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ABSTRACT The phenomenon of genotype · environment (G · E) interaction in plant breeding decreases
selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incor-
porating G · E have been recently developed and used in genomic selection of plant breeding programs.
Genomic prediction models for assessing multi-environment G · E interaction are extensions of a single-
environment model, and have advantages and limitations. In this study, we propose two multi-environment
Bayesian genomic models: the first model considers genetic effects ðuÞ that can be assessed by the
Kronecker product of variance–covariance matrices of genetic correlations between environments and
genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased
predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component
as the first model ðuÞ plus an extra component, f, that captures random effects between environments that
were not captured by the random effects u:We used five CIMMYT data sets (one maize and four wheat) that
were previously used in different studies. Results show that models with G · E always have superior pre-
diction ability than single-environment models, and the higher prediction ability of multi-environment
models with u  and  f over the multi-environment model with only u occurred 85% of the time with GBLUP
and 45% of the time with GK across the five data sets. The latter result indicated that including the random
effect f is still beneficial for increasing prediction ability after adjusting by the random effect u:
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The long, rich history of the development of statistical models for
assessing genotype · environment (G · E) interaction in agricultural
and plant breeding experiments precedes the development of the anal-
ysis of variance. Fisher and Mackenzie (1923) pointed out that the
differential responses of genotypes to environments could be better
fitted by a product operator (multiplicative) than by a sum formula.
More than a decade later, a multiplicative operator consisting of a
simple linear regression of line performance on the environmental

mean was proposed by Yates and Cochran (1938) (joint-regression
analysis). This is a method that approximates G · E interaction by
one multiplicative term. Several decades later, other multiplicative op-
erators based on singular value decomposition (SVD) of the G · E were
proposed within the framework of linear–bilinear, fixed-effect models
(Cornelius et al. 1996). Later, Piepho (1998) and Smith et al. (2001,
2005) employed the SVDoperator formodelingG· E but in the context
of multivariate linear mixed-effect models, while Crossa et al. (2004,
2006) and Burgueño et al. (2008) considered using structured covari-
ancematrices tomodelG · E based on pedigree linearmixedmodels for
estimating the BLUP of the breeding values. These models account for
the average performance of the interaction across the entire genome
without distinguishing parts of the genome thatmay bemore influenced
by the environment than others, and using environments without char-
acterizing climatic factors that may interact with regions of the genome.

The first to propose whole-genome regression methods (genomic
selection, GS) by jointly fitting hundreds of thousands of markers
with major as well as small effects were Meuwissen et al. (2001).
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Implementing whole-genome regressionmethods poses important sta-
tistical and computational challenges because the number of markers
(p) greatly exceeds the number of data points (n) available; however,
shrinkage estimation procedures allow the implementation of whole-
genome regression methods. Recently, standard GS models were ex-
tended tomulti-environment data. For instance, Burgueño et al. (2012)
were the first to use a multi-environment version of the GBLUP where
G · E was modeled using genetic correlations; however, they did not
attempt to incorporate environmental variables as surrogates for envi-
ronments. Jarquín et al. (2014) proposed a Bayesian reaction norm
model that is a type of random effects model where the main effects
of markers and environmental covariates (ECs), as well as the interac-
tions between markers and ECs, are introduced using covariance struc-
tures that are functions of marker genotypes and ECs. The proposed
approach represents an extension of the GBLUP and can be interpreted
as a random effects model on all the markers, all the ECs, and all the
interactions between markers and ECs using a multiplicative operator.

The reaction norm model of Jarquín et al. (2014) has some limita-
tions, for example, the Gaussian prior does not induce variable selection
and the shrinkage induced by Gaussian prior density may not be par-
ticularly appropriate when markers or ECs may have large effects.
Furthermore, the reaction norm model considers the case of a partic-
ular multiplicative interaction model and, as such, may be considered
a simple approximation to the complex phenomenon of interaction
between genes and environmental conditions which, in practice, may
take many different forms.

To solve some of the challenges of the reaction normmodel, López-
Cruz et al. (2015) proposed a marker · environment interaction model
where marker effects and genomic values are partitioned into compo-
nents that are stable across environments (main effects) and others
that are environment-specific (interactions); this interaction model is
useful when selecting for stability and adaptation to target environ-
ments. Consistently, genomic prediction ability increased substantially
when incorporating G · E or marker · environment interaction. The
marker · environment interaction model has some advantages over
previous models: it is easy to implement in standard software for GS
and can be implemented with any Bayesian priors commonly used in
GS, including not only shrinkage methods (e.g., GBLUP), but also vari-
able selection methods (which cannot be directly implemented under
the reaction norm model) (Crossa et al. 2016).

The marker · environment interaction model of López-Cruz et al.
(2015) estimates the phenotypic correlation between any two environ-
ments as a ratio of variance components, thus forcing the covariance
between pairs of environments to be positive. Therefore, the marker ·
environment interaction model is appropriate for use with sets of en-
vironments that are positively correlated. However, in practice, this G ·
E pattern may be too restrictive in cases where several environments
have close to zero correlations; this determines a large variance com-
ponent of G · E as compared with the genetic variance component
(Burgueño et al. 2011).

In a recent article, Cuevas et al. (2016) applied the marker ·
environment interaction GS model of López-Cruz et al. (2015), but
modeled not only through the standard linear kernel (GBLUP), but
also through a nonlinear GK similar to that used in the Reproducing
Kernel Hilbert Space with Kernel Averaging (RKHS KA) (de los
Campos et al. 2010) and with the bandwidth estimated using an em-
pirical Bayesian method (Pérez-Elizalde et al. 2015). The methods pro-
posed by Cuevas et al. (2016) were used to perform single-environment
analyses and extended to account for G · E interaction in wheat
and maize data sets. In single-environment analyses, the GK had
higher prediction ability than GBLUP for all environments. For

cross-validation where some lines are observed only in some environ-
ments and predicted in others, the multi-environment G · E interac-
tion model with GK resulted in prediction accuracies up to 17% higher
than that of the multi-environment G · E interaction model with
GBLUP linear kernel. For the maize data set, the prediction ability of
the multi-environment model with GK was on average 5–6% higher
than that of the multi-environment GBLUP. Cuevas et al. (2016) con-
cluded that the higher prediction ability of the GKmodels coupled with
the G · E model is due to more flexible kernels that account for small,
more complex marker main effects and marker-specific interaction
effects. However, the marker · environment interaction model using
the GK of Cuevas et al. (2016) also assumes sets of environments that
are positively correlated (as in López-Cruz et al. 2015).

In this study, we propose two multi-environment G · E genomic
models that attempt to overcome some of the restrictions of previous
genomic models. The main objective was to compare the prediction
ability of the two proposed multi-environment G · E genomic models,
each used with two kernel methods: linear (GBLUP) and nonlinear
(GK). One multi-environment G · E model considers the genetic
effects u that is modeled by the Kronecker product of the variance–
covariance matrix of genetic correlations between environments with
the genomic relationship between lines (using GBLUP or GK methods);
thismodel with u is parsimonious because it estimates the combination of
the genetic main effect plus the unstructured genetic variance–covariance
interaction matrix between environments. The other model has the same
genetic components as the previous one ðuÞ plus an extra component,
f, that attempts to capture random effects between environments that
were not captured by u: Both genomic prediction models assume that
errors have a diagonal variance–covariance matrix ðΣÞ:

A total of five extensive genomic data sets were used to compare the
prediction ability of the twomulti-environment G · E genomic models
(each with GBLUP and GK methods) among themselves and with
the prediction ability obtained by the single-environment (also with
GBLUP and GK methods). These five data sets have been used in
previous genomic studies where prediction ability was assessed only
for individuals observed in some environments but not in others (cross-
validation method 2, CV2, by Burgueño et al. 2012).

METHODS

Statistical models

Single-environment model: The semiparametric regression model for
each single environment (j ¼ 1; . . . ;m environments) of lines
ði ¼ 1; . . . ; njÞ is given by:

yj ¼ 1njmj þ uj þ ej (1)

where yj is the response vector containing nj phenotypic values, 1nj is
a vector of ones of order nj; mj is the overall mean of the jth environ-
ment, and the random vectors of the genetic values uj and the errors
ej are independent random variables with uj � Nð0;s2

ujK jÞ and
ej � Nð0;s2

ej
InjÞ; respectively, where s2

ujK j is the variance of uj;
K j is a symmetric semipositive definite matrix representing the co-
variance of the genetic values, and ej is the vector of random errors in
the jth environment with normal distribution and common variance
s2
ej
: The biallelic p centered and standardized molecular markers in

the jth environment are represented in incidence matrix Xj such that
K j ¼ Gj ¼ ðXjXj9=pÞ is a linear kernel. Model (1) is known as the
GBLUP (VanRaden, 2007, 2008). Single-environment model (1) is
similar to model (1.2) of Pérez-Elizalde (2015) when the linear kernel
is used.
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It should be noted that under the conditions given above, model (1)
estimates the genomic relationship bymeans of its linear kernel ðXjXj9Þ:
However, nonlinear kernels such as the GK can also be used (Cuevas
et al. 2016). The GK commonly used in genomic prediction is
K jðxji; xji9Þ ¼ expð2hjd2ii9Þ (Pérez-Rodríguez et al. 2012), where
dii9 is the distance based on markers between individuals i; i9
ði ¼ 1; . . . ; njÞ for the jth environment and hj . 0 is a bandwidth pa-
rameter, which in this study is estimated based on the Bayesianmethod
proposed by Pérez-Elizalde et al. (2015).

Multi-environment models: For multi-environments, the random
model considers that the individuals between environments are corre-
lated such that there is a genetic correlation between environments that
can be modeled with matrices of orderm ·m: Therefore, the extension
of random model (1) that accounts for genetically correlated environ-
ments is expressed as

y ¼ mþ uþ e (2)

where y ¼ �
y1 ⋯ yj ⋯ ym

�9; m ¼ �
1n1 m1 ⋯ 1nj mj ⋯

1nm mm

�9; u ¼ �
u1 ⋯ uj ⋯ um

�9; and e ¼ �
e1 ⋯

ej ⋯ em
�9 where m is the vector with the intercept of each envi-

ronment, and random vectors u;   and  e are independent and
normally distributed (Burgueño et al. 2012) with u � Nð0;K0Þ
and e � Nð0;RÞ:

When the number of individuals included in each environment is
different, then

K0 ¼

s2
u1K1 . . . su1ujK1j . . . su1umK1m

⋮ ⋱ ⋮ ⋱ ⋮

suju1K j1 . . . s2
ujK j . . . sujumK jm

⋮ ⋱ ⋮ ⋱ ⋮

sumu1Km1 . . . sumujKmj . . . s2
umKm

2
666666664

3
777777775

where s2
uj is the genetic variance of the j

th environment andsujuj9 is the
genetic covariance between two environments, jth and jth’, K j is the
kernel constructed with the markers of the individuals in the jth

environment and K jj9 is the kernel constructed with the markers of
the individuals included in the two environments, jth and jth’. Also,
the residual matrix is assumed to be diagonal

R ¼

s2
e1 In1 . . . 0 . . . 0

⋮ ⋱ ⋮ ⋱ ⋮

0 . . . s2
ej Inj . . . 0

⋮ ⋱ ⋮ ⋱ ⋮

0 . . . 0 . . . s2
em Inm

2
666666664

3
777777775

where s2
ej is the random error of the environment.

When the number of individuals in the environments is the same
ðnj ¼ nj’ ¼ nÞ, the kernels are the same K j ¼ K; and the identity
matrices are the same Ij ¼ I, then K0 ¼ UE5 K; and R ¼ Σ5I;
where 5 denotes the Kronecker product and K is unique (calculated
for all genotypes, regardless of the environment in which they were
tested) and could be the genomic relationship matrix as defined for
model (1). The matrix K0 is the product of one kernel with in-
formation between environments ðUEÞ and another kernel with
information between lines based on markers ðKÞ, similar to the
multi-task Gaussian process (Bonilla et al. 2007). The mixed model

used in genomic prediction can have several structures for mod-
eling matrix UE (Burgueño et al. 2012). When there are not many
environments, the unstructured variance–covariance could be
used for UE; of order m ·m such that

UE ¼

s2
u1 . . . su1uj . . . su1um

⋮ ⋱ ⋮ ⋱ ⋮

suju1 . . . s2
uj . . . sujum

⋮ ⋱ ⋮ ⋱ ⋮

sumu1 . . . sumuj . . . s2
um

2
666666664

3
777777775

where the jth diagonal element of the m ·m matrix UE is the genetic
variance s2

uj within the jth environment, and the off-diagonal element
is the genetic covariance sujuj9 between the jth and jth’ environments.
For a large number of environments, a factor analytical model usually
performs as well or better than the unstructured model (Burgueño
et al. 2012). Also, matrix Σ is an error diagonal matrix of order
m ·m; i.e., Σ ¼ diagðs2

e1 ; . . . :;s
2
emÞ:

As described, model (2) is parsimonious because it expresses the
genetic valueswithin the environmentderived fromthemarkersplus the
interaction between these genetic values with the environments. Model
(2) can be used with the linear kernel matrix G or with the GK that
allows capturing small cryptic genetic epistatic effects.

Jarquín et al. (2014) argued that due to “imperfect linkage disequi-
librium (LD) between markers and genes at causal loci or because
of model misspecification (e.g., interactions between alleles that are
unaccounted for), the regression on markers may not fully describe
genetic differences among lines.” Therefore, it is reasonable to add
another component that would attempt tomodel the variation between
individuals that was not captured by u: Thus, we added to model (2) a
random component f representing the genetic variability among
individuals that was not accounted for as a function of the markers
in component u:

Therefore, multi-environments with random effects consider-
ing genetic correlations between environments (model (2)) can be
extended by adding an extra variability to account for the genetic
variance among individuals across environments that was not
explained by u; that is f. Therefore, the extension of the random
linear model (2) is expressed as

y ¼ mþ uþ f þ e (3)

where f ¼ �
f 1 ⋯ f j ⋯ f m

�9 with the random vectors f inde-
pendent of u and normally distributed f � Nð0;QÞ: In general,
when the number of individuals is not the same in all environments,

Q ¼

s2
f1
In1 . . . sf1fjIn1 . . . sf1fmIn1

⋮ ⋱ ⋮ ⋱ ⋮

sfj f1Inj . . . s2
fj
Inj . . . sfjfmInj

⋮ ⋱ ⋮ ⋱ ⋮

sfmf1Inm . . . sfmfjInm . . . s2
fm
Inm

2
6666666664

3
7777777775

where s2
fj
is the genetic effects in the jth environment not explained by

the random genetic effect u and sfj fj9 is the covariance of the genetic
effects between two environments not explained u:When the number
of individuals is the same in all the environments, then Q ¼ FE5I:

Matrix FE; is unstructured and captures genetic variance–
covariance effects between the individuals across environments
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that were not captured by the UE matrix; in this case, matrix FE

can be expressed as

FE ¼

s2
f 1

. . . sf1fj . . . sf1fm

⋮ ⋱ ⋮ ⋱ ⋮

sfjf1 . . . s2
fj

. . . sfj fm

⋮ ⋱ ⋮ ⋱ ⋮

sfmf1 . . . sfmfj . . . s2
fm

2
6666666664

3
7777777775

where the jth diagonal element of the m ·m matrix FE is the genetic
environmental variance s2

f j
within the jth environment, and the off-

diagonal element is the genetic covariance sfj fj9 between environments
j and j’.

Considerations on the application of the proposed models: An
objective of this article was to compare the use of linear and nonlin-
ear kernels for matrix K to determine the relationship between lines,
for each of the three models described earlier. Thus, for each of the five
data sets, we fitted models (1)–(3) for K as a linear kernel using the
GBLUP, and K as a nonlinear GK with the bandwidth parameter
estimated according to Pérez-Elizalde et al. (2015) on model (1).

The same numbers of individuals in each environment were
employed in these applications. Therefore, in this case, the same kernel
K constructed for all individuals was developed. Also, the observations
in each environment were standardized with the aim of examining and
comparing the proportion of variance components explained by each
random component of the single-environment model with those from
the two multi-environment models, and also between the variance
components of the random effects u and f of models (2) and (3).
Although the intercepts were expected to be close to zero, they were
included in the model as parameters to be estimated.

Implementation of Bayesian models: Single-environment model (1)
was fitted with the Bayesian Generalized Linear Regression (BGLR)
package of de los Campos and Pérez-Rodríguez (2014). The BGLR
considers a Bayesian model and, from that point of view, a linear
mixed model is a three-stage hierarchical model (Jiang 2007).
In the first stage, the distribution of the observations given
the random effects is defined and, in the second stage, the
distribution of the random effects given the model parameters is
added. In the last stage, a prior distribution is assumed for the
parameters. Under normal distribution these stages may
be specified as follows: the conditional distribution of the data from

the jth environment is p
�
yj

���mj; uj;s
2
ej

�
¼ N

�
yj

���1njmj þ uj;s2
ej
I
�
; in

the second stage, the conditional distribution of random effects
is p

�
uj
��s2

uj ;K j

� ¼ N
�
uj
��0;s2

uj K j

�
; finally, in the last stage, it

is assumed that the prior distribution can be expressed as

p
�
mj; s

2
ej
; s2

uj

���Se; dfe; Su; dfu
�
¼ p

�
mj

�
p
�
s2
ej

���Se; dfeÞ p
�
s2
uj

���Su; dfu
�
;

with a flat prior for mj and with a scaled inverse
Chi-squared prior distribution for the error variance

p
�
s2
ej

���Se; dfe
�
¼ x22

�
s2
ej

���Se; dfe
�

with scale factor Se and dfe . 0

degrees of freedom, while the prior for s2
uj is scaled inverse Chi-

squared distribution p
�
s2
uj

���Su; dfu
�
¼ x22

�
s2
uj

���Su; dfu
�
with scale

factor Su and degrees of freedom dfu . 0:
The hyperparameters were set using the rules given by Pérez-

Rodríguez and de los Campos (2014). In this study, we assumed

default values of dfe ¼ dfu ¼ 5; with the intention of avoiding
infinite variance values. We also assumed that the model explained
50% of the phenotypic variance; then Se ¼ 0:5var

�
yj
��
dfe þ 2

�
;

Su ¼ 0:5var
�
yj
��
dfu þ 2

�	
mean

�
diag

�
K j
��
: More details on the use

of the BGLR can be found in Pérez-Rodríguez and de los Campos
(2014).

Multi-environment models (2) and (3) were fitted using the Multi-
Trait Model (MTM) software of de los Campos and Grüneberg (2016)
that uses a Bayesian approach, assuming the K j are the same in
all the environments and considering that, at the first level, the
conditional distribution of the data can be modeled by a multi-
variate normal distribution pðyjm; u; f ;ΣÞ ¼ Nðyjmþ uþ f ;Σ5IÞ:
At the second level, the prior distributions for u and f are
multivariate normal with mean vector zero and variance–
covariance matrices UE5 K ; and FE5I; respectively, that is,
pðujUE;KÞ ¼ Nðuj0;UE5KÞ; pðf jFEÞ ¼ Nðf j0; FE5IÞ: At the
third level, a flat prior distribution for the intercepts of each envi-
ronment is used, and the prior distributions of UE and FE are
inverseWhishart pðUEjS0; df0Þ ¼ pðFEjS0; df0Þ ¼ W21ðS0; df0Þ;where
the scale matrix S0 is an identity matrix of order m (number of
environments) and the degrees of freedom df0 ¼ m: For the prior
distribution of the elements of s2

ej
of the diagonal of Σ; we used a

scaled inverse Chi-squared distribution with the hyperparameters’
degree of freedom and a scaled factor equal to 1.

Software
Both packages, BGLR andMTM, fit the models with Markov Chain
Monte Carlo (MCMC) using the Gibbs sampler with 30,000 iter-
ations, with a burn-in of 5000 and a thinning of five, so that 5000 sam-
ples were used for inference. Convergence and diagnostic tests were
performed. TheGelman-Rubin convergence tests for all parameters of
the three models were satisfactory, using lag-5 thinning results in low
autocorrelations in each of the three models. The Raftery–Lewis test
suggested a small burn-in between 10,000 and 20,000 iterations for
the five data sets used.

The R codes with a brief description for fitting multi-environment
model (3) using the MTM package of de los Campos and Grüneberg
(2016) are given in Appendix A.

Assessing prediction ability
Prediction ability was assessed using 50 TRN-TST (TRN= training and
TST = testing) random partitions; we used this approach because it
provides higher precision in the predictive estimates than the frame-
work that uses different numbers of folds. For single-environment
model (1), 50 random partitions were formed with 70% of the
observations in the training set and 30% of the observations in the
testing set.

For multi-environment models (2) and (3), we simulated the pre-
diction problem that assumes that 70% of the individuals were ob-
served in some environments but not in others (CV2, Burgueño et al.,
2012). We used the procedure of López-Cruz et al. (2015) to assign
individuals to the training and testing sets. We formed TRN sets with
70% of the n ·m observations and TST sets with 30% of the n ·m
observations to be predicted (their phenotypic values were not observed
and appear as missing).

In each random partition, Pearson’s correlations between the pre-
dicted and observed values for each environment were computed; these
are considered the prediction accuracies of those models, and thus the
average correlation for all randompartitions and their standard deviation
are reported. The variance components of the three models using the full
data are also reported.
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When random cross-validation partitions simulated the prediction
of a portion of individuals that represents newly developed lines not
observed in any environment (random cross-validation 1, CV1,
Burgueño et al. 2012), it is possible that f (of model (3)) could account
for part of the random error. However, in this study, we observed all the
individuals in at least one environment and predicted other individuals
that were not observed in some environments (randomCV2, Burgueño
et al. 2012); therefore, under CV2 random cross-validation, f is
predictable.

Experimental data sets
In this study, we used five data sets that have been used in different
studies. Wheat data set 1 was used by Crossa et al. (2010) and Cuevas
et al. (2016), maize data set 2 was employed in the studies of Crossa
et al. (2013) and Cuevas et al. (2016), and wheat data sets 3–5 were
analyzed by López-Cruz et al. (2015). Brief descriptions of the pheno-
typic and marker data sets are given below.

Wheat data set 1: This data set, from CIMMYT’s Global Wheat Pro-
gram, was used by Crossa et al. (2010) and Cuevas et al. (2016) and
includes 599 wheat lines derived from 25 yr (1979–2005) of Elite Spring
Wheat Yield Trials (ESWYT). The environments represented in these
trials were grouped into four basic agroclimatic regions (mega-
environments). The phenotypic trait considered here was grain yield (GY)
of the 599wheat lines evaluated in each of the fourmega-environments.
The 599 wheat lines were genotyped using 1447 Diversity Array Tech-
nology (DArT) markers generated by Triticarte Pty. Ltd. (Canberra,
Australia; http://www.triticarte.com.au). Markers with a minor allele
frequency (MAF) , 0.05 were removed, and missing genotypes were
imputed using samples from the marginal distribution of marker
genotypes. The number of DArT markers after edition was 1279.

Maize data set 2: This data set was first used byCrossa et al. (2013) and
then by Cuevas et al. (2016); it includes a total of 504 double-haploid
(DH) maize lines obtained by crossing and backcrossing eight parents
that formed 10 full-sib (backcrosses) and six sib families. Each DH line
was crossed to an elite single-cross hybrid of the opposite heterotic
group to produce 504 testcrosses. The trait analyzed in this study was
GY (kg/hectare) in three optimum rain-fed trials. The field experimen-
tal design in each of the three environmentswas ana-lattice incomplete
block design with two replicates. Data were preadjusted using estimates
of incomplete blocks nested in replicates.

The initial total of 681,257 genotyping-by-sequencing (GBS)
markers had a percentage of missing cells per chromosome ranging
from 51.3 to 52.8%; after editing, this percentage decreased to around
43–44% of the total number of cells. Around 20% of cells were missing
in the edited GBS information used for prediction after imputation.
After filtering markers for MAF, a total of 158,281 GBS were used for
prediction.

Wheat data sets 3–5: These three data sets were described and used by
López-Cruz et al. (2015) for proposing a marker · environment in-
teraction model. The phenotypic data consisted of adjusted GY
(tonnes/hectare) records collected during three evaluation cycles of
different inbred lines evaluated in different environments. All trials
were established using an a-lattice design with three replicates in
each environment at CIMMYT’s main wheat breeding station at Cd.
Obregon, Mexico. The environments were three irrigation regimes
(moderate drought stress, optimal irrigation, and drought stress), two
planting systems (bed and flat planting), and two different planting dates
(normal and late). The phenotype used in the analysis was the Best Linear

Unbiased Estimate (BLUE) of GY obtained from a linear model applied
to the a-lattice design of each cycle-environment combination.

Wheatdata set 3had693wheat lines evaluated in four environments,
wheat data set 4 included 670 wheat lines evaluated in four environ-
ments, and wheat data set 5 had 807 wheat lines evaluated in five
environments. Genotypes were derived using GBS technology, and
markers with a MAF, 0.05 were removed. All markers had a high
incidence of uncalled genotypes, so we applied thresholds for in-
cidence of missing values and focused on maintaining relatively
large and similar numbers of markers per data set. After editing
the missing markers, we had a total of 15,744 GBS markers for
analyzing wheat data sets 3 and 4, and 14,217 GBS markers available
for analyzing wheat data set 5.

Data availability
Phenotypic and marker data for the five data sets can be downloaded
from http://hdl.handle.net/11529/10710.

RESULTS
In the following sections, we present prediction accuracies for each
data set, and describe two main comparisons: (1) method GBLUP vs.
method GK for models (1)–(3); and (2) model (1) vs. model (2) and
model (3) vs. model (2) for methods GBLUP and GK.

Wheat data set 1
Results showed increased prediction ability for models (1) and (2) for
GK over GBLUP ranging from 12 to 16% for E1, E3, and E4. Also,
model (3) showed 12 and 9% increases in prediction ability of GK over
GBLUP for E1 and E4, respectively (Table 1), whereas the percent
difference of GK model (3) vs. GBLUP model (3) was only 21 and
1% for E2 and E3, respectively.

Empirical phenotypic correlations of zero or negative values
between E1 and all the other environments (Table 2) were found,
whereas E2–E4 were positively (moderately to highly) associated
among themselves. Table 2 shows the average prediction ability of
each of the four environments given by the three models for linear
kernel (GBLUP) and nonlinear kernel (GK). The three GK models
had higher prediction ability than the corresponding three GBLUP
models for E1, E3, and E4, whereas the best prediction model for E2
was GBLUP model (3). Results for this data set indicate a relatively
important level of G · E, basically caused by the differential re-
sponse of individuals in E1 compared with their responses in the
other environments.

Differences in the prediction ability of GBLUP model (2) and
GBLUPmodel (1) were 2, 34, 60, and 12% for E1–E4, respectively; for
GK these differences were 0, 44, 62, and 9% for E1–E4, respectively
(Table 1). GBLUPmodel (3) was 6, 13, 17, and 5%more accurate than
GBLUP model (2) for E1–E4, respectively. GK model (3) was 5, 4, 2,
and 3% more accurate than GK model (2) for E1–E4, respectively. In
summary, for all environments in wheat data set 1, model (3) had
higher prediction ability than models (2) and (1) for GK and GBLUP.
As for the methods, GK was better than GBLUP for all three models
and environments, except E2.

Variance within environments (diagonal) and covariances between
environments (off diagonal) were higher for f (expressed in FE) for
GBLUP than for GK (Appendix Table B1), except for cases involving
E1; however, the opposite is true for u (expressed in UE), where the
absolute variance–covariance values and correlations for GK were
larger than those for GBLUP, and therefore reflected in the increases
in the prediction ability of the models and methods. Also, diagonal
residuals estimates were smaller in GK than in GBLUP.
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Maize data set 2
Higher prediction ability of GK over GBLUP for models (1)–(3) ranged
from 1 to 12% for E1–E3; the advantage of GK over GBLUP was lower
in model (3) (3, 1, and 10% for E1–E3, respectively) than the advantage
of model (2) vs.model (1) (Table 1). Comparing model (2) vs.model (1),
the differenceswere similar forGBLUPandGK (8, 12, and 2% forGBLUP
and 10, 7, and 2% for GK). There were no differences between model
(3) andmodel (2) for GK and only small differences for GBLUP (3, 1, and
2% for E1–E3, respectively). Appendix Table B2 shows that the covari-
ance between environments in FE was close to zero due to the low con-
tribution of random component f for both the GK and GBLUPmethods.

The empirical phenotypic correlations between the three environ-
ments in the maize data set showed moderate positive values (Table 2),
with all the elements of covariance in matrices UE   and  FE being pos-
itive or zero (Appendix Table B2). The elements of UE; for the GK
method were all larger than those for the GBLUP method, and the
opposite occurred with the elements of variance–covariance matrix
FE for GBLUP vs. GK and the diagonal values of residual matrix Σ
(Appendix Table B2). The low values of FE for the GK methods pro-
duced a small increase in prediction ability of model (3) over model
(2) (Table 2), althoughGKmodel (3) always gave the best predictors for
the three environments (E1 = 0.645, E2 = 0.582, and E3 = 0.578) and
was slightly superior to GK model (2). In general, results for this data
set indicate that the prediction ability of the GK method was always
superior to that of the GBLUP method, and model (3) was slightly
better than model (2) and clearly superior to model (1).

Wheat data set 3
GKmodels (1)–(3) were better predictors than GBLUP models (1)–(3)
for the four environments except for E2 (GBLUP model (3)) and E4

(GK model (1)) (Table 2). For E1 and E2, the prediction ability of
model (2) over model (1) was about 14% higher, whereas for E3 it
was 12% and for E4 it was 2% (Table 1). An almost negligible increase
in prediction ability (2) was observed when comparing model (3) vs.
model (2) for GBLUP and GK for predicting individuals in all the
environments (Table 1 and Table 2).

GK model (3) was the best predictor of E1 and E3, GBLUP model
(3) was the best predictor of E2, and single-environment GK model
(1) was the best predictor of E4 (Table 2). Similar to the results for
maize data set 2, the very low values of the elements of matrix FE

(Appendix Table B3) for the GK and GBLUPmethods produced mod-
est to negligible increases in prediction ability of GK model (3) and
GBLUPmodel (3) over GKmodel (2) andGBLUPmodel (2) (from 0 to
2%, as indicated in the last two columns of Table 1).

Wheat data set 4
The four environments included in this set of trials had a relatively low
empirical phenotypic correlation (especially E1 vs. E3, with 20.054),
except E2 and E4 (0.414) (Table 3). This indicates a relatively im-
portant level of G · E and therefore increases in prediction ability
when modeling interaction, especially when comparing single-
environment model (1) vs. multi-environment models (2) and (3)
for the GK and GBLUP methods. For GBLUP, model (2) was a
better predictor than model (1) for E1 (0.03 increase), E2 (0.10
increase), E3 (0.078 increase), and for E4 (0.100 increase), with an
average increase of 17% (6, 25, 15, and 23%, respectively, Table 1).
This superiority of model (2) over model (1) for all environments
increased further in the GK, where it gave an average increase in
prediction ability of 32% over the GBLUP (27, 46, 17, and 37%,
respectively) (Table 1).

n Table 1 Percent change in prediction accuracy of GK vs. GBLUP for each of the three models (1)–(3), prediction accuracy of model (2) vs.
model (1) for GK and GBLUP, and prediction accuracy of model (3) vs. model (2) for GK and GBLUP for each environment in each data set

Environment
GK vs. GBLUP Model (2) vs. Model (1) Model (3) vs. Model (2)

Model (1) Model (2) Model (3) GBLUP GK GBLUP GK

Wheat data set 1
E1 15 12 12 2 0 6 5
E2 1 8 21 34 44 13 4
E3 14 16 1 60 62 17 2
E4 14 11 9 12 9 5 3

Maize data set 2
E1 4 7 3 8 10 3 0
E2 7 2 1 12 7 1 0
E3 12 12 10 2 2 2 0

Wheat data set 3
E1 5 4 2 14 12 2 1
E2 3 23 24 14 7 1 0
E3 16 8 8 12 5 1 1
E4 4 1 1 2 21 1 0

Wheat data set 4
E1 2 22 2 6 27 20 1
E2 23 13 0 25 46 14 1
E3 3 4 1 15 17 4 0
E4 22 10 21 23 37 11 1

Wheat data set 5
E1 9 9 9 4 4 0 0
E2 10 13 13 3 6 0 0
E3 9 9 9 0 0 0 0
E4 15 6 4 64 52 3 0
E5 6 4 0 85 81 3 0

GBLUP, genomic best linear unbiased predictors: GK, Gaussian kernel.
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The increase in prediction ability of model (3) over model (2) was
important for GBLUP but not for GK; overall, GBLUP gave an aver-
age increase in prediction ability of model (3) over model (2) of 12%,
whereas forGK this increasewas, on average, 0.75% (Table 1). Although
the increase in prediction ability of model (3) over model (2) in GK
was marginal, overall, GK model (3) was slightly superior to GBLUP
model (3) for E1 (0.601 vs. 0.616; Table 3) and E3 (0.609 vs. 0.613; Table
3); GBLUP model (3) was slightly better than GK model (3) for pre-
dicting E4 (0.611 vs. 0.607; Table 4) and they had similar accuracy for
predicting E2 (0.588 vs. 0.587).

Appendix Table B4 shows that GBLUPmodel (3) could not capture
sufficient variability associated with random component u reflected
in the within (diagonal) and between environment (off diagonal) var-
iability of ðUEÞ: Therefore, GBLUPmodel (3) with f explained more of
this variability, and this is reflected in the better prediction ability of
GBLUP model (3) for E2 and E4. In contrast, GK model (3) explained
most of the within and between environmental variance reflected in the
large values of the elements of UE: Therefore, FE could not explain
much; thus, the predictions of GK model (3) are similar to (although
slightly lower than) those of GK model (2).

Wheat data set 5
The gains in prediction ability of GK over GBLUP were consistent
across models, ranging from 0 to 13% (Table 1). For the GBLUP
method, the gains in prediction ability of model (2) over model
(1) were very modest (for E1–E3), except for E4 and E5 (with high
empirical phenotypic correlations of 0.546); gains in prediction
ability of model (3) over model (2) were almost negligible, except
for E4 and E5 (3%, Table 1).

The superior prediction ability of the three GK models over the
GBLUPmodels is clearly shown in Table 3. Also, in contrast toGBLUP,
the better prediction ability of GKmodel (2) over GKmodel (1) is clear
for all the environments; interestingly, this increase in prediction
ability due to adding interaction matrix UE to model (2) with respect

tomodel (1) was not reflected when adding the extra variance–covariance
matrix FE to model (3) with respect to model (2) (Appendix Table B5).

DISCUSSION
GBLUP and GK models (1)–(3), which were proposed, described and
used in this study, are flexible and can be used not only with genomic
information but also with pedigree information. We performed pre-
liminary analyses with models (1)–(3) on wheat data set 1 using only
pedigree information, but the prediction ability was not higher than any
of the correlations obtained using the genomic relationship matrix
(data not shown).

Models (2) and (3) proposed in this paper jointly estimate the genetic
and the genotype · environments interaction effects. The proposed
models are more parsimonious than those that explicitly separate
and estimate genotype and environments affects from their interaction.
In general, models that jointly estimated the main effects of genotypes
and genotype · environment are preferred to those that do it separately
because researchers are interested in examining the predicted values
of pure precommercial cultivars and single crosses as well as their in-
teraction and stability with environments.

Belowwediscuss someof the advantages and limitations of theseG·
E genomic prediction models (2) and (3).

Multi-environment model (2)
When fittingmodel (2), estimations of the off-diagonal values ofUE can
be positive, close to zero, zero, or negative. This is a more flexible model
than the multi-environment model of López-Cruz et al. (2015) with a
linear kernel or the multi-environment model of Cuevas et al. (2016)
with a nonlinear GK. Both propositions impose the restriction that the
correlation between environments is positive; therefore, prediction abil-
ity of lines in environments with negative or zero correlations is low.

For model (2), the correlation between any two environments from
the standardized data are equal to the sum UE þ Σ; thus, when the
correlations between environments are close to zero, matrix UE tends

n Table 2 Mean prediction accuracies for the different environments of wheat data set 1, maize data set 2, and wheat data set 3 for
GBLUP and GK methods, and three models including a single-environment (model (1)) and two multi-environment models (models (2) and (3))

Environment
GBLUP GK

Model (1) Model (2) Model (3) Model (1) Model (2) Model (3)

Wheat data set 1a

E1 0.500 (0.056) 0.512 (0.043) 0.543 (0.044) 0.577 (0.043) 0.575 (0.036) 0.606 (0.037)
E2 0.474 (0.048) 0.635 (0.042) 0.720 (0.031) 0.477 (0.056) 0.685 (0.030) 0.713 (0.029)
E3 0.370 (0.056) 0.592 (0.045) 0.694 (0.031) 0.422 (0.053) 0.685 (0.030) 0.699 (0.028)
E4 0.447 (0.047) 0.501 (0.040) 0.525 (0.034) 0.511 (0.044) 0.555 (0.044) 0.572 (0.040)

Maize data set 2b

E1 0.558 (0.038) 0.603 (0.043) 0.624 (0.045) 0.583 (0.042) 0.644 (0.037) 0.645 (0.037)
E2 0.507 (0.049) 0.567 (0.055) 0.575 (0.054) 0.542 (0.056) 0.581 (0.057) 0.582 (0.057)
E3 0.508 (0.051) 0.517 (0.045) 0.525 (0.046) 0.568 (0.044) 0.577 (0.044) 0.578 (0.044)

Wheat data set 3c

E1 0.529 (0.044) 0.603 (0.033) 0.617 (0.031) 0.557 (0.040) 0.625 (0.033) 0.631 (0.035)
E2 0.622 (0.045) 0.706 (0.031) 0.716 (0.029) 0.642 (0.030) 0.688 (0.033) 0.689 (0.034)
E3 0.452 (0.051) 0.506 (0.045) 0.512 (0.043) 0.523 (0.048) 0.547 (0.041) 0.551 (0.041)
E4 0.493 (0.046) 0.504 (0.041) 0.507 (0.039) 0.511 (0.042) 0.508 (0.053) 0.510 (0.052)

SDs are given in parentheses. The highest prediction accuracies for each environment in each data set are shown in boldface. GBLUP, genomic best linear
unbiased predictors: GK, Gaussian kernel.
a
Empirical phenotypic correlation between environments: E1 vs. E2=20.019; E1 vs. E3=20.19; E1 vs. E4=20.12; E2 vs. E3 = 0.661; E2 vs. E4 = 0.411; E3 vs. E4 = 0.388.

b
Empirical phenotypic correlation between environments: E1 vs. E2 = 0.388; E1 vs. E3 = 0.262; E 2 vs. E3 = 0.153.

c
Empirical phenotypic correlation between environments: E1 vs. E2 = 0.527; E1 vs. E3 = 0.253; E1 vs. E4 = 0.259; E2 vs. E3 = 0.340; E2 vs. E4 = 0.328; E3 vs. E4 = 0.22.
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to be diagonal so that model (2) will fit each environment almost in-
dependently from the other environments; this will produce prediction
accuracies similar to those obtained by single-environment model (1),
as evidenced in our results. When the correlation between environ-
ments is positive (or negative) and intermediate to high, matrix UE

has positive (or negative) values in its off-diagonal; this allows borrow-
ing information from one environment to predict other environments
with positive (or negative) correlations, such that the linear or non-
linear kernels will increase the prediction ability of the lines in those
environments. Therefore, the diagonal of matrix UE influences the
prediction ability in a specific environment and the off-diagonal values
of matrix UE affect the exchange of information between environ-
ments. According to Cuevas et al. (2016), in general, nonlinear kernel
GK had better prediction ability than linear kernel GBLUP. These
results were generally found in model (2) as well, because GK explained
the variance within and between environments better than GBLUP,
and this is reflected in the values of matrix UE (Appendix Table B1,
Table B2, Table B3, Table B4, and Table B5).

Table 1 shows that the differences when comparing model (2) vs.
model (1) are close in methods GK and GBLUP (i.e., maize data set 2,
wheat data set 3, and wheat data set 5); model (3) withGBLUP andwith
GK had negligible gains in prediction ability over model (2) with
GBLUP and with GK. In contrast, when there are differences inmodels
(2) and (1) in GK and GBLUP (i.e., wheat data set 1 and wheat data set
4), GBLUP model (3) substantially increases prediction ability with
respect to GBLUP model (2), but this does not seem to be the case
for GK.

Multi-environment model (3)
Model (2) explained only part of the variability, whereas multi-environ-
mentmodel (3) incorporated a random effect f that attempts to explain a
portion of the genotypic variance that is not explained by u and therefore
has the potential to further capture that variability, which will improve
prediction ability. The reaction norm model of Jarquín et al. (2014)
applies this principle when adding a genomic component to the pheno-
typic component or adding ECs to explain environmental variability.We
did not add any ECs to our model; therefore, matrix f will have a pre-

dictive effect only when lines are predicted in one environment using
information from other correlated environments (random cross-
validation scheme CV2). Under the random cross-validation scheme,
where certain lines were not observed in any of the environments
(cross-validation scheme CV1), there is no borrowing of information
from the lines in the training set to predict other lines not observed in
any of the environments (testing set); therefore, matrix f is not predict-
able and the prediction ability for one environment will be the same as
that obtained by single-environmentmodel (1) (López-Cruz et al. 2015).

Results fromfive data sets show that the increase in prediction ability
ofmodel (3) overmodel (2) is a functionof themagnitudeof the absolute
values of the variance–covariance between environments ðFEÞ and
the method used (linear or nonlinear kernel). In general, the in-
creases in prediction ability of model (3) over model (2) are with
GBLUP because, as mentioned, model (2) explained only part of the
genotypic variance; on the other hand, the increases in prediction
ability of GK model (3) with respect to GK model (2) are smaller
than those observed in the GBLUP because the nonlinear kernel
with model (2) takes most of the variability and does not leave much
variability to be explained by the covariance between environments
ðFEÞ: Model (3) adds a random effect f representing part of
the interaction between genetic factors environment that were not
captured by u; when used with the GK, part of the small cryptic
variations represented by the small epistatic effect might be included
in f :

Comparing prediction ability of multi-environment
model (3) with other multi-environment genomic G 3 E
models in the literature
In this section, we compare results obtained in this study with multi-
environment model (3) using methods GBLUP and GK with those
obtained by other models and methods for the same data set and
published in other articles (Burgueño et al. 2012; Cuevas et al. 2016;
López-Cruz et al. 2015). It should be pointed out that this comparison
of results is not completely objective because different random parti-
tions and different numbers of partitions were performed in the differ-
ent studies.

n Table 3 Mean prediction accuracies for the different environments of wheat data sets 4 and 5 for GBLUP and GK methods, and three
models including a single-environment (model (1)) and two multi-environment models (models (2) and (3))

GBLUP GK

Environment Model (1) Model (2) Model (3) Model (1) Model (2) Model (3)

Wheat data set 4a

E1 0.473 (0.052) 0.501 (0.041) 0.601 (0.033) 0.482 (0.040) 0.612 (0.041) 0.616 (0.042)
E2 0.414 (0.063) 0.517 (0.049) 0.588 (0.041) 0.401 (0.051) 0.584 (0.047) 0.587 (0.044)
E3 0.510 (0.052) 0.588 (0.044) 0.609 (0.044) 0.524 (0.039) 0.613 (0.038) 0.613 (0.039)
E4 0.448 (0.054) 0.550 (0.037) 0.611 (0.043) 0.440 (0.045) 0.603 (0.045) 0.607 (0.044)

Wheat data set 5b

E1 0.561 (0.035) 0.585 (0.036) 0.583 (0.036) 0.614 (0.038) 0.637 (0.032) 0.637 (0.032)
E2 0.445 (0.051) 0.457 (0.040) 0.458 (0.040) 0.488 (0.046) 0.517 (0.037) 0.518 (0.037)
E3 0.628 (0.037) 0.630 (0.027) 0.632 (0.026) 0.687 (0.026) 0.688 (0.030) 0.688 (0.030)
E4 0.360 (0.046) 0.592 (0.042) 0.608 (0.040) 0.415 (0.043) 0.630 (0.037) 0.630 (0.037)
E5 0.312 (0.055) 0.576 (0.036) 0.596 (0.035) 0.330 (0.047) 0.597 (0.038) 0.597 (0.038)

SDs are given in parentheses. The highest prediction accuracies for each environment in each data set are shown in boldface. GBLUP, genomic best linear unbiased predictors:
GK, Gaussian kernel.
a
Empirical phenotypic correlation between environments: E1 vs. E2 = 0.342; E1 vs. E3= –0.054; E1 vs. E4 = 0.311; E2 vs. E3 = 0.328; E2 vs. E4 = 0.414; E3 vs. E4 =
0.223.

b
Empirical phenotypic correlation between environments: E1 vs. E2 = 0.166; E1 vs. E3 = 0.30; E1 vs. E4= –0.10; E1 vs. E5= –0.010; E2 vs. E3= –0.033; E2 vs. E4 =
0.122; E2 vs. E5 = 0.035; E3 vs. E4= –0.091; E3 vs. E5 = 0.023; E4 vs. E5 = 0.546.
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Wheat data set 1: The first researchers to study the prediction ability of
genomic G · E models were Burgueño et al. (2012) using multivariate
mixed linear models for the variance–covariance matrix of the G · E
by means of the parsimonious factor analytic (FA) structure and a
diagonal matrix for the variance of error. Clearly, for E2 and E3, cor-
relations computed by fitting the FA model were lower than those
computed by GBLUP and GK model (3), which incorporates the ran-
dom effect of f (Table 4). Environment 1, which is negatively correlated
with all the other environments, was better predicted by FA (0.553)
than by GK model (3) (0.543), while GK model (3) predicted E4 better
(0.525) than FA (0.510).

On the other hand, Cuevas et al. (2016) used a GK based on the
marker · environment interaction model of López-Cruz et al. (2015)
and decomposed the interaction into two components: the main effects
of markers across all the environments and the specific effects of

markers in each environment. The reason for these differences is that
the model of Cuevas et al. (2016) assumes positive correlations between
environments; when there is a negative correlation between environ-
ments, its predictive capacity declines, as happened with the relatively
low prediction ability of E1 (0.458). GK model (3) (and also GBLUP
model (3)) is more flexible, admitting any correlation (positive, zero, or
negative) between environments, and therefore predicted all four en-
vironments (E1–E4) better than the EB-G· E and FAmodels (Table 4).

Maize data set 2: This data set was used by Cuevas et al. (2016) for
comparing the GBLUP marker · environment interaction of López-
Cruz et al. (2015) with the proposed GK marker · environment in-
teraction. Moderate but consistent increases in prediction ability for
each environment were achieved by GK model (3) over model EB-G ·
E (Table 4). Also, GK model (2) had consistently higher prediction
ability than EB-G · E.

Wheat data sets 3–5: These three data sets were used by López-Cruz
et al. (2015) to fit the marker · environment interaction GBLUP-ME.
GBLUP model (3) and GK model (3) showed consistently higher pre-
diction ability thanmodel GBLUP-ME, except in E4 of wheat data set 3,
where GBLUP-ME had a prediction ability of 0.516, which was higher
than the accuracy of GBLUP model (3) and GK model (3).

Some limitations of the proposed models
In this study, we used five data sets with the same number of individuals
in all the environments. This does not seem to be a limitation when the
main idea is to predict the same number of individuals in all environ-
ments. However, when the total number of individuals is different in
different environments, then the within-environment K j is different in
each environment and the MTM software cannot be used directly.
Fitting models (2)–(3) in this case is more complicated because, al-
though it is possible to fit the models with the mode of the integrated
likelihood, this requires much computing time. Fitting models for a
large number of environments, evenwhen the same number of lines are
evaluated in each environment, also requires much computing time.

A possible solution for reducing computing time is to reduce the
number of parameters tobe estimatedbyassuming thatmatricesUE; FE

are proportional to the phenotypic correlation, which does not seem
unreasonable if the response data are standardized. However, more
research on the use of this simplification is required to establish
whether the prediction accuracies thus obtained are similar to those
computed using the proposed estimation method.

Conclusions
The Bayesian genomic G · Emodels described, implemented, and used
in this study are novel and overcome some of the limitations imposed
by previous genomic G · E models. Models (2) and (3) allow an
arbitrary genetic covariance structure between environments, because
an unstructured covariance matrix was used and its parameters were
estimated from the data. These multi-environment models can be
implemented using existing software for GS such as MTM. The
cross-validation used 50 replicates and predicted lines in environments
where they had not been observed using two sources of information:
genomic relationships between lines and genetic information between
environments. In all five data sets, models (2) and (3) had higher pre-
diction accuracies than single-environment model (1) regardless of the
genetic correlation between environments. In general, models (2) and
(3) with the nonlinear GK had higher prediction accuracies for the lines
unobserved in the environments than those obtained by the linear
kernel (GBLUP)method. UnderG · E interactions such as those found

n Table 4 Comparison of prediction accuracy of multi-
environment GBLUP and GK model (3) with various other models
published in refereed journals for the five data sets utilized in this
study

GBLUP GK

Wheat Data Set 1 FA Model (3) EB-G · E Model (3)

E1 0.553 0.543 0.458 0.606
E2 0.611 0.720 0.644 0.713
E3 0.585 0.694 0.586 0.694
E4 0.51 0.525 0.543 0.572

GBLUP GK

Maize Data Set 2 EB-G · E Model (2) EB-G · E Model (3)

E1 0.618 0.624 0.630 0.645
E2 0.547 0.575 0.566 0.582
E3 0.519 0.525 0.556 0.578

GBLUP GK

Wheat Data Set 3 GBLUP-ME Model (3) Model (3)

E1 0.591 0.617 0.631
E2 0.697 0.716 0.689
E3 0.505 0.512 0.551
E4 0.516 0.507 0.51

GBLUP GK

Wheat Data Set 4 GBLUP-ME Model (3) Model (3)

E1 0.513 0.601 0.616
E2 0.536 0.588 0.587
E3 0.531 0.609 0.613
E4 0.561 0.611 0.607

GBLUP GK

Wheat Data Set 5 GBLUP-ME Model (3)

E1 0.575 0.583 0.637
E2 0.466 0.458 0.518
E3 0.629 0.632 0.688
E4 0.402 0.608 0.630
E5 0.376 0.596 0.597

FA (Factor Analytic) model, Burgueño et al. (2012); EB (Empirical Bayes)-G · E,
Cuevas et al. (2016); GBLUP-ME, López-Cruz et al. (2015); The highest correla-
tions in each row are in boldface. GBLUP, genomic best linear unbiased predic-
tors: GK, Gaussian kernel.
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in the five data sets studied in this article, nonlinear GKmodels (2) and
(3) performed very similarly and had higher prediction accuracies than
linear GBLUP models (2) and (3). These models are clearly superior
to single-environment genomic model (1) with GBLUP and GK, and
their results are also superior to previous results from more restrictive
marker · environment models. Prediction accuracies of models
(2) and (3) with GK were higher than those obtained by other models
and methods.

ACKNOWLEDGMENTS
The authors are grateful to the dedication and high professionalism of
all field and lab workers and assistants at CIMMYT Headquarters
(Mexico), as well as at CIMMYT outreach offices in several countries,
who generated the data analyzed in this study.

LITERATURE CITED
Bonilla, E., K. Chai, and C. Williams, 2007 Multi-task Gaussian process

prediction. Adv. Neural Inf. Process. Syst. 20: 153–160.
Burgueño, J., J. Crossa, P. L. Cornelius, and R. C. Yang, 2008 Using factor

analytic models for joining environments and genotypes without cross-
over genotype · environment interactions. Crop Sci. 48(4): 1291.

Burgueño, J., J. Crossa, J. M. Cotes, F. San Vicente, and B. Das, 2011 Prediction
assessment of linear mixed models for multivariate trials. Crop Sci. 51:
944–954.

Burgueño, J., G. de los Campos, K. Weigel, and J. Crossa, 2012 Genomic
prediction of breeding values when modeling genotype · environment
interaction using pedigree and dense molecular markers. Crop Sci. 52:
707–719.

Cornelius, P., J. Crossa, and M. Seyedsadr, 1996 Statistical test and estimators
of multiplicative models for genotype-by-environment interaction, pp.
199–234 in Genotype-by-Environment Interaction, edited by Gauch, H. G.,
and M. Kang. CRC Press, Boca Raton, FL..

Crossa, J., R. C. Yang, and P. L. Cornelius, 2004 Studying crossover geno-
type· environment interaction using linear-bilinear models and mixed
models. J. Agric. Biol. Environ. Stat. 9(3): 362–380.

Crossa, J., J. Burgueño, P. L. Cornelius, G. McLaren, R. Trethowan et al.,
2006 Modeling genotype · environment interaction using additive
genetic covariances of relatives for predicting breeding values of wheat
genotypes. Crop Sci. 46(4): 1722.

Crossa, J., G. de los Campos, P. Pérez-Rodríguez, D. Gianola, J. Burgueño
et al., 2010 Prediction of genetic values of quantitative traits in plant
breeding using pedigree and molecular markers. Genetics 186: 713–724.

Crossa, J., Y. Beyene, S. Kassa, P. Pérez-Rodríguez, J. M. Hickey et al.,
2013 Genomic prediction in maize breeding populations with
genotyping-by-sequencing. G3 (Bethesda) 3: 1903–1926.

Crossa, J., M. Maccaferri, R. Tuberosa, J. Burgueño, and P. Pérez-Rodríguez,
2016 Extending the marker · environment interaction model for
genomic-enabled prediction and genome-wide association analyses in
durum wheat. Crop Sci. 56: 1–17.

Cuevas, J., J. Crossa, V. Soberanis, S. Pérez-Elizalde, P. Pérez-Rodríguez et al.,
2016 Genomic prediction of genotype · environment interaction kernel
regression models. Plant Genome 9: 1–12.

de los Campos, G., and P. Pérez-Rodríguez, 2014 Bayesian Generalized
Linear Regression. R package version 1.0.4. Available at: http://CRAN.
R-project.org/package=BGLR. Accessed: April 20, 2016.

de los Campos, G., and A. Grüneberg, 2016 MTM (Multiple-Trait Model)
package. Available at: http://quantgen.github.io/MTM/vignette.html.
Accessed May 3rd, 2016.

de los Campos, G., D. Gianola, G. J. M. Rosa, K. Weigel, and J. Crossa,
2010 Semi-parametric genomic-enabled prediction of genetic values
using reproducing kernel Hilbert spaces methods. Genet. Res. 92: 295–
308.

Fisher, R. A., and W. A. Mackensie, 1923 Studies in crop variation II.
The manurial response of different potato varieties. J. Agric. Sci. 13(03):
311–320 .10.1017/S0021859600003592

Jarquín, D., J. Crossa, X. Lacaze, P. D. Cheyron, J. Daucourt et al., 2014 A
reaction norm model for genomic selection using high-dimensional
genomic and environmental data. Theor. Appl. Genet. 127: 595–607.

Jiang, J., 2007 Linear and generalized linear mixed models and their ap-
plications, pp. 7. Springer Series in Statistics. Springer-Verlag, New York.

López-Cruz, M. A., J. Crossa, D. Bonnet, S. Dreisigacker, J. Poland et al.,
2015 Increased prediction accuracy in wheat breeding trials using a
marker · environment interaction genomic selection model. G3
(Bethesda) 5(4):569–582.

Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard, 2001 Prediction of
total genetic value using genome-wide dense marker maps. Genetics 157:
1819–1829.

Pérez-Elizalde, S., J. Cuevas, P. Pérez- Rodríguez, and J. Crossa, 2015 Selection
of the bandwidth parameter in a Bayesian Kernel regression model
for genomic-enabled prediction. J. Agric. Biol. Environ. Stat. 5(4):
512–532.

Pérez-Rodríguez, P., D. Gianola, J. M. González-Camacho, J. Crossa, Y.
Manes et al., 2012 A comparison between linear and non-parametric
regression models for genome-enabled prediction in wheat. G3
(Bethesda) 2: 1595–1605.

Pérez-Rodríguez, P., and G. de los Campos, 2014 Genome-wide regression
and prediction with the BGLR statistical package. Genetics 198: 483–495.

Piepho, H. P., 1998 Empirical best linear unbiased prediction in cultivar
trials using factor analytic variance covariance structure. Theor. Appl.
Genet. 97: 195–201.

Smith, A. B., B. R. Cullis, and R. Thompson. 2001 Exploring variety-
environment data using random effects AMMI models with adjustments
for spatial field trend: part 1: theory, pp. 323–335 in Quantitative
Genetics, Genomics and Plant Breeding, edited by Kang, M. S.. CABI
Publishing, Wallingford.

Smith, A. B., B. R. Cullis, and R. Thompson, 2005 The analysis of crop
cultivar breeding and evaluation trials: an overview of current mixed
model approaches. J. Agric. Sci. 143: 449–462.

VanRaden, P. M., 2007 Genomic measures of relationship and inbreeding.
Interbull Bull 37: 33–36.

VanRaden, P. M., 2008 Efficient methods to compute genomic predictions.
J. Dairy Sci. 91: 4414–4423.

Yates, F., and W. G. Cochran, 1938 The analysis of groups of experiments.
J. Agric. Sci. 28: 556–580.

Communicating editor: D. J. de Koning

50 | J. Cuevas et al.

http://CRAN.R-project.org/package=BGLR
http://CRAN.R-project.org/package=BGLR
http://quantgen.github.io/MTM/vignette.html


APPENDIX A

### Example for fitting multi-environment model (3)
### Require MTM package (de los Campos and Grüneberg, 2016)
##### Require BGLR package (de los Campos and Pérez-Rodríguez, 2014)
##### Requiere function CV2 (López-Cruz et al., 2015)
###Data
library(BGLR)
library(MCMCpack)
data(wheat)
X,-wheat.X
Y,-wheat.Y
X,-scale(X,center=TRUE,scale=TRUE)
Y,-scale(Y,center=TRUE,scale=TRUE)
env,-c(1,2,3,4); y,-Y[,env]
G,-X%�%t(X)/ncol(X)
In,-diag(1,nrow(Y),nrow(Y))
set.seed(12345)
##Simulation of missing data CV2, see López-Cruz et al. (2015)
yNA,-CV2(Y,env) # generation of CV2
### Fit model (3) with MTM (see de los Campos and Grüneberg, 2016)
fm ,- MTM(
Y = yNA,
K = list( list( K = G, COV = list( type = 9UN9, df0 = 4, S0 = diag(4) ) ), list(
K = In, COV = list(type = 9UN9, df0 = 4, S0 = diag(4)) )
),
resCov = list( type = 9DIAG9, S0 = rep(1, 4), df0 = rep(1, 4)
), nIter = 10000, burnIn = 1000, thin = 5, saveAt = 9ex19
)
# ###Extracting the estimated parameters
YHatInt ,- fm$YHat
##### Predictive correlation
test,-is.na(yNA)
tst1,-test[,1];tst2,-test[,2];tst3,-test[,3];tst4,-test[,4]
COR.PT1,-cor(YHatInt[tst1,1],y[tst1,1])
COR.PT2,-cor(YHatInt[tst2,2],y[tst2,2])
COR.PT3,-cor(YHatInt[tst3,3],y[tst3,3])
COR.PT4,-cor(YHatInt[tst4,4],y[tst4,4])
#### Extracting estimates of variance parameters
COR.RES,-fm$resCov$R # residual covariance matrix
COR.u,-fm$K[[1]]$G # genetic covariance matrix UE
COR.f,-fm$K[[2]]$G # genetic covariance matrix FE
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APPENDIX B

n Table B1 Wheat data set 1

Env.

Covariance Matrix UE (Upper Triangular)
and Correlation Matrix (Lower Triangular) for u

Covariance Matrix FE (Upper Triangular) and
Correlation Matrix (Lower Triangular) for f

Variance–Covariance
Matrix Σ for e

E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

GBLUP
E1 0.534 20.123 20.121 20.235 0.302 0.074 20.095 0.063 0.238 – – –
E2 20.243 0.480 0.388 0.255 0.207 0.423 0.300 0.159 – 0.164 – –
E3 20.247 0.834 0.451 0.283 20.256 0.682 0.457 0.114 – – 0.177 –
E4 20.483 0.552 0.632 0.444 0.236 0.503 0.347 0.236 – – – 0.379

GK
E1 0.728 20.159 20.224 20.219 0.200 0.118 20.003 0.094 0.154 – – –
E2 20.221 0.714 0.666 0.344 0.483 0.299 0.126 0.096 – 0.149 – –
E3 20.287 0.860 0.839 0.438 20.015 0.499 0.213 0.003 – – 0.163 –
E4 20.311 0.493 0.579 0.683 0.460 0.384 0.014 0.209 – – – 0.220

Empirical phenotypic correlation between environments: E1 vs. E2 = 20.019; E1 vs. E3 = 20.19; E1 vs. E4 = 20.12; E2 vs. E3 = 0.661; E2 vs. E4 = 0.411; E3 vs. E4 =
0.388. Variance–covariance matrix (upper triangular) and correlation matrix (lower triangular) for random effects u, f, and variance matrix for random errors e of multi-
environment model (3) including four environments (E1–E4) for linear kernel GBLUP and nonlinear Gaussian kernel (GK). Pair-wise sample phenotypic correlations
between environments are given above. Env., environment; GBLUP, genomic best linear unbiased predictors: GK, Gaussian kernel.

n Table B2 Maize data set 2

Env.

Covariance Matrix UE (Upper Triangular) and
Correlation Matrix (Lower Triangular) for u

Covariance Matrix FE (Upper Triangular) and
Correlation Matrix (Lower Triangular) for f

Variance–Covariance
Matrix Σ for e

1 2 3 1 2 3 1 2 3

GBLUP
E1 0.442 0.275 0.117 0.268 0.101 0.094 0.221 – –
E2 0.524 0.622 20.001 0.415 0.221 0.025 – 0.226 0.000
E3 0.255 20.002 0.475 0.369 0.108 0.242 – – 0.288

GK
E1 0.620 0.319 0.204 0.140 0.022 0.016 0.161 – –
E2 0.468 0.748 0.030 0.167 0.124 0.015 – 0.147 0.000
E3 0.318 0.043 0.663 0.116 0.116 0.136 — — 0.171

Empirical phenotypic correlation: Sample phenotypic correlations: E1vsE2 = 0.388; E1 vs. E3 = 0.262; E2 vs. E3 = 0.153. Variance–covariance matrix (upper triangular)
and correlation matrix (lower triangular) for random effects u, f, and variance matrix for random errors e of multi-environment model (3) including three environments
(E1–E3) for linear kernel GBLUP and nonlinear Gaussian kernel (GK). Pair-wise sample phenotypic correlations between environments are given above. Env.,
environment; GBLUP, genomic best linear unbiased predictors: GK, Gaussian kernel.

n Table B3 Wheat data set 3

Env.

Covariance Matrix UE (Upper Triangular) and
Correlation Matrix (Lower Triangular) for u

Covariance Matrix FE (Upper Triangular) and
Correlation Matrix (Lower Triangular) for f

Variance–Covariance
Matrix Σ for e

1 2 3 4 1 2 3 4 1 2 3 4

GBLUP
E1 0.403 0.368 0.129 0.169 0.254 0.086 0.087 0.017 0.281 – – –
E2 0.729 0.632 0.329 0.204 0.403 0.179 0.036 0.067 – 0.184 – –
E3 0.273 0.555 0.556 0.128 0.362 0.178 0.228 0.033 – – 0.322 –
E4 0.448 0.432 0.289 0.353 0.070 0.327 0.143 0.234 – – – 0.366

GK
E1 0.693 0.453 0.175 0.191 0.132 20.014 0.033 20.023 0.145 – – –
E2 0.638 0.727 0.302 0.248 20.122 0.099 0.004 0.012 – 0.123 – –
E3 0.229 0.386 0.841 0.171 0.267 0.037 0.116 20.004 – – 0.126 –
E4 0.269 0.342 0.219 0.725 20.168 0.101 20.031 0.142 – – – 0.163

Empirical phenotypic correlation: E1 vs. E2 = 0.527; E1 vs. E3 = 0.253; E1 vs. E4 = 0.259; E2 vs. E3 = 0.340; E2 vs. E4 = 0.328; E3 vs. E4 = 0.220. Variance–covariance
matrix (upper triangular) and correlation matrix (lower triangular) for random effects u, f, and variance matrix for random errors e of multi-environment model
(3) including four environments (E1–E4) for linear kernel GBLUP and nonlinear Gaussian kernel (GK). Pair-wise sample phenotypic correlations between environments
are given above. Env., environment; GBLUP, genomic best linear unbiased predictors: GK, Gaussian kernel.
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n Table B4 Wheat data set 4

Env.

Covariance Matrix UE (Upper Triangular) and
Correlation Matrix (Lower Triangular) for u

Covariance Matrix FE (Upper Triangular) and
Correlation Matrix (Lower Triangular) for f

Variance–Covariance
Matrix Σ for e

1 2 3 4 1 2 3 4 1 2 3 4

GBLUP
E1 0.483 0.111 0.004 0.133 0.409 0.230 20.055 0.215 0.175 – – –
E2 0.234 0.467 0.291 0.246 0.585 0.378 0.091 0.199 – 0.242 – –
E3 0.008 0.560 0.578 0.292 20.163 0.280 0.279 0.105 – – 0.230 –
E4 0.304 0.572 0.610 0.396 0.541 0.521 0.320 0.386 – – – 0.243

GK
E1 0.968 0.353 20.042 0.378 0.142 0.084 20.021 0.059 0.111 – – –
E2 0.395 0.826 0.417 0.476 0.502 0.197 20.007 0.045 – 0.176 – –
E3 20.044 0.470 0.952 0.439 20.170 20.048 0.107 0.009 – – 0.129 –
E4 0.429 0.584 0.502 0.803 0.383 0.248 0.067 0.167 – – – 0.192

Empirical phenotypic correlation: E1 vs. E2 = 0.342; E1 vs. E3 = 20.054; E1 vs. E4 = 0.311; E2 vs. E3 = 0.328; E2 vs. E4 = 0.414; E3 vs. E4 = 0.223. Variance–
covariance matrix (upper triangular) and correlation matrix (lower triangular) for random effects u, f, and variance matrix for random errors e of multi-environment
model (3) including four environments (E1–E4) for linear kernel GBLUP and nonlinear Gaussian kernel (GK). Pair-wise sample phenotypic correlations between
environments are above. Env., environment; GBLUP, genomic best linear unbiased predictors: GK, Gaussian kernel.

n Table B5 Wheat data set 5

Env.

Covariance Matrix UE (Upper Triangular) and
Correlation Matrix (Lower Triangular) for u

Covariance Matrix FE (Upper Triangular) and
Correlation Matrix (Lower Triangular) for f

Variance–Covariance
Matrix Σ for e

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

GBLUP
E1 0.626 0.161 0.186 20.039 0.017 0.141 0.035 0.010 20.016 0.008 0.193 – – – –
E2 0.277 0.538 20.022 0.092 0.030 0.227 0.169 0.006 20.004 0.016 – 0.277 – – –
E3 0.301 20.038 0.608 20.099 20.018 0.078 0.043 0.116 0.037 0.061 – – 0.140 – –
E4 20.063 0.161 20.163 0.605 0.405 20.086 20.020 0.219 0.247 0.180 – – – 0.189 –
E5 0.029 0.055 20.031 0.705 0.546 0.038 0.070 0.323 0.653 0.308 – – – – 0.201

GK
E1 0.849 0.201 0.261 20.094 0.010 0.083 0.014 0.003 20.009 0.005 0.100 – – – –
E2 0.232 0.887 0.014 0.095 0.032 0.150 0.105 0.006 20.006 0.013 – 0.136 – – –
E3 0.325 0.017 0.759 20.031 0.060 0.040 0.071 0.068 0.012 0.014 – – 0.082 – –
E4 20.105 0.104 20.037 0.949 0.677 20.095 20.056 0.139 0.109 0.031 – – – 0.135 –
E5 0.011 0.035 0.072 0.722 0.927 0.047 0.108 0.145 0.254 0.137 – – – – 0.174

Empirical phenotypic correlation: E1 vs. E2 = 0.166; E1 vs. E3 = 0.30; E1 vs. E4 =20.10; E1 vs. E5 =20.010; E2 vs. E3 =20.033; E2 vs. E4 = 0.122; E2 vs. E5 = 0.035;
E3 vs. E4 =20.091; E3 vs. E5 = 0.023; E4 vs. E5 = 0.546. Variance–covariance matrix (upper triangular) and correlation matrix (lower triangular) for random effects u, f,
and variance matrix for random errors e of multi-environment model (3) including five environments (E1–E5) for linear kernel GBLUP and nonlinear Gaussian kernel
(GK). Pair-wise sample phenotypic correlations between environments are given above. Env., environment; GBLUP, genomic best linear unbiased predictors: GK,
Gaussian kernel.
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