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Weighted analysis of composite endpoints
with simultaneous inference for flexible
weight constraints
Anh Nguyen Duca and Marcel Wolbersa,b*†

Composite endpoints are widely used as primary endpoints of randomized controlled trials across clinical dis-
ciplines. A common critique of the conventional analysis of composite endpoints is that all disease events are
weighted equally, whereas their clinical relevance may differ substantially. We address this by introducing a
framework for the weighted analysis of composite endpoints and interpretable test statistics, which are applicable
to both binary and time-to-event data. To cope with the difficulty of selecting an exact set of weights, we propose a
method for constructing simultaneous confidence intervals and tests that asymptotically preserve the family-wise
type I error in the strong sense across families of weights satisfying flexible inequality or order constraints based
on the theory of �̄�2-distributions. We show that the method achieves the nominal simultaneous coverage rate with
substantial efficiency gains over Scheffé’s procedure in a simulation study and apply it to trials in cardiovascular
disease and enteric fever. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

Keywords: composite endpoint; chi-bar-square distribution; conic constraints; multiplicity adjustment; simul-
taneous confidence intervals; weighted analyses

1. Introduction

Composite endpoints combine the occurrence of multiple distinct disease events (also denoted as ‘com-
ponent outcomes’ or ‘components’) to a single outcome measure and have been widely used as primary
endpoints in randomized controlled clinical trials (RCTs) across clinical disciplines [1–3]. Commonly,
composite endpoints are analyzed as binary outcomes, that is, whether at least one of the components
occurred during follow-up or not, or as survival outcomes, that is, as the time to the first component out-
come, and standard statistical tests are used for the comparison between treatment groups. The anticipated
power gains from using a combined endpoint with a higher event rate compared with its components
have been the main reason for their increasing popularity. However, composite endpoints have also been
criticized for pooling components of varying clinical importance and for being driven by clinically less
important component outcomes, which are observed more frequently and earlier [4, 5].

As a remedy, several authors stressed the importance of weighting the components to improve the
clinical relevance and interpretation of composite endpoint analyses (e.g., [5, 6]). Several approaches to
the weighted analysis of composite endpoints have been proposed, but the resulting test statistics are
somewhat difficult to interpret clinically [7–9]. Moreover, despite attempts to quantify weights based on
methods such as clinician-investigator Delphi panels [10], discrete choice experiments among patients
[11], or disability-adjusted life years (DALY) lost [6], the choice of a single weight vector which is
acceptable to all stakeholders is often difficult [4].

To circumvent these issues, we propose an alternative weighted test statistic with a straightforward
clinical interpretation. As in other approaches, weights can be assigned to component outcomes, but we
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also allow assigning weights to more complex event types such as combinations or sequences of com-
ponent outcomes as detailed in Section 2.2. While choosing a single quantitative weight vector might
be problematic in many settings, weights should be non-negative, and it is frequently possible to fur-
ther rank components according to their relative importance. To exploit this, we introduce multiplicity
adjustments for the proposed test statistic, which allow for simultaneous inference across a flexible set
of weight vectors.

The remainder of the paper is structured as follows: Section 2 introduces a general framework for the
weighted analysis of composite endpoint considering both binary and time-to-event endpoints. Section 3
proposes a strategy for simultaneous inference across multiple weighting schemes. A simulation study,
which investigates the finite-sample performance of the proposed multiplicity adjustment, is given in
Section 4, followed by applications (Section 5) and concluding remarks (Section 6).

2. A framework for weighted analyses of binary and time–to–event
composite endpoints

2.1. Notation and proposed test statistic

Assume that we want to compare two independent groups A and B in an RCT and that we are interested
in the occurrence of K different clinical event types k = 1,… ,K over time with an associated predefined
weights vector w = (w1,… ,wK)T ∈ R

K . In the context of composite endpoints, where all components
are harmful, it is usually sensible to consider only non-negative weights w ⩾ 0. We first assume that
all patients are followed-up for the same predefined follow-up period (0, 𝜏] and propose the following
weighted test statistic:

T̂ (w, 𝜏) =
K∑

k=1

wk

(
p̂A,k(𝜏) − p̂B,k(𝜏))

)
= wTD̂(𝜏) (1)

where p̂A,k(𝜏) and p̂B,k(𝜏) are the estimated absolute risks that an event type k occurs in the interval
(0, 𝜏] in groups A and B, respectively. For convenience, these quantities will be referred to as event type
probabilities. Using T̂ (w, 𝜏), one can then conduct Wald-type confidence intervals for the population value
T(w, 𝜏) and associated significance test of the two-sided (resp. one-sided) null hypothesis H0 ∶ T(w, 𝜏) =
0 (resp. H0 ∶ T(w, 𝜏) ⩽ 0) against the alternative hypothesis HA ∶ T(w, 𝜏) ≠ 0 (resp. HA∶T(w, 𝜏) > 0).
Performing these tests is straightforward as long as D̂(𝜏) follows an asymptotic normal distribution and
a corresponding sample-based estimator of its covariance matrix is available, which shall be discussed
further in Section 2.3.

Importantly, the proposed test statistic is based on estimates of absolute risks of event types, which
are the most relevant quantities for medical decision-making. Moreover, it has a straightforward inter-
pretation: If the weights are standardized to sum to one, T̂ (w, 𝜏) is the weighted average of absolute
risk differences for individual event types. Alternatively, if each weight wk represents a certain type of
‘cost’ associated with event type k, then T̂ (w, 𝜏) estimates the expected cost difference between the two
interventions A and B.

The proposed test statistic (1) is sensible for binary data where only the status at time 𝜏 is known. It is
also applicable to time-to-event data, if the planned follow-up duration for all patients is the same, there
is only mild right-censoring, and the patient’s status at time 𝜏 rather than the exact timing of events is of
primary clinical interest. If the exact timing of events is available and subjects may be followed-up for
different durations, an integrated version of the statistic proposed in Equation (1) may be more suitable
and is defined as

T̂′(w, 𝜏) =
K∑

k=1

wk ∫
𝜏

0
h(t)

(
p̂A,k(t) − p̂B,k(t)

)
dt = wTD̂′(𝜏) (2)

where h(⋅) is a non-negative function of time and integration is up to a predefined maximum follow-
up time 𝜏. Similar integrated test statistics have been proposed for comparing survival and cumulative
incidence functions [12–14] and, in the survival setting, they have been shown to be a good competitor
to the log-rank test especially if proportional hazards does not hold [12,15]. The trivial function h(⋅) ≡ 1
is often used in practice, and for comparing survival functions, the test statistic can then be interpreted as
a test of the difference in restricted means [15]. However, h(⋅) could also be chosen to prioritize different
time periods over others or to stabilize the estimate by giving lower weight to periods where censoring
is high [12]. Statistic (2) is an averaged version of (1) over time and expected to be more powerful for
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time-to-event data. However, it is also more complicated to interpret, requires the additional choice of
the function h(⋅), and the covariance matrix of D̂′(𝜏) is more difficult to estimate as we shall discuss in
Section 2.3.

2.2. Event type definition

If the number of components of a composite endpoint is large and subjects can experience more than one
component outcome, many different combinations of component outcomes may be observed for each
subject over time. In principle, each unique combination can constitute an event type in the terminology of
the previous section (‘exhaustive’ setting), but there are also simpler settings that require the assignment
of weights to a more manageable number of event types, which we call ‘competing risks’, ‘worst event’,
and ‘marginal’ settings.

To simplify the discussion, we assume in this and the next section that the composite endpoint has only
two component outcomes consisting of one fatal (F) and one non-fatal (N) event, but the extension to
more complex settings is straightforward. In this case, the exhaustive set of binary event types is N+F−,
that is, having a non-fatal but not a fatal event in the interval (0, 𝜏], N−F+, N+F+, and N−F−. Note
that the event type definition depends on the chosen time horizon (0, 𝜏] and that their probabilities may
not monotonically change over time, for example, the probability of N+F− might initially increase but
decrease again for larger values of 𝜏 when more patients also experience event F. Thus, it is important
that the follow-up period is chosen to be sufficiently long to allow for a clear clinical assessment of the
merits of the two treatments with respect to their influence on all event types. This exhaustive setting
partitions the set of all subjects into four mutually exclusive event type categories, and it appears sensible
to prioritize event types that are severe implying that wN+F+ ⩾ wN−F+ ⩾ wN+F− ⩾ wN−F− . Usually, N−F−

(i.e., no event) is excluded from the test statistic altogether (corresponding to wN−F− = 0), which has the
additional benefit that the resulting covariance matrix of the test statistic D̂(𝜏) is of full rank, a requirement
for the multiplicity adjustment presented in Section 3.

An alternative setting with fewer event types, which we call the competing risks setting, is to focus
on the type of the first event only: N+, that is, experiencing the non-fatal event as a first event in (0, 𝜏],
N−F+, and N−F−. Similar to the exhaustive setting, all event types considered here are mutually exclusive.
Indeed, the test statistic (1) associated with the competing risks setting is a special case of the test statistic
for the exhaustive setting with the additional weight constraint wN+ = wN+F− = wN+F+ , which appears
difficult to justify clinically. Of note, the conventional analysis of composite endpoints is a special case
of the competing risks setting with equal weights for all event types.

Several authors have considered a priority ranking of different component outcomes and then focusing
on the worst component outcome a patient experiences [16–18]. A related idea is to assign weights to
the patients worst event only, leading to the following event types: F+ (death with or without a prior
non-fatal event), N+F−, and N−F−. Such a weighting scheme might be appropriate if the patient’s worst
component dominates the clinical assessment of the severity of their overall outcome or for weights based
on considerations of DALY lost associated with different events [6].

The final setting that we consider is the marginal setting with the following event types: N+ and F+

(death with or without a prior non-fatal event). The major difference between this setting and the previous
ones is that the event types are not exclusive, that is, subjects may experience more than one event type.
Of note, the marginal setting can also be viewed as a special case of the exhaustive setting with the
additional weight constraint wN+F+ = wN−F+ +wN+F− . Such an additivity constraint appears reasonable in
many circumstances, for example, if the weights are based on considerations of financial costs associated
with different component outcomes.

Of note, for non-overlapping event type definitions (exhaustive, competing risks, and worst event), a
trivial weight assignment of one to all event types implies a comparison of the overall risk of any event
between the treatment groups for test statistic (1) and a comparison of the integrated survival functions of
the time to the first event for test statistic (2). Thus, the conventional analysis of composite endpoints is a
special case of our approach except that in the time-to-event setting, the log-rank test is more frequently
used in practice than the difference between the integrated survival functions. For the marginal event type
definition, even trivial weights lead to a different comparison than the conventional analysis. However,
the marginal event setting has the advantage that weighting schemes that assign a weight of 1 to one
marginal event and weights of 0 to all others provide a comparison of component endpoints as a special
case. The same is possible for the exhaustive setting (if weights of 1 are assigned to event types including
the respective marginal event only) but not for the competing risks or worst event settings.
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2.3. Distribution and power of the proposed test statistic

The simplest scenario under which D̂(𝜏) follows an asymptotic normal distribution is when all subjects
have complete follow-up until time 𝜏. For the exhaustive setting, the associated event type probabilities
can be consistently estimated by the observed proportions, and an estimate V̂ of the covariance matrix of
D̂(𝜏) can easily be derived from the underlying multinomial distributions. Consequently, the asymptotic
variance of T̂ (w, 𝜏) is wTV̂w.

The same derivation can also be applied to the competing risks and worst event settings. For the
marginal setting, which has overlapping event types, the asymptotic covariance of D̂(𝜏) can be derived
from the corresponding exhaustive setting by noting that the required event type probabilities are linear
transformations of the exhaustive ones. For example, for a fatal and a non-fatal event, the corresponding
linear transformation for the marginal setting is

(
p̂A,N+(𝜏)
p̂A,F+(𝜏)

)
=
(

1 0 1
0 1 1

)⎛⎜⎜⎝
p̂A,N+F−(𝜏)
p̂A,N−F+(𝜏)
p̂A,N+F+(𝜏)

⎞⎟⎟⎠ (3)

For time-to-event data where exact event times are available but some subjects are right-censored
before time 𝜏, inference for D̂(𝜏) must be based on the underlying multistage model. The nonparametric
Aalen–Johansen estimator provides consistent estimates of the event type probabilities even if the under-
lying multistage model is not Markov [19]. Moreover, estimates and a corresponding Greenwood-type
estimate of the associated covariance matrix are readily available in standard software [20].

Of note, in the exhaustive setting, it is most convenient to derive these quantities based on a multistage
model that is a directed tree with a single node for each event type. This is illustrated for an illness-
death model in Figure S1 of Appendix A. For the other settings, the corresponding quantities can be
derived from the exhaustive setting via linear transformations as illustrated earlier for the competing risks
setting. Alternatively, for the competing risks setting, the quantities can be derived based on a simplified
multistage model, which includes only transitions from the initial state.

The integrated test statistics D̂′(𝜏) can also be calculated from the Aalen–Johansen estimator by
approximating the integral with a simple Riemann sum over a regular time grid from 0 to 𝜏 or via more
complex numerical integration algorithms. While explicit estimators of its covariance matrix have been
given in special cases including the survival and the competing risks setting [13, 14], the covariance is
not readily available from standard software. As a pragmatic solution, we suggest estimating the covari-
ance matrix as the sum of jackknife estimates of the covariance matrices of the integrated probabilities
in both treatment arms. Alternatively, other resampling methods such as the bootstrap can be used [21].

The power of the proposed weighted test statistic (1) to detect difference between groups is illus-
trated in Appendix B of the Supporting Information for a simple example. It demonstrates that a weight
vector with maximal power can be determined, which in most situations outperforms both the con-
ventional analysis of the composite endpoint and the analysis of each individual component outcomes.
However, importantly, weights should not primarily be chosen based on power considerations but on
clinical grounds.

3. Simultaneous inference for the weighted analysis of composite endpoints

While non-trivial weight vectors will often give more interpretable results than the conventional analysis,
which implicitly selects equal weights for all first event types, the difficulty of choosing a single vector of
quantitative weights acceptable to all stakeholders remains. However, as all components of a composite
endpoint are usually harmful, weights should always be non-negative, and it will often be possible to rank
the event types in terms of their clinical importance or to define even more stringent linear equality or
inequality constraints for the weights. Thus, it seems desirable to control multiplicity across all acceptable
weight vectors satisfying such constraints and thus allowing different stakeholders to chose different
weight vectors for their interpretation of the results without inflating the overall type I error. In this section,
a flexible technique for simultaneous inference is introduced, which is based on the work by Shapiro
[22]. It generalized the classical method of Scheffé [23] for simultaneous inference across all possible
contrasts to cone constraints.

By definition, a set C in R
K is a cone if for all w ∈ C and for all r > 0, rw ∈ C. For any chosen closed and

convex cone C in R
K , Shapiro [22] suggested an approach for deriving simultaneous confidence intervals
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with a desired overall coverage probability for the quantities wTD with w ∈ C based on an observation D̂
from a multivariate normal distribution N(D,V) with a known non-singular covariance matrix V .

For most practical purposes including the ones in this paper, it is sufficient to consider cones C of the
following form:

C =
{

w ∈ R
K ∶ aT

i w = 0, i = 1,… , s; aT
i w ⩾ 0, i = s + 1,… ,K

}
(4)

where the K × K matrix
(
aT

1 ,… , aT
K

)T
is of full rank and at least one of the constraints is an inequality

constraint.

For Z(C,V) ∶= maxw∈C
(D̂−D)T

w

(wT Vw)1∕2
, Shapiro [22] showed that [Z(C,V)]2 has a chi-bar squared (�̄�2) distri-

bution [24, 25]. By definition, a �̄�2-distribution is the weighted average of independent 𝜒2-distributions,
that is

P(Z(C,V) ⩾ c) =
K∑

i=0

w̃i(C,V−1)P
(
𝜒2

i ⩾ c
)

(5)

where 𝜒2
i denotes a random variable following a central 𝜒2-distribution with i degrees of freedom (with

𝜒2
0 defined as a point mass at 0 by convention) and w̃i(C,V−1), i = 0,… ,K, are the associated weights,

summing to one, which can be derived from the given cone C and the covariance matrix V . The exact
derivation of the weights for cones defined according to Equation (4) is given in Section 5 of [25]. This has
been implemented for the special case C = R

K
+ in function wchibarsq of the R package varComp [26],

and a general implementation is provided in Appendix E of the Supporting Information. Consequently,
if c1− 𝛼

2
is the

(
1 − 𝛼

2

)
-quantile of this �̄�2-distribution, simultaneous one-sided lower 1 − 𝛼

2
confidence

intervals and two-sided 1 − 𝛼 confidence intervals for all wTD with w ∈ C are given by

CIL

(
w,V , c1− 𝛼

2

)
=
[

wTD̂ − c1∕2
1− 𝛼

2

(wTVw)1∕2,+∞
)

and

CI
(

w,V , c1− 𝛼

2

)
=
[

wTD̂ − c1∕2
1− 𝛼

2

(wTVw)1∕2,wTD̂ + c1∕2
1− 𝛼

2

(wTVw)1∕2

]
.

(6)

In Appendix C of the Supporting Information, it is shown that Shapiro’s result also applies to the
asymptotic setting. Specifically, if D̂(𝜏) follows an asymptotic normal distribution, and a consistent esti-
mator V̂ of its covariance matrix is available, then asymptotically valid simultaneous confidence intervals
for T(w, 𝜏) = wTD(𝜏) for all weight vectors w ∈ C can be obtained via formula (6) by using V̂ instead of
V in that formula and in the derivation of the required �̄�2-weights w̃i.

Using the duality between hypothesis testing and confidence intervals, these simultaneous confidence
intervals can also be used to derive associated tests, which control the family-wise type I error in the
strong sense across the two-sided or one-sided null hypotheses H0 ∶ wTD̂(𝜏) = 0 or H0 ∶ wTD̂(𝜏) ⩽ 0,
respectively, with weights fulfilling the desired constraints. Specifically, for any weight vector fulfill-
ing the constraints, the associated hypothesis test is rejected if zero is not contained in the associated
simultaneous confidence interval.

4. Simulation studies

The finite-sample performance of the multiplicity adjustment discussed in Section 3, hereafter called
�̄�2-method, was evaluated in a simulation study and compared with an asymptotic version of Scheffé’s
method [23], which guarantees simultaneous control across all weight vectors without any constraints,
and unadjusted confidence intervals.

4.1. Scenarios and assessment methods

Two series of simulation scenarios were investigated, both imitating RCTs with a 1:1 randomization of
an intervention versus control and a maximum follow-up duration of 𝜏 = 5 (years). For the first series,
data in the control arm A1 were simulated based on an illness-death model with a less severe (non-fatal)
state N, an absorbing (fatal) state F, and constant transition hazards as per Figure 1(a). For the second
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Figure 1. Multistage models for the simulation. All transition rates (per year of follow-up) were assumed to be
constant. (a) First series: 𝜆A1

01 = 0.05, 𝜆A1

02 = 0.02, and 𝜆
A1

12 = 0.2; (b) Second series: 𝜆A2

01 = 0.08, 𝜆A2

02 = 0.1,
𝜆

A2

03 = 0.04, 𝜆A2

13 = 0.2, and 𝜆
A2

23 = 0.3.

series, data in the control arm A2 were simulated according to a more general multistage model with one
fatal (absorbing) state F and two transient states N and M as per Figure 1(b), where event M was assumed
to be more severe than N. For each series, we considered three treatment effect scenarios: Bj,Cj, and Dj
(j = 1, 2) simulated according to the same respective multistage models. Intervention Bj was assumed to
have no effect, intervention Cj was assumed to reduce all transition hazards by 25%, and intervention Dj

was assumed to only affect the transition hazard 𝜆
Aj

01 and reduce it by 25%. This leads to six scenarios
across the two simulation series.

Besides scenarios with complete follow-up, that is, only administrative right-censoring at time 𝜏 = 5,
scenarios with both administrative right-censoring and independent right-censoring following an expo-
nential distribution with rate 𝜆 = 0.05 were investigated. The resulting proportion of right-censored
observations before time 𝜏 ranged from 17% to 19% across all settings. The resulting event probabilities
for all settings are shown in Tables S2 and S3 in Appendix D of the Supporting Information. Finally, we
varied the sample size between 100 and 500 per arm, which implied a total of 24 scenarios.

In all scenarios, evaluations were based on test statistic (1). Both exhaustive and marginal event type
definitions were investigated with either only non-negativity constraints for all weights or an order con-
straints that prioritized event types comprising more severe outcomes (e.g., for the first series, the order
constraints were wF+N+ ⩾ wF+N− ⩾ wF−N+ for the exhaustive and wF+ ⩾ wN+ for the marginal setting).

The number of simulations per scenario was 10,000 and the primary evaluation criterion was the simul-
taneous Monte Carlo coverage probability of nominal two-sided 95% confidence intervals across weight
vectors satisfying the respective constraints. As there are an infinite number of weight vectors satisfying
the constraints, simultaneous coverage was approximated by evaluating it on a grid of uniformly spaced
points across the intersection of the cone with the hyperplane defined by the constraint that all weights
sum to one. For intersections of dimensions 1, 2, and 4, the corresponding grids had approximately 1000,
3000, and 10,000 points, respectively.

All examined confidence intervals have the form[
wTD̂(𝜏) −

(
𝜂wTV̂w

)1∕2
,wTD̂(𝜏) +

(
𝜂wTV̂w

)1∕2
]

(7)

where 𝜂 is either c0.975, that is, the 97.5% quantile of the �̄�2-distribution corresponding to the approximate
covariance matrix V̂ and the cone constraint for the �̄�2-method, or s0.95, that is, the 95% quantile of the
𝜒2-distribution with degrees of freedom equal to the number of event types for the asymptotic Scheffé’s
method, or the 95% quantile of the 𝜒2-distribution with one degree of freedom, that is, 1.962, for the
unadjusted method.

To study the cost of controlling simultaneous coverage to the unadjusted method, we also calcu-
lated the relative efficiency of the �̄�2- method and Scheffé method defined as c1∕2

0.975∕1.96 and s1∕2
0.95∕1.96,

respectively.
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Table I. Simulation results for ‘exhaustive’ settings.

Groups n
MC relative efficiency MC simultaneous coverage %@

�̄�2∗ �̄�2∗ Scheffé$ Unadjusted#

Weight constraints R
p
+ ⩽ Scheffé$ R

p
+ ⩽ R

p
+ ⩽ R

p
+ ⩽

No right-censoring before 𝜏

A1&B1
100 1.36 1.21 1.43 94.7 94.4 96.2 98.0 76.1 86.3
500 1.36 1.21 1.43 95.1 95.1 96.4 98.5 77.4 87.4

A1&C1
100 1.35 1.22 1.43 94.5 94.8 96.2 98.0 76.0 86.5
500 1.36 1.22 1.43 95.1 94.9 96.5 98.1 77.3 87.1

A1&D1
100 1.36 1.21 1.43 95.0 94.8 96.5 98.5 76.3 86.7
500 1.36 1.21 1.43 94.8 94.8 96.4 98.3 77.0 86.5

A2&B2
100 1.63 1.31 1.70 94.4 94.7 95.9 99.2 47.1 80.9
500 1.63 1.31 1.70 95.1 95.2 96.6 99.4 49.3 81.3

A2&C2
100 1.62 1.31 1.70 94.0 94.9 95.9 99.5 48.3 81.1
500 1.62 1.31 1.70 94.9 94.9 96.6 99.3 50.3 81.6

A2&D2
100 1.63 1.30 1.70 94.5 94.6 96.3 99.3 48.1 81.9
500 1.63 1.30 1.70 94.9 94.9 96.5 99.4 49.2 81.8

Right-censoring before 𝜏

A1&B1
100 1.36 1.21 1.43 94.6 94.4 96.3 98.3 76.0 86.4
500 1.36 1.22 1.43 94.8 95.1 96.5 98.2 76.9 87.0

A1&C1
100 1.36 1.22 1.43 94.7 94.8 96.3 98.0 75.8 86.2
500 1.36 1.22 1.43 94.7 94.5 96.3 98.2 77.4 86.6

A1&D1
100 1.36 1.22 1.43 94.5 94.5 96.2 98.1 76.1 86.4
500 1.36 1.22 1.43 95.2 95.0 96.7 98.4 77.0 86.9

A2&B2
100 1.63 1.31 1.70 94.4 94.8 95.9 99.3 47.4 81.4
500 1.63 1.31 1.70 95.2 95.1 96.6 99.4 48.5 81.3

A2&C2
100 1.62 1.31 1.70 94.0 94.6 95.9 99.2 47.1 80.6
500 1.62 1.31 1.70 95.1 95.3 96.8 99.5 51.2 81.8

A2&D2
100 1.63 1.30 1.70 94.4 94.2 96.0 99.3 47.4 80.9
500 1.63 1.30 1.70 95.0 95.0 96.5 99.5 49.9 81.8

*, Resulting from simultaneous confidence interval based on �̄�2-method.
$, Resulting from simultaneous confidence interval based on Scheffé’s method.
#, Resulting from unadjusted simultaneous confidence interval.
R

p
+, Non-negativity constraint, p = 3 for A1,B1,C1 & D1 and p = 5 for A2,B2,C2 & D2

⩽, Order constraint.
@, Monte Carlo standard error ≈ 0.2%.

4.2. Results

Simulation results for the exhaustive and marginal settings for the 24 scenarios are displayed in Tables I
and II, respectively. Coverage for the �̄�2-method was close to the nominal 95% and between 94% and
96.1% across all scenarios including those involving right-censoring. For n = 500, coverage more than
two Monte Carlo standard errors below 95%, that is, coverage below 94.6%, occurred for only 2/48
(both being 94.5%) reported coverage probabilities. For n = 100, mild under-coverage occurred more
frequently, and the lowest observed coverage of 94.0% was observed in the highest dimensional setting
with five exhaustive event types. As expected, Scheffé’s method yielded coverage beyond the nominal
level, whereas the unadjusted confidence intervals had substantial simultaneous under-coverage.

Monte Carlo relative efficiency followed the anticipated pattern that relative to the unadjusted method,
the �̄�2-method is more efficient than Scheffé’s method, especially under the more restrictive constraint as
Scheffé’s method disregards these weight restrictions. Compared with the unadjusted confidence inter-
vals, confidence intervals for the �̄�2-method under an order constraint were approximately 21% to 31%
wider for the exhaustive and 11% to 21% wider for the marginal setting. In contrast, Scheffé’s method
led to increases by 43% to 70% and 25% to 43%, respectively. The gain by using the �̄�2-method over
Scheffé’s method was more substantial as the dimension of the weight vector increased.
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Table II. Simulation results for ‘marginal’ settings.

Groups n
MC relative efficiency MC simultaneous coverage %@

�̄�2∗ �̄�2∗ Scheffé$ Unadjusted#

Weight constraints R
p
+ ⩽ Scheffé$ R

p
+ ⩽ R

p
+ ⩽ R

p
+ ⩽

No right-censoring before 𝜏

A1&B1
100 1.17 1.11 1.25 94.2 94.2 96.0 97.1 88.4 91.2
500 1.17 1.11 1.25 94.8 95.0 96.4 97.5 89.3 91.9

A1&C1
100 1.17 1.11 1.25 94.2 94.6 95.9 97.1 88.5 91.3
500 1.17 1.11 1.25 94.9 94.7 96.3 97.3 88.8 91.5

A1&D1
100 1.17 1.11 1.25 94.7 95.0 96.6 97.7 88.4 91.7
500 1.17 1.11 1.25 94.5 94.7 96.4 97.4 88.8 91.6

A2&B2
100 1.34 1.20 1.43 94.4 95.6 96.5 98.6 77.9 89.4
500 1.34 1.20 1.43 95.1 95.9 96.9 98.7 78.2 89.5

A2&C2
100 1.34 1.20 1.43 94.6 95.9 96.6 98.7 78.5 90.0
500 1.34 1.20 1.43 95.0 95.8 96.7 98.5 78.7 89.8

A2&D2
100 1.34 1.20 1.43 94.5 95.6 96.4 98.5 78.3 89.7
500 1.34 1.20 1.43 94.8 95.8 96.6 98.6 78.6 89.9

Right-censoring before 𝜏

A1&B1
100 1.17 1.11 1.25 94.3 94.4 96.1 97.2 88.1 90.9
500 1.17 1.11 1.25 94.8 94.9 96.6 97.5 89.1 91.6

A1&C1
100 1.18 1.11 1.25 94.7 94.6 96.3 97.5 88.2 91.3
500 1.18 1.11 1.25 94.7 94.6 96.2 97.3 88.6 91.4

A1&D1
100 1.17 1.11 1.25 94.4 94.7 96.1 97.3 88.5 91.5
500 1.17 1.11 1.25 95.2 95.0 96.7 97.6 89.0 91.6

A2&B2
100 1.34 1.21 1.43 94.6 95.9 96.3 98.6 78.3 89.6
500 1.34 1.21 1.43 95.2 95.9 96.7 98.7 78.9 89.8

A2&C2
100 1.34 1.20 1.43 94.4 95.6 96.4 98.6 77.5 89.1
500 1.34 1.20 1.43 94.9 96.1 96.8 98.8 79.4 90.4

A2&D2
100 1.34 1.20 1.43 94.7 95.4 96.4 98.6 78.1 89.7
500 1.34 1.20 1.43 95.0 96.1 96.8 98.8 78.7 90.0

*, Resulting from simultaneous confidence interval based on �̄�2 method.
$, Resulting from simultaneous confidence interval based on Scheffé’s method.
#, Resulting from unadjusted simultaneous confidence interval.
R

p
+, Non-negativity constraint, p = 2 for A1,B1,C1 & D1 and p = 3 for A2,B2,C2 & D2

⩽, Order constraint.
@, Monte Carlo standard error ≈ 0.2%.

5. Applications

5.1. Design consideration for a cardiovascular trial

In this case study, we consider the design of a hypothetical RCT in cardiology based on the work of Hong
et al. [6], who suggested assigning weights based on standardized DALY to the following three common
outcomes in vascular prevention trials: non-fatal myocardial infarction (MI+), non-fatal stroke (ST+), and
vascular death (DE+). The corresponding reported weight vectors (DALYs) for ages 50, 60, and 70 were
w50 = (6.73, 10.49, 16.79), w60 = (5.14, 7.63, 11.59), and w70 = (3.85, 5.06, 7.24) (see Table 2 in [6]).
Hong et al. [6] did not consider the setting of multiple events per patients, and we assume here that their
weights refer to a ‘worst event’ setting.

For the design of a 1:1 RCT in a stroke-prone population of control versus intervention, we assumed
that data follow the multistage model displayed in Figure 2. This model assumes constant initial cause-
specific hazards of 0.04 and 0.03 MI events/year, 0.06 and 0.04 ST events/year, and 0.015 and 0.01
DE events/year in the control and intervention groups, respectively, and that the respective transition
rates double after an initial event. Note that we did not model transitions from ST to MI for simplicity
and because we focused on the subjects’ worst event type. During a follow-up period of 3 years, this
scenario implies that 29.2% of participants experience an event in the control group (probability of worst
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Figure 2. Multistage model for the cardiovascular trial example. The transition rates (per year of follow-up) in
the control and intervention arm, respectively, were assumed to be as follows: 𝜆No Event→MI = 0.04 vs. 0.03,
𝜆No Event→ST = 0.06 vs. 0.04, 𝜆No Event→DE = 0.015 vs. 0.01, 𝜆MI→ST = 0.12 vs. 0.08, 𝜆MI→DE = 0.03 vs. 0.02, and

𝜆ST→DE = 0.03 vs. 0.02.

events: 8.1% for MI, 16.1% for ST, and 5.0% for DE) compared with 21.3% (probability of worst events:
6.9% for MI, 11.3% for ST, and 3.2% for DE) in the intervention arm. Moreover, we assumed that non-
administrative censoring during the 3-year follow-up period followed an exponential distribution with a
rate of 0.05 censoring events/year.

Based on this scenario, sample size calculations were performed using simulation. We first focused
on test statistic (1) and estimates of event probabilities by 3 years based on the Nelson–Aalen estimator
to account for censoring. For a conventional analysis of the composite endpoint, which compares the
overall risk of any event, a sample size of 700 subjects per group would be sufficient to detect a difference
between the two groups with 90% power at the two-sided 5% significance level. A compatible analysis
that gives the same weight to all worst events for the main analysis but allows for multiplicity-corrected
simultaneous inference across all ordered non-negative weights (respecting the ordering wDE ⩾ wST ⩾
wMI) would require a sample size of 910 subjects per group, that is, a 30% increase in sample size. Such
an increase may seem considerable. However, note that a Bonferroni correction for the analysis of the
composite endpoint and all three component events would require a sample size increase of 36% while
only allowing for multiple comparisons across fewer and arguably less clinically relevant null hypotheses.
Finally, we calculated the required sample for 90% power to detect an intervention effect simultaneously
across all weights in the convex cone spanned by the age-dependent DALY weight vectors w50, w60, and
w70 given earlier using simulation. The resulting sample size was 685 subjects per group. Interestingly,
this is a smaller sample size than for the conventional analysis, which may be due to two factors. First,
the weight vectors w50, w60, and w70 all give lowest weight to non-fatal MI whose assumed intervention
effect was smallest. Second, despite being quantitatively different, the weight vectors span a ‘narrow’
cone, hence requiring only minimal multiplicity adjustment.

In a second step, we focused on analyses based on the integrated test statistic (2) with a weighting
function h(⋅) ≡ 1 over time. For this setting, a sample size calculation based on (2) with equal weights
for all event types and no multiplicity adjustment lead to a sample size of 755 subjects per group for 90%
power. Thus, in this setting, with proportional hazards of the time to the first event, the simpler analysis
based on statistic (1) would be preferred to the integrated test statistic (2) as the resulting sample size is
lower and interpretation is easier. As a comparison, a conventional log-rank test comparing the time to
the first event between the two groups would require a 9% lower sample size of 680 subjects per group.
Finally, the required sample size for 90% power to detect an intervention effect simultaneously across all
weights in the convex cone spanned by the age-dependent DALY weight vectors based on statistic (2)
was 740 subjects per group, that is, again a slightly lower sample size than for the unweighted analysis
without multiplicity adjustment.
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Figure 3. Weighted risk difference depending on the relative weight of ‘acute treatment failure or death’. Black
line, weighted risk difference; dark gray, unadjusted 95% confidence intervals; light gray, simultaneous 95%

confidence intervals.

5.2. Weighted composite endpoint analysis in a trial of enteric fever

We applied the �̄�2-method to data from a typhoid trial studying the efficacy of two antibiotic treatments
for uncomplicated enteric fever: Gatifloxacin and Cefiximie [27]. The outcome of interest here is the
composite endpoint of overall treatment failure, which was a secondary endpoint in the trial. Overall
treatment failure was defined as acute treatment failure (severe complications, fever or other persistent
symptoms for more than 7 days, or requirement for rescue treatment), death, or relapse (fever with a
positive blood culture within a month of completing treatment). Only one death occurred and it was
pooled with acute treatment failure for the sake of this example. By definition, subjects with an acute
treatment failure were not evaluated for relapse, hence the event types are exclusive.

The observed frequencies of ‘acute treatment failure or death’ and relapse in patients with culture-
confirmed typhoid were 1/92 and 2/92 in the Gatifloxacine arm and 20/77 and 6/77 in the Cefixime
arm [27]. As it is unclear which of the two event types is more clinically relevant in general, we did
not impose an order constraint but instead adjusted for multiplicity taking into account only the non-
negativity constraint. Figure 3 shows the weighted test statistic T̂ (w, 𝜏) and associated 95% confidence
intervals (with and without multiplicity adjustment) depending on the weight assigned to ‘acute treatment
failure or death’ and assuming that the two weights are standardized to sum up to 1.

According to Figure 3, across all weight choices, the associated 95% confidence intervals given by the
�̄�2- method are marginally wider than the unadjusted ones. Moreover, the simultaneous 95% confidence
intervals based on the �̄�2- method demonstrate a significant difference in the weighted risk differences
if the relative weight of acute treatment failure or death is greater than 10%. As a relative weight below
10% for this component outcome seems unreasonable, the trial demonstrates superiority of Gatifloxacin
over Cefixime with respect to the combined outcome simultaneously across all ‘clinically reasonable’
weights.

6. Discussion

We developed a new approach to the weighted analysis of composite endpoints applicable to both binary
and time-to-event data. The proposed test statistic is a weighted absolute risk difference of component
outcomes, which is both interpretable and clinically relevant. In practice, the choice of an exact set of
weight vectors will often need to be based on a panel decision or health economics consideration [6, 10,
11], but we believe that a weighted analysis based on a predefined non-trivial weight vector will usually
lead to more clinically relevant and interpretable results than the conventional analysis, which implicitly
assigns equal weights to all first-event types and no weight to subsequent events. In some instances,
such as in our cardiovascular design example, an adequately powered weighted analysis requires fewer
subjects than the conventional analysis. However, frequently, the absolute risk decrease associated with
an intervention will be smallest for the least frequent and most severe component endpoint mandating an
increased sample size for the weighted analysis.
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To account for the difficulties in choosing quantitative weights, we further proposed to use the �̄�2-
method of [22] for simultaneous inference across flexible families of weight vectors satisfying a cone
constraint. To our knowledge, this work is the first substantive application of Shapiro’s method to a
practical problem where constraints naturally arise. We extended this method to the asymptotic setting
and demonstrated that it performs well for realistic sample sizes in a series of simulation studies. The
proposed method allows to handle a flexible class of weight constraints that can be expressed as a system
of linear equality and inequality constraints, which is general enough for most practical purposes.

In practice, the proposed method can be applied in two settings. First, it can supplement a conven-
tional primary analysis with equal weights for all component outcomes by allowing for the additional
exploration of non-trivial and perhaps more clinically relevant weights without inflating the type I error.
By controlling for multiplicity only across contrasts of clinical relevance, substantial efficacy gains are
possible compared with Scheffé’s method, which controls multiplicity across all contrasts. Second, a
weighted analysis with weights and no multiplicity adjustment could be the primary analysis. Clearly,
for a valid analysis, these weights need to be predefined at the planning stage. Alternatively, if precise
weights are not available but a consensus could be found by a panel that all acceptable weight vectors
are constrained to lie within a narrow cone, a multiplicity adjustment would be expected to require only
a marginal increase in sample size as shown in our cardiovascular trial example.

Traditional methods for multiplicity adjustments of composite endpoints in RCTs focus on nonpara-
metric simultaneous inference for the conventional analysis of the composite endpoint and its component
outcomes, that is, a finite number of null hypotheses, and use multi-step closed testing procedures to
improve power [28,29]. In contrast, the proposed method is a single-step parametric multiplicity adjust-
ment across an infinite number of weights vectors satisfying flexible constraints. A major advantage of
our approach is that weighted comparisons allow to explicitly trade off the importance of different com-
ponents against each other for clinical decision-making. Moreover, the method allows to perform both
hypothesis tests and to calculate associated simultaneous confidence intervals, whereas the creation of
compatible confidence intervals is difficult for multi-step closed testing procedures [29]. Of note, the cur-
rent work relies on the accuracy of a parametric multivariate normal approximation to the Wald-type test
statistics. It is well known that Wald-type confidence intervals are unreliable for low-event probabilities
and sample sizes even in simpler settings without multiplicity adjustment [30], and this may explain the
observed mild under-coverage for the lower sample size in our simulation study. Extending the current
approach to likelihood-ratio- or score-based test statistics could be a potential area for future research.

Our approach focuses on absolute risks of event types. Absolute risks directly translate to expected
event numbers in a population receiving a treatment and are the most relevant quantities for clinical
decision-making [31]. By including appropriate weights, which allow to trade-off the consequences of
different event types against each other, our test statistic provides an overall assessment regarding which
treatment has a more favorable effect on the overall frequency and composition of event types. As such,
our approach answers a decision-theoretic rather than an etiological question. Of note, absolute risks
depend on the follow-up horizon, which must be carefully chosen to allow for a reliable assessment of
the effect of the interventions on the outcome. To answer etiological questions, regression models of
the cause-specific hazards of the underlying multistage model might be more appropriate, and it is well
known that in the presence of competing risks, the effect of treatment on the absolute risk and the cause-
specific hazards might differ [32]. As an example of the differences in the interpretation between models
for absolute risks and cause-specific hazards, assume that we are interested in the effect of a drug on a
non-fatal and a fatal event. Cause-specific hazards models might reveal that the drug reduces the cause-
specific hazard of the fatal event but that it does not affect the rate of the non-fatal events. On the absolute
risk scale, this would imply a reduction in the overall absolute risk of any event as well as the risk of
the fatal event but also an increase in the risk of the non-fatal event because more subjects remain at risk
to experience this event. As the weighted analysis essentially reduces to the conventional analysis for
equal weights, our test statistic would also favor the drug if the non-fatal event was assigned an equal
or lower weight than the fatal event, which would usually be sensible. However, if the non-fatal event
was extremely severe and costly and thus assigned a larger weight than the fatal event, our weighted test
statistic might not favor the drug.

Several extensions of our approach are possible. For example, there is no technical barrier that prevents
using the developed framework for the joint analysis of beneficial and harmful outcomes by using weights
of opposite signs. More generally, the proposed approach can be applied to the joint analysis of any
set of multiple endpoints and arbitrary test statistics as long as they follow a joint asymptotic normal
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distribution. Another possible extension of the proposed approach is to consider test statistics that adjust
for covariates other than treatment assignment including stratified versions of the proposed statistic.

7. Software

An R demonstration of the proposed method is provided in Appendix E of the Supporting Information.
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