et al. (25) describe several discrepancies
between standard models of aqueous thermodynamics and
observed duplex formation for photolithographed oligos.
Photolithographed probe fabrication is patented, and not
within the scope of Osprey’s usage, but all spotted oligos are
likely subject to many of the same effects. No software for
calculating of directly spotted oligos, such as PRIMEGENS
(26), is documented to account for non-aqueous conditions.
There is evidence for an approximately linear relationship
between aqueous and fixed probe interaction thermodynamics,
described by the authors of ProbeSelect (27). Formulae for
fixed probes are not yet established, therefore we use the
aqueous model as a guide.

Selection of optimal oligonucleotides

Osprey incorporates a series of fitness tests, in the following
order: melting temperature, dimer potential, hairpin potential
and secondary (non-specific) binding. Ordered from compu-
tationally simple to computationally expensive, the tests filter
out unsuitable candidates as quickly as possible. Osprey dis-
tinguishes itself from existing programs in the way constraints
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are managed, computation is parallelized, problem sequences
are dealt with, and secondary matches are found.

Thermodynamics for DNA binding and melting. Osprey uses
dangling mismatch thermodynamics and SantaLucia’s NN
model. The number of base mismatches is not necessarily a
reliable indicator of duplex stability, but the correlation
between the free energy of the structure (AG, a measure of
duplex stability) and the respective melting temperature is
certain. This well-known correlation is attributable to the
fact that both the melting temperature and the free energy
are calculated using the same entropy and enthalpy values.
Free energy is enthalpy minus the product of entropy and the
reaction temperature (the classic Gibbs formula). The melting
temperature formula used in Osprey was taken from (28),

Tvm = AH /[AS” + RIn(Cr/4)],

where AH® is the sum of empirically derived enthalpy values for
NN in the oligo, AS® is the sum of empirically derived entropy
values for NNs in the oligo, R is the molar gas constant and Ct
is the concentration of the oligo. We allow the users to set
the minimum and the maximum melting temperatures to specity
an acceptable range for their particular lab applications.

Undesirable annealing and parameter relaxation. In order to
maximize the target binding efficiency, the binding of the
oligo to itself must be minimized. Secondary binding against
sequence other than the targeted site will also confound results
by either mispriming in the case of primers, or promiscuously
binding in the case of microarray spotted oligos.

Osprey’s main program provides a mechanism to start the
oligo design with tight constraints, and slowly loosen them if
no appropriate oligos are found. Two variables that can be
adjusted automatically are melting temperature and oligo
length. A spotted oligo microarray design may start with a
temperature range of 78 £ 5°C, and an oligo length range of
70 £ 5 bases. All possible oligos with 70 bases and melting at
exactly 78°C will be found, and checked for fitness. Targets
without any candidates passing the tests will be checked for
70mers with melting temperatures of exactly 77 or 79°C. This
process continues until all 70mers with 73 or 83°C are
checked, followed by the same checks for 71mers and
69mers and so forth. Osprey will print the best-yet passing
candidate when the iteration is finished. When all iterations are
finished, the best of the suboptimal oligos will be shown for
target sequences that did not have any satisfactory oligo within
the required length and temperature range.

If no optimal oligo length is given, Osprey determines one
from the input sequences, based on the desired temperature.
Two main uses of this are (i) adapting to genes with unusual
base composition compared to the bulk of the query set and (ii)
when the user is unsure of a statistically suitable oligo length
for the query set. The adaptability is constrained in order to
remain relevant for the lab application: user-specified bounds
on the oligo length are still respected in this adaptable optimum
mode. Average NN values for entropy and enthalpy are
calculated by weighting each NN pair’s energies by its relative
frequency in the input. The energy averages are multiplied by
L in the melting temperature formula previously discussed,
and we solve for the only unknown, L.-L + 1 (since there is one
more base than the number of neighbor pairs) is the average



PAGE 5 oF 9

length of oligos with the specified melting temperature. This
determination is recalculated after every candidate selection
iteration. This speeds up the overall search: length values
unlikely to have many candidates with the right melting tem-
perature are skipped over until more statistically probable
lengths are checked.

To facilitate the design of oligos for problematic sequences,
the ‘rejects’ output from one run of Osprey can directly be
used as the input to the next. Users can easily rerun the rejected
targets with less stringent parameters (e.g. shorter oligo length,
increased tolerance for secondary or hairpin binding) iterat-
ively until the reject list is empty, or the remaining sequences
are considered impossible to accurately target within the
parameters of the experiment.

Dimer formation. The primer is compared to itself in all possible
overlap lengths to check that two copies of the primer will not
bind to each other to form a duplex. All possible matches, includ-
ing those with small bulges, are checked. To be conservative,
where the bases are not complementary, the AS; and AH; values
are set to zero. The maximum value in kcal/mol is user-
determined; an upper bound of — 10 kcal/mol has proven effective
for sequencing primers, —13 kcal/mol for cDNA microarrays.
By contrast, dimer energy is typically above —25 kcal/mol for
random 22mers with their complementary DNA.

Hairpin formation. The ends of a single primer may bind to
each other, forming a hairpin structure. Osprey calculates all
possible loop and stem lengths where complementation
occurs, as well as interior loops and bulges, ignoring sterically
impossible configurations such as one or two base hairpin
loops (29). Once again, an upper limit of —10 kcal/mol free
energy has proven effective in Osprey-generated sequencing
primers, —13 kcal/mol for cDNA microarrays.

A program from the popular M-fold (30) package, quikfold,
can be used to confirm the absence of significant secondary
structure. Osprey is configured to use this check by default,
similarto other oligo design programsincluding OligoArray (7).

Secondary binding. Formerly, Osprey employed an exhaustive
linear software search of both the target and the secondary
sequence with the thermodynamic criteria. This method was
used for primers for the Sulfolobus sequencing project and the
Candida microarray. While more accurate than BLAST-style
pairwise identity searches, the method was slow for large data
sets. Using the megablast program from the BLAST package,
all repetitive elements larger than a user-defined threshold are
now very quickly (<1 min for 3800 Sulfolobus genes on one
CPU on a Sunfire 6800) identified in the query sequences. For
whole genome analysis, the query file and the database are the
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same. If the user is iteratively searching for oligos using the
‘rejects’ from a previous run, the database remains the whole
genome, while the query is just the sequences that do not yet
have a suitable candidate. In either case, Osprey filters the
query down to unique sequence, plus one copy of each repe-
titive section. This setup allows the secondary binding checks
to be performed without interference from multi-copy ele-
ments. No user intervention or preprocessing of the data set
is required, facilitating the use of Osprey with redundant data
derived from GenBank and other sources. Figure 3 illustrates
the repetitive sections’ breakdown.

A novel computational method for the identification of
secondary binding. Although the linear sequence search
mode is still available in Osprey for users who cannot
access accelerated hardware [both the TimeLogic™
Decypher®  (http://www.timelogic.com) and Paracel™
GeneMatcher™ (http://www.paracel.com/) accelerators pro-
vide order-of-magnitude search time improvement for
PSSMs], the current version of Osprey introduces a novel
method of calculating and accelerating secondary binding
checks using PSSMs. The models are compatible with the
method established by Gribskov ef al. (31). The NN modeling
of thermodynamics requires a search method that scores a
base-pairing according to the surrounding bases, to account
for the local helix interaction effects. A single pairwise match
or mismatch, when combined with information about the base
immediately upstream, can have one of 2 x 47, or 32 energy
states. Pairwise scoring as found in the Smith—Waterman algo-
rithm (32) and its heuristic approximations only allows one of
four scores for a match or mismatch at any particular position.
An adenosine match gets the same score, regardless of the
neighboring bases; therefore such scoring is unsuitable for
encoding the many neighbor states required.

Osprey uses Gribskov profiles rather than Hidden Markov
Models (33) (HMMs), because the log-odds scores for a posi-
tion in the HMM must add up to one, whereas the profile
search mechanism can work with arbitrary scores. Appropri-
ately setting the position-specific scores allows the raw profile
score to encode the significant caloric values of the binding.
The properties we can encode are listed as follows.

(1) A match score is the molar caloric free energy contribu-
tion of the matched base and its 5’ neighbor, and a
portion of the unified model’s length-dependent salt
concentration penalty.

(i) a mismatch score includes the free energy contribution of
(a) the matched 5’ neighbor and mismatched base (b) the
matched 5’ neighbor and mismatched base on the opposite

Osprey- — Gene.3
generated Gene.2
fii?ered Gene_ 1
gueries —— Gene.unig
Original — Gene D copy
repetitive e Gene C copy
query | Gene B copy
sequences NI e

Figure 3. Every segment of the gene that is either unique (noted by the .uniq suffix) or repeated by a distinct subset of the gene set is isolated for oligo design. To
qualify for analysis, sections must be at least as long as the oligo length minus the maximum allowable repeat (default 20); hence some overlapping regions are not

represented in the final oligos.
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Figure 4. Profile scoring used to encode caloric values from the NN thermodynamic model at 37°C with 1 M NaCl. The base and its 5 NN determine the score for a
match; C scores 1300 in positions 1, 10 and 17 of the top sequence (the oligo) because T preceeds it and it scores 1830 in position 18, because C proceeds it. The score
position 8 is the sum of the two 53’ mismatch NN values, minus the NN value overcounted in the following match. The AG/TA mismatch data is inverted to
demonstrate that the actual 3’5’ mismatch is equivalent to this standard 5'-3’ representation. The profile score summation, minus the standard initiation penalty of 1.0

kcal/mol is the duplex’s free energy summation, 20.91 kcal/mol.

strand (c) discount for the NN contribution in the next
position.

(iii)) The gap insertion penalty reflects the NN free energy
penalty for single base bulges in a duplex.

(iv) The start of the sequence encodes the unified model’s
self-complementarity penalties if applicable. Mismatches
in this position also encode mismatched end
thermodynamics.

(v) One extra state at each end of the profile sequence
encodes dangling end thermodynamics in the case that
the oligo matches to either terminus.

Figure 4 illustrates the scoring of a non-complementary
duplex with all of the mentioned parameters. The per-position
scores of the profile are added up as NN free energy contribu-
tions would be in traditional programs, except that the unified
model’s binding initiation penalty (~1 kcal/mol) must be sub-
tracted. The NN thermodynamics of single base bulges are
taken from Ref. (34). A ‘reward’, equivalent to 5 kcal/mol, is
given to the match of the 5" end of the oligo (5 kcal/mol is
larger than any NN mismatch score that would unanchor the 5’
match). This reward is required to ensure profile matches start
at the 5’ end to properly include all the thermodynamic scores
of the PSSM. The reward is then discounted from the final raw
PSSM score to get the real thermodynamic score.

This representation reflects the thermodynamics of
oligo duplexes, and compensates for dangling ends, as well
as interspersed mismatches and bulges. Such a search is advan-
tageous over a BLAST-type search because, unlike BLAST,
the match, mismatch and gap scores are context sensitive
(following the NN model). It also overcomes inherent limita-
tions of the BLAST heuristic when dealing with short oligo
sequences, such as missing DNA matches with gaps (duplex
bulges), and interspersed mismatches. Due to these limita-
tions, oligos where no apparent secondary binding was iden-
tified with BLAST may in fact show some using profiles
(increased sensitivity). Also, candidates rejected due to a per-
centage similarity cutoff exceeded in BLAST may in fact not
bind strongly to those sites when the NN thermodynamics are
calculated (improved specificity). To provide a more intuitive
measure of secondary binding to the user, the melting tem-
perature of the best secondary match is calculated and dis-
played in the output.

Data parallelization. After repeats filtering and initial para-
meter setting, the calculation of a suitable microarray oligo for
a gene is data-independent of the calculation for any other
gene. This allows Osprey to simply split input gene lists into
chunks that will be run in separate, concurrent processes.
Surprisingly, none of the freely available software packages
investigated while developing Osprey provide such paralleliza-
tion explicitly. Computation is usually CPU-limited, therefore
increasing the number of threads is beneficial up to the number
of CPUs available. Melting temperature, dimer, hairpin
and secondary binding checks are performed sequentially
for each concurrent data chunk. When the Decypher® or
GeneMatcher™ systems are used, the quikfold and PSSM
searches are performed in parallel within the data chunk
since the hardware PSSM searches put no CPU load on the
system running Osprey.

RESULTS

A data set used to check free energy and melting temperature
correlation in HyTher™ was also run against profiles to ensure
that Osprey’s new method results are in agreement with the
best thermodynamic models. Free energy is measured with the
profile rather than using melting temperature. Melting tem-
perature calculation would require tracking two sets of scores,
enthalpy and entropy, whereas profiles track one.

As expected, the results from the HyTherTM searches of
matched and random oligos (Figure 5) indicate a strong
correlation between melting temperature and AG, making
AG a suitable candidate for selection and filtering of oligo
specificity under experimental hybridization conditions.

Results from the described profile constructs tested using
the TimeLogic™ Decypher®™ system were found to strongly
agree with HyTher™ predictions, as seen in Figure 6. This
confirms that the new thermodynamics methods in Osprey
reproduce best-of-breed results. The PSSM model is applied
to secondary binding to improve sensitivity and selectivity in
the sequence similarity search space.

A spotted oligo probe array for S.solfataricus P2 was
designed using the original linear search, then again using
the PSSM searches with otherwise identical parameters, to
compare the relative speed of the two approaches. The list
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Figure 5. A dot plot of HyTher predicted free energy versus predicted melting temperature in 0.1 M NaCl for random exact matching oligos of lengths 10, 15, 20, 25

and 50 (forming clear groups from lower right to upper left).

0
y = 1.0029x + 0.055
R’ = 0.9996
-20
)
i)
3
o 40
e
a
3
o
-60
-80 .
-80 -60 -40 -20 0

Hyther predicted complementary duplex delta(G)

Figure 6. Prediction correlation between HyTher server (x) and Osprey (y)
results for AG in kcal/mol using the 250 oligomers from Figure 5. R* = 0.9996,
with linear regression y = 1.0029x + 0.055, indicating Osprey’s close
conformity to the reference Unified Model predictions.

of gene sequences was taken from the MAGPIE analysis for
this genome. All three secondary search modes (namely
Decypher™, GeneMatcher™ and internal linear search)
were tested with otherwise identical search options.
Decypher® and GeneMatcher™ modes take advantage of
the parallel processing ability of these hardware accelerators
by submitting not just a single candidate, but candidates for
multiple sites of interest at once (Figure 1). The designated
ideal oligo length was 70 bases, with a hybridization tempera-
ture target of 78 = 5°C in 0.1 M NaCl for the 3775 (determined
by MAGPIE) target genes. This temperature and salt concen-
tration were chosen to match the other microarrays used in our
facility, manufactured by Qiagen (http://oligos.qiagen.com/).

Using the software linear search for secondary binding (58 h to
complete) as a baseline of 1, speedup was approximately 8-fold
for GeneMatcher2™, and 50-fold for Decypher®™. Many fac-
tors can affect the potential speedup, including but not limited
to the number of searches submitted concurrently to the hard-
ware systems, and the specific hardware/software/firmware
configuration. Our facility has a 4-board Decyqphe@ system
running on a SunM v880, and a GeneMatcher2 M Wwith 28000
ASIC CPUs, both maximal configurations.

The 500 primers (walking and polishing) designed for the
S.solfataricus genome project using Osprey had a 15% failure
rate. The presence of unknown repetitive sequences while
walking on clones, and hidden errors in the sequence
(compressions or low phred values), were a major cause of
primer miscalculation. Tweaking the expected read length and
maximum undesired free energy binding constraints mini-
mized the number of primers required. Osprey is now also
in use in the sequencing of the Aeromonas salmonicida
genome, which has a 65% G + C content, as opposed to
Sulfolobus’s 35%. For clones with extension viability (i.e.
any designed primers extend at all), Osprey primers have
had an 89% success rate.

Through the use of the MAGPIE Web interface, the cDNA
microarray for the human pathogen Candida albicans was
designed (21), with initial successful expression profiles con-
firmed for 85% of the primer products spotted. We would
expect this success rate to be even higher when using the
updated thermodynamics, and a completed genome assembly.
Sequence data was obtained from the Stanford Genome
Technology  Center  (http://www-sequence.stanford.edu/
group/candida).

DISCUSSION

Osprey attempts to give researchers a single program for a
wide range of common oligo design tasks using all the stand-
ard exclusion filters. It also attempts to improve the rate of
primer success with a novel method for specificity checking
that is more sensitive and selective than pairwise alignment
approaches. It automates the process of parameter relaxation
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as much as possible, and deals with repetitive sequence
constructively.

Kampke et al. (35) suggest efficient primer design algo-
rithms using dynamic programming. The authors concluded
that ‘the full potential of mathematical calculation tools for
this type of calculation has yet to be realized’. In this vein, we
implemented the novel use of PSSMs to check for non-specific
binding. PSSMs are a well-established mathematical tool in
profiling biological sequences (33), and can be used to encode
the thermodynamic profile of a sequence. Giving Osprey
this option for checking secondary binding has clear advan-
tages when one can harness the power of ultra-fast hardware-
accelerated PSSM searches, such as those on the DeCypher®
and GeneMatcher™ bioinformatics accelerators. As shown in
the Sulfolobus microarray design, use of dedicated hardware
components makes it practical, at least at the free energy level,
to solve the ’intractable problem’ (27) of simulating whole-
genome thermodynamic interaction, rather than resorting to
heuristics.

Looking forward from other groups’ recent research and
new Osprey methods, the use of dynamic computational meth-
ods clearly improves the efficiency of large-scale primer
design processes. An approach which takes advantage of,
rather than excludes, repeats (36) could be combined with
the sensitivity and specificity of PSSMs to improve the multi-
ple use of primers for the amplification of cDNAs. In a related
application of sensitive secondary binding checks, Osprey
could be directed to maximize secondary binding with a
specific set of sequences, in order to create optimal oligos
for microarrays to be used for multiple, related species.
This could prove to be advantageous over the probabilistic
methods introduced by OligoWiz (37).

New models of electrostatic effects on such microarrays
(38) may lead to new thermodynamic parameters that improve
accuracy based on linker molecule and substrate properties. If
the NN parameters for such duplexes are well characterized
in the future, Osprey’s methods would be amenable to
calculating these as well.

AVAILABILITY

Osprey is written as a set of C language code files, compiled
into an executable program. The package does not rely on
system-specific libraries, thus it should compile on most oper-
ating systems supporting C language compilers and Perl 5. The
Web interface is a Perl wrapper around the command-line
program. A Web version with hardware-accelerated searches
is accessible at http://osprey.ucalgary.ca. Academic users can
obtain the Osprey code base on an ‘as is’ basis by request to the
corresponding author.
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