Skip to main content
. 2016 May 24;43(1):133–141. doi: 10.1093/schbul/sbw067

Table 2.

Fit Statistics of the CFA and Bifactor Models in First Half of Sample

Factors Model χ2 df CFI TLI RMSEA WRMR
1 unitary 2672.858* 209 0.931 0.924 0.026 3.751
2 correlated 2537.522* 208 0.935 0.928 0.025 3.646
uncorrelated 14778.662* 209 0.592 0.549 0.063 10.530
bifactor orthogonal 790.076* 187 0.983 0.979 0.014 1.785
bifactor oblique 535.156* 186 0.990 0.988 0.010 1.345
3 correlated 2538.428* 206 0.935 0.927 0.026 3.644
uncorrelated 16091.871* 209 0.556 0.509 0.066 11.284
bifactor orthogonal 796.691* 187 0.983 0.979 0.014 1.825
bifactor oblique 520.216* 184 0.991 0.988 0.010 1.326
second-order 2538.431* 206 0.935 0.927 0.026 3.644
4 correlated 2175.656* 203 0.945 0.937 0.024 3.285
uncorrelated 17243.569* 209 0.523 0.473 0.069 12.116
bifactor orthogonal 688.078* 187 0.986 0.983 0.012 1.697
bifactor oblique 358.122* 181 0.995 0.994 0.008 1.053
second-order 2142.621* 205 0.946 0.939 0.023 3.294
5 correlated 1715.270* 199 0.958 0.951 0.021 2.868
uncorrelated 23397.312* 209 0.351 0.283 0.080 14.479
bifactor orthogonal 1847.421* 187 0.954 0.943 0.023 2.996
bifactor oblique 342.373* 177 0.995 0.994 0.007 1.024
second-order 2018.649* 204 0.949 0.942 0.023 3.194

Note: N = 17 327. CFA, confirmatory factor analysis; χ2, Chi-Square Goodness of Fit Statistic; df, degrees of freedom; CFI, Comparative Fit Index; TLI, Tucker Lewis Index; RMSEA, Root-Mean-Square Error of Approximation; WRMR, Weighted Root Mean Square Residual. Bifactor orthogonal = correlations between specific factors fixed to zero. Bifactor oblique = correlations between specific factors freely estimated.

*Statistical significance (P < .01).